arXiv Papers with Code in Computer Science (October 2025)

Paperid: 1, https://arxiv.org/pdf/2510.27688.pdf   GitHub GitHub
Authors:Chenze Shao, Darren Li, Fandong Meng, Jie Zhou
Title: Continuous Autoregressive Language Models
Abstract:
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.

Authors:Ze-Xu Li, M. Amin Rahimian, Lei Fang
Title: Social learning moderates the tradeoffs between efficiency, stability, and equity in group foraging
Abstract:
Social learning shapes collective search by influencing how individuals use peer information. Empirical and computational studies show that optimal information sharing that is neither too localized nor too diffuse, can enhance resource detection and coordination. Building on these insights, we develop a randomized search model that integrates social learning with area-restricted search (ARS) to investigate how communication distance affects collective foraging. The model includes three behavioral modes: exploration, exploitation, and targeted walk, which are governed by a single parameter, $ρ$, that balances exploration and exploitation at the group level. We quantify how $ρ$ influences group efficiency ($η$), temporal variability/burstiness ($B$), and agent variability/equity in resource distribution ($σ$), revealing a clear trade-off among these outcomes. When $ρ\to 0$, agents explore independently, maximizing collective exploration. As $ρ$ increases, individuals preferentially exploit patches discovered by others: $η$ first rises and then declines, while $B$ shows the opposite trend. Group efficiency is optimized at interior $ρ$ values that balance exploration and exploitation. At the largest $ρ$, equality among agents is highest, but efficiency declines and burstiness is maximized too. Finally, by introducing negative rewards, we examine how social learning mitigates risk.

Authors:Ziqian Guan, Xieyi Fu, Pengjun Huang, Hengyuan Zhang, Hubin Du, Yongtao Liu, Yinglin Wang, Qang Ma
Title: Gaussian Combined Distance: A Generic Metric for Object Detection
Abstract:
In object detection, a well-defined similarity metric can significantly enhance model performance. Currently, the IoU-based similarity metric is the most commonly preferred choice for detectors. However, detectors using IoU as a similarity metric often perform poorly when detecting small objects because of their sensitivity to minor positional deviations. To address this issue, recent studies have proposed the Wasserstein Distance as an alternative to IoU for measuring the similarity of Gaussian-distributed bounding boxes. However, we have observed that the Wasserstein Distance lacks scale invariance, which negatively impacts the model's generalization capability. Additionally, when used as a loss function, its independent optimization of the center attributes leads to slow model convergence and unsatisfactory detection precision. To address these challenges, we introduce the Gaussian Combined Distance (GCD). Through analytical examination of GCD and its gradient, we demonstrate that GCD not only possesses scale invariance but also facilitates joint optimization, which enhances model localization performance. Extensive experiments on the AI-TOD-v2 dataset for tiny object detection show that GCD, as a bounding box regression loss function and label assignment metric, achieves state-of-the-art performance across various detectors. We further validated the generalizability of GCD on the MS-COCO-2017 and Visdrone-2019 datasets, where it outperforms the Wasserstein Distance across diverse scales of datasets. Code is available at https://github.com/MArKkwanGuan/mmdet-GCD.

Authors:Riccardo Brioschi, Aleksandr Alekseev, Emanuele Nevali, Berkay Döner, Omar El Malki, Blagoj Mitrevski, Leandro Kieliger, Mark Collier, Andrii Maksai, Jesse Berent, Claudiu Musat, Efi Kokiopoulou
Title: Sketch-to-Layout: Sketch-Guided Multimodal Layout Generation
Abstract:
Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at https://github.com/google-deepmind/sketch_to_layout.

Authors:Nikolaus Holzer, William Fishell, Baishakhi Ray, Mark Santolucito
Title: Mechanics of Learned Reasoning 1: TempoBench, A Benchmark for Interpretable Deconstruction of Reasoning System Performance
Abstract:
Large Language Models (LLMs) are increasingly excelling and outpacing human performance on many tasks. However, to improve LLM reasoning, researchers either rely on ad-hoc generated datasets or formal mathematical proof systems such as the Lean proof assistant. Whilst ad-hoc generated methods can capture the decision chains of real-world reasoning processes, they may encode some inadvertent bias in the space of reasoning they cover; they also cannot be formally verified. On the other hand, systems like Lean can guarantee verifiability, but are not well-suited to capture the nature of agentic decision chain-based tasks. This creates a gap both in performance for functions such as business agents or code assistants, and in the usefulness of LLM reasoning benchmarks, whereby these fall short in reasoning structure or real-world alignment. We introduce TempoBench, the first formally grounded and verifiable diagnostic benchmark that parametrizes difficulty to systematically analyze how LLMs perform reasoning. TempoBench uses two evaluation benchmarks to break down reasoning ability. First, temporal trace evaluation (TTE) tests the ability of an LLM to understand and simulate the execution of a given multi-step reasoning system. Subsequently, temporal causal evaluation (TCE) tests an LLM's ability to perform multi-step causal reasoning and to distill cause-and-effect relations from complex systems. We find that models score 65.6% on TCE-normal, and 7.5% on TCE-hard. This shows that state-of-the-art LLMs clearly understand the TCE task but perform poorly as system complexity increases. Our code is available at our \href{https://github.com/nik-hz/tempobench}{GitHub repository}.

Authors:Zherui Yang, Zhehao Li, Kangbo Lyu, Yixuan Li, Tao Du, Ligang Liu
Title: Learning Sparse Approximate Inverse Preconditioners for Conjugate Gradient Solvers on GPUs
Abstract:
The conjugate gradient solver (CG) is a prevalent method for solving symmetric and positive definite linear systems Ax=b, where effective preconditioners are crucial for fast convergence. Traditional preconditioners rely on prescribed algorithms to offer rigorous theoretical guarantees, while limiting their ability to exploit optimization from data. Existing learning-based methods often utilize Graph Neural Networks (GNNs) to improve the performance and speed up the construction. However, their reliance on incomplete factorization leads to significant challenges: the associated triangular solve hinders GPU parallelization in practice, and introduces long-range dependencies which are difficult for GNNs to model. To address these issues, we propose a learning-based method to generate GPU-friendly preconditioners, particularly using GNNs to construct Sparse Approximate Inverse (SPAI) preconditioners, which avoids triangular solves and requires only two matrix-vector products at each CG step. The locality of matrix-vector product is compatible with the local propagation mechanism of GNNs. The flexibility of GNNs also allows our approach to be applied in a wide range of scenarios. Furthermore, we introduce a statistics-based scale-invariant loss function. Its design matches CG's property that the convergence rate depends on the condition number, rather than the absolute scale of A, leading to improved performance of the learned preconditioner. Evaluations on three PDE-derived datasets and one synthetic dataset demonstrate that our method outperforms standard preconditioners (Diagonal, IC, and traditional SPAI) and previous learning-based preconditioners on GPUs. We reduce solution time on GPUs by 40%-53% (68%-113% faster), along with better condition numbers and superior generalization performance. Source code available at https://github.com/Adversarr/LearningSparsePreconditioner4GPU

Authors:Elena Mulero Ayllón, Linlin Shen, Pierangelo Veltri, Fabrizia Gelardi, Arturo Chiti, Paolo Soda, Matteo Tortora
Title: Context-Gated Cross-Modal Perception with Visual Mamba for PET-CT Lung Tumor Segmentation
Abstract:
Accurate lung tumor segmentation is vital for improving diagnosis and treatment planning, and effectively combining anatomical and functional information from PET and CT remains a major challenge. In this study, we propose vMambaX, a lightweight multimodal framework integrating PET and CT scan images through a Context-Gated Cross-Modal Perception Module (CGM). Built on the Visual Mamba architecture, vMambaX adaptively enhances inter-modality feature interaction, emphasizing informative regions while suppressing noise. Evaluated on the PCLT20K dataset, the model outperforms baseline models while maintaining lower computational complexity. These results highlight the effectiveness of adaptive cross-modal gating for multimodal tumor segmentation and demonstrate the potential of vMambaX as an efficient and scalable framework for advanced lung cancer analysis. The code is available at https://github.com/arco-group/vMambaX.

Authors:Junkang Liu, Yuxuan Tian, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Junchao Zhou, Daorui Ding
Title: DP-FedPGN: Finding Global Flat Minima for Differentially Private Federated Learning via Penalizing Gradient Norm
Abstract:
To prevent inference attacks in Federated Learning (FL) and reduce the leakage of sensitive information, Client-level Differentially Private Federated Learning (CL-DPFL) is widely used. However, current CL-DPFL methods usually result in sharper loss landscapes, which leads to a decrease in model generalization after differential privacy protection. By using Sharpness Aware Minimization (SAM), the current popular federated learning methods are to find a local flat minimum value to alleviate this problem. However, the local flatness may not reflect the global flatness in CL-DPFL. Therefore, to address this issue and seek global flat minima of models, we propose a new CL-DPFL algorithm, DP-FedPGN, in which we introduce a global gradient norm penalty to the local loss to find the global flat minimum. Moreover, by using our global gradient norm penalty, we not only find a flatter global minimum but also reduce the locally updated norm, which means that we further reduce the error of gradient clipping. From a theoretical perspective, we analyze how DP-FedPGN mitigates the performance degradation caused by DP. Meanwhile, the proposed DP-FedPGN algorithm eliminates the impact of data heterogeneity and achieves fast convergence. We also use Rényi DP to provide strict privacy guarantees and provide sensitivity analysis for local updates. Finally, we conduct effectiveness tests on both ResNet and Transformer models, and achieve significant improvements in six visual and natural language processing tasks compared to existing state-of-the-art algorithms. The code is available at https://github.com/junkangLiu0/DP-FedPGN

Authors:Junkang Liu, Fanhua Shang, Kewen Zhu, Hongying Liu, Yuanyuan Liu, Jin Liu
Title: FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
Abstract:
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.

Authors:Wei Xu, Cheng Wang, Dingkang Liang, Zongchuang Zhao, Xingyu Jiang, Peng Zhang, Xiang Bai
Title: NAUTILUS: A Large Multimodal Model for Underwater Scene Understanding
Abstract:
Underwater exploration offers critical insights into our planet and attracts increasing attention for its broader applications in resource exploration, national security, etc. We study the underwater scene understanding methods, which aim to achieve automated underwater exploration. The underwater scene understanding task demands multi-task perceptions from multiple granularities. However, the absence of large-scale underwater multi-task instruction-tuning datasets hinders the progress of this research. To bridge this gap, we construct NautData, a dataset containing 1.45 M image-text pairs supporting eight underwater scene understanding tasks. It enables the development and thorough evaluation of the underwater scene understanding models. Underwater image degradation is a widely recognized challenge that interferes with underwater tasks. To improve the robustness of underwater scene understanding, we introduce physical priors derived from underwater imaging models and propose a plug-and-play vision feature enhancement (VFE) module, which explicitly restores clear underwater information. We integrate this module into renowned baselines LLaVA-1.5 and Qwen2.5-VL and build our underwater LMM, NAUTILUS. Experiments conducted on the NautData and public underwater datasets demonstrate the effectiveness of the VFE module, consistently improving the performance of both baselines on the majority of supported tasks, thus ensuring the superiority of NAUTILUS in the underwater scene understanding area. Data and models are available at https://github.com/H-EmbodVis/NAUTILUS.

Authors:Hyemin Boo, Eunsang Lee, Jiyoung Lee
Title: Referee: Reference-aware Audiovisual Deepfake Detection
Abstract:
Since deepfakes generated by advanced generative models have rapidly posed serious threats, existing audiovisual deepfake detection approaches struggle to generalize to unseen forgeries. We propose a novel reference-aware audiovisual deepfake detection method, called Referee. Speaker-specific cues from only one-shot examples are leveraged to detect manipulations beyond spatiotemporal artifacts. By matching and aligning identity-related queries from reference and target content into cross-modal features, Referee jointly reasons about audiovisual synchrony and identity consistency. Extensive experiments on FakeAVCeleb, FaceForensics++, and KoDF demonstrate that Referee achieves state-of-the-art performance on cross-dataset and cross-language evaluation protocols. Experimental results highlight the importance of cross-modal identity verification for future deepfake detection. The code is available at https://github.com/ewha-mmai/referee.

Authors:Xuan Gong, Senmiao Wang, Hanbo Huang, Ruoyu Sun, Shiyu Liang
Title: VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Abstract:
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.

Authors:WonJun Moon, MinSeok Jung, Gilhan Park, Tae-Young Kim, Cheol-Ho Cho, Woojin Jun, Jae-Pil Heo
Title: Mitigating Semantic Collapse in Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) seeks videos where only part of the content matches a text query. Existing methods treat every annotated text-video pair as a positive and all others as negatives, ignoring the rich semantic variation both within a single video and across different videos. Consequently, embeddings of both queries and their corresponding video-clip segments for distinct events within the same video collapse together, while embeddings of semantically similar queries and segments from different videos are driven apart. This limits retrieval performance when videos contain multiple, diverse events. This paper addresses the aforementioned problems, termed as semantic collapse, in both the text and video embedding spaces. We first introduce Text Correlation Preservation Learning, which preserves the semantic relationships encoded by the foundation model across text queries. To address collapse in video embeddings, we propose Cross-Branch Video Alignment (CBVA), a contrastive alignment method that disentangles hierarchical video representations across temporal scales. Subsequently, we introduce order-preserving token merging and adaptive CBVA to enhance alignment by producing video segments that are internally coherent yet mutually distinctive. Extensive experiments on PRVR benchmarks demonstrate that our framework effectively prevents semantic collapse and substantially improves retrieval accuracy.

Authors:Austin Meek, Eitan Sprejer, Iván Arcuschin, Austin J. Brockmeier, Steven Basart
Title: Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Abstract:
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.

Authors:Yijia Wang, Yiqing Shen, Weiming Chen, Zhihai He
Title: Understanding the Implicit User Intention via Reasoning with Large Language Model for Image Editing
Abstract:
Existing image editing methods can handle simple editing instructions very well. To deal with complex editing instructions, they often need to jointly fine-tune the large language models (LLMs) and diffusion models (DMs), which involves very high computational complexity and training cost. To address this issue, we propose a new method, called \textbf{C}omplex \textbf{I}mage \textbf{E}diting via \textbf{L}LM \textbf{R}easoning (CIELR), which converts a complex user instruction into a set of simple and explicit editing actions, eliminating the need for jointly fine-tuning the large language models and diffusion models. Specifically, we first construct a structured semantic representation of the input image using foundation models. Then, we introduce an iterative update mechanism that can progressively refine this representation, obtaining a fine-grained visual representation of the image scene. This allows us to perform complex and flexible image editing tasks. Extensive experiments on the SmartEdit Reasoning Scenario Set show that our method surpasses the previous state-of-the-art by 9.955 dB in PSNR, indicating its superior preservation of regions that should remain consistent. Due to the limited number of samples of public datasets of complex image editing with reasoning, we construct a benchmark named CIEBench, containing 86 image samples, together with a metric specifically for reasoning-based image editing. CIELR also outperforms previous methods on this benchmark. The code and dataset are available at \href{https://github.com/Jia-shao/Reasoning-Editing}{https://github.com/Jia-shao/Reasoning-Editing}.

Authors:Hao Cheng, Yanbo Jiang, Qingyuan Shi, Qingwen Meng, Keyu Chen, Wenhao Yu, Jianqiang Wang, Sifa Zheng
Title: Modified-Emergency Index (MEI): A Criticality Metric for Autonomous Driving in Lateral Conflict
Abstract:
Effective, reliable, and efficient evaluation of autonomous driving safety is essential to demonstrate its trustworthiness. Criticality metrics provide an objective means of assessing safety. However, as existing metrics primarily target longitudinal conflicts, accurately quantifying the risks of lateral conflicts - prevalent in urban settings - remains challenging. This paper proposes the Modified-Emergency Index (MEI), a metric designed to quantify evasive effort in lateral conflicts. Compared to the original Emergency Index (EI), MEI refines the estimation of the time available for evasive maneuvers, enabling more precise risk quantification. We validate MEI on a public lateral conflict dataset based on Argoverse-2, from which we extract over 1,500 high-quality AV conflict cases, including more than 500 critical events. MEI is then compared with the well-established ACT and the widely used PET metrics. Results show that MEI consistently outperforms them in accurately quantifying criticality and capturing risk evolution. Overall, these findings highlight MEI as a promising metric for evaluating urban conflicts and enhancing the safety assessment framework for autonomous driving. The open-source implementation is available at https://github.com/AutoChengh/MEI.

Authors:Benjamin Hamm, Yannick Kirchhoff, Maximilian Rokuss, Klaus Maier-Hein
Title: MeisenMeister: A Simple Two Stage Pipeline for Breast Cancer Classification on MRI
Abstract:
The ODELIA Breast MRI Challenge 2025 addresses a critical issue in breast cancer screening: improving early detection through more efficient and accurate interpretation of breast MRI scans. Even though methods for general-purpose whole-body lesion segmentation as well as multi-time-point analysis exist, breast cancer detection remains highly challenging, largely due to the limited availability of high-quality segmentation labels. Therefore, developing robust classification-based approaches is crucial for the future of early breast cancer detection, particularly in applications such as large-scale screening. In this write-up, we provide a comprehensive overview of our approach to the challenge. We begin by detailing the underlying concept and foundational assumptions that guided our work. We then describe the iterative development process, highlighting the key stages of experimentation, evaluation, and refinement that shaped the evolution of our solution. Finally, we present the reasoning and evidence that informed the design choices behind our final submission, with a focus on performance, robustness, and clinical relevance. We release our full implementation publicly at https://github.com/MIC-DKFZ/MeisenMeister

Authors:Yu-Chen Kuo, Yi-Ju Tseng
Title: MedM2T: A MultiModal Framework for Time-Aware Modeling with Electronic Health Record and Electrocardiogram Data
Abstract:
The inherent multimodality and heterogeneous temporal structures of medical data pose significant challenges for modeling. We propose MedM2T, a time-aware multimodal framework designed to address these complexities. MedM2T integrates: (i) Sparse Time Series Encoder to flexibly handle irregular and sparse time series, (ii) Hierarchical Time-Aware Fusion to capture both micro- and macro-temporal patterns from multiple dense time series, such as ECGs, and (iii) Bi-Modal Attention to extract cross-modal interactions, which can be extended to any number of modalities. To mitigate granularity gaps between modalities, MedM2T uses modality-specific pre-trained encoders and aligns resulting features within a shared encoder. We evaluated MedM2T on MIMIC-IV and MIMIC-IV-ECG datasets for three tasks that encompass chronic and acute disease dynamics: 90-day cardiovascular disease (CVD) prediction, in-hospital mortality prediction, and ICU length-of-stay (LOS) regression. MedM2T outperformed state-of-the-art multimodal learning frameworks and existing time series models, achieving an AUROC of 0.947 and an AUPRC of 0.706 for CVD prediction; an AUROC of 0.901 and an AUPRC of 0.558 for mortality prediction; and Mean Absolute Error (MAE) of 2.31 for LOS regression. These results highlight the robustness and broad applicability of MedM2T, positioning it as a promising tool in clinical prediction. We provide the implementation of MedM2T at https://github.com/DHLab-TSENG/MedM2T.

Authors:Rebeka Toth, Richard A. Dubniczky, Olga Limonova, Norbert Tihanyi
Title: Sustaining Cyber Awareness: The Long-Term Impact of Continuous Phishing Training and Emotional Triggers
Abstract:
Phishing constitutes more than 90\% of successful cyberattacks globally, remaining one of the most persistent threats to organizational security. Despite organizations tripling their cybersecurity budgets between 2015 and 2025, the human factor continues to pose a critical vulnerability. This study presents a 12-month longitudinal investigation examining how continuous cybersecurity training and emotional cues affect employee susceptibility to phishing. The experiment involved 20 organizations and over 1,300 employees who collectively received more than 13,000 simulated phishing emails engineered with diverse emotional, contextual, and structural characteristics. Behavioral responses were analyzed using non-parametric correlation and regression models to assess the influence of psychological manipulation, message personalization, and perceived email source. Results demonstrate that sustained phishing simulations and targeted training programs lead to a significant reduction in employee susceptibility, halving successful compromise rates within six months. Additionally, employee turnover introduces measurable fluctuations in awareness levels, underscoring the necessity of maintaining continuous training initiatives. These findings provide one of the few long-term perspectives on phishing awareness efficacy, highlighting the strategic importance of ongoing behavioral interventions in strengthening organizational cyber resilience. In order to support open science, we published our email templates, source code, and other materials at https://github.com/CorporatePhishingStudy

Authors:Qinghong Yin, Yu Tian, Heming Yang, Xiang Chen, Xianlin Zhang, Xueming Li, Yue Zhan
Title: Rethinking Robust Adversarial Concept Erasure in Diffusion Models
Abstract:
Concept erasure aims to selectively unlearning undesirable content in diffusion models (DMs) to reduce the risk of sensitive content generation. As a novel paradigm in concept erasure, most existing methods employ adversarial training to identify and suppress target concepts, thus reducing the likelihood of sensitive outputs. However, these methods often neglect the specificity of adversarial training in DMs, resulting in only partial mitigation. In this work, we investigate and quantify this specificity from the perspective of concept space, i.e., can adversarial samples truly fit the target concept space? We observe that existing methods neglect the role of conceptual semantics when generating adversarial samples, resulting in ineffective fitting of concept spaces. This oversight leads to the following issues: 1) when there are few adversarial samples, they fail to comprehensively cover the object concept; 2) conversely, they will disrupt other target concept spaces. Motivated by the analysis of these findings, we introduce S-GRACE (Semantics-Guided Robust Adversarial Concept Erasure), which grace leveraging semantic guidance within the concept space to generate adversarial samples and perform erasure training. Experiments conducted with seven state-of-the-art methods and three adversarial prompt generation strategies across various DM unlearning scenarios demonstrate that S-GRACE significantly improves erasure performance 26%, better preserves non-target concepts, and reduces training time by 90%. Our code is available at https://github.com/Qhong-522/S-GRACE.

Authors:Deokhyung Kang, Seonjeong Hwang, Daehui Kim, Hyounghun Kim, Gary Geunbae Lee
Title: Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Abstract:
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.

Authors:Kangkun Mao, Jinru Ding, Jiayuan Chen, Mouxiao Bian, Ruiyao Chen, Xinwei Peng, Sijie Ren, Linyang Li, Jie Xu
Title: MedCalc-Eval and MedCalc-Env: Advancing Medical Calculation Capabilities of Large Language Models
Abstract:
As large language models (LLMs) enter the medical domain, most benchmarks evaluate them on question answering or descriptive reasoning, overlooking quantitative reasoning critical to clinical decision-making. Existing datasets like MedCalc-Bench cover few calculation tasks and fail to reflect real-world computational scenarios. We introduce MedCalc-Eval, the largest benchmark for assessing LLMs' medical calculation abilities, comprising 700+ tasks across two types: equation-based (e.g., Cockcroft-Gault, BMI, BSA) and rule-based scoring systems (e.g., Apgar, Glasgow Coma Scale). These tasks span diverse specialties including internal medicine, surgery, pediatrics, and cardiology, offering a broader and more challenging evaluation setting. To improve performance, we further develop MedCalc-Env, a reinforcement learning environment built on the InternBootcamp framework, enabling multi-step clinical reasoning and planning. Fine-tuning a Qwen2.5-32B model within this environment achieves state-of-the-art results on MedCalc-Eval, with notable gains in numerical sensitivity, formula selection, and reasoning robustness. Remaining challenges include unit conversion, multi-condition logic, and contextual understanding. Code and datasets are available at https://github.com/maokangkun/MedCalc-Eval.

Authors:Raza Imam, Hu Wang, Dwarikanath Mahapatra, Mohammad Yaqub
Title: T3: Test-Time Model Merging in VLMs for Zero-Shot Medical Imaging Analysis
Abstract:
In medical imaging, vision-language models face a critical duality: pretrained networks offer broad robustness but lack subtle, modality-specific characteristics, while fine-tuned expert models achieve high in-distribution accuracy yet falter under modality shift. Existing model-merging techniques, designed for natural-image benchmarks, are simple and efficient but fail to deliver consistent gains across diverse medical modalities; their static interpolation limits reliability in varied clinical tasks. To address this, we introduce Test-Time Task adaptive merging (T^3), a backpropagation-free framework that computes per-sample interpolation coefficients via the Jensen-Shannon divergence between the two models' output distributions. T^3 dynamically preserves local precision when models agree and defers to generalist robustness under drift. To overcome the inference costs of sample-wise merging, we further propose a batch-wise extension, T^3_B, that computes a merging coefficient across a batch of samples, dramatically reducing computational bottleneck. Recognizing the lack of a standardized medical-merging benchmark, we present a rigorous cross-evaluation protocol spanning in-domain, base-to-novel, and corruptions across four modalities. Empirically, T^3 sets new state-of-the-art in Top-1 accuracy and error reduction, outperforming strong baselines while maintaining efficiency, paving the way for adaptive MVLM deployment in clinical settings. Our code is available at https://github.com/Razaimam45/TCube.

Authors:Yinglu Li, Zhiying Lu, Zhihang Liu, Chuanbin Liu, Hongtao Xie
Title: RegionRAG: Region-level Retrieval-Augumented Generation for Visually-Rich Documents
Abstract:
Multi-modal Retrieval-Augmented Generation (RAG) has become a critical method for empowering LLMs by leveraging candidate visual documents. However, current methods consider the entire document as the basic retrieval unit, introducing substantial irrelevant visual content in two ways: 1) Relevant documents often contain large regions unrelated to the query, diluting the focus on salient information; 2) Retrieving multiple documents to increase recall further introduces redundant and irrelevant documents. These redundant contexts distract the model's attention and further degrade the performance. To address this challenge, we propose \modelname, a novel framework that shifts the retrieval paradigm from the document level to the region level. During training, we design a hybrid supervision strategy from both labeled data and unlabeled data to pinpoint relevant patches. During inference, we propose a dynamic pipeline that intelligently groups salient patches into complete semantic regions. By delegating the task of identifying relevant regions to the retriever, \modelname enables the generator to focus solely on concise visual content relevant to queries, improving both efficiency and accuracy. Experiments on six benchmarks demonstrate that RegionRAG achieves state-of-the-art performance. Improves retrieval accuracy by 10.02\% in R@1 on average and increases question answering accuracy by 3.56\% while using only 71.42\% visual tokens compared to prior methods. The code will be available at https://github.com/Aeryn666/RegionRAG.

Authors:Yifan Zhang, Zhen Qin, Quanquan Gu
Title: Higher-order Linear Attention
Abstract:
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.

Authors:Mengshi Qi, Jiaxuan Peng, Jie Zhang, Juan Zhu, Yong Li, Huadong Ma
Title: Synergistic Tensor and Pipeline Parallelism
Abstract:
In the machine learning system, the hybrid model parallelism combining tensor parallelism (TP) and pipeline parallelism (PP) has become the dominant solution for distributed training of Large Language Models~(LLMs) and Multimodal LLMs (MLLMs). However, TP introduces significant collective communication overheads, while PP suffers from synchronization inefficiencies such as pipeline bubbles. Existing works primarily address these challenges from isolated perspectives, focusing either on overlapping TP communication or on flexible PP scheduling to mitigate pipeline bubbles. In this paper, we propose a new synergistic tensor and pipeline parallelism schedule that simultaneously reduces both types of bubbles. Our proposed schedule decouples the forward and backward passes in PP into fine-grained computation units, which are then braided to form a composite computation sequence. This compositional structure enables near-complete elimination of TP-related bubbles. Building upon this structure, we further design the PP schedule to minimize PP bubbles. Experimental results demonstrate that our approach improves training throughput by up to 12% for LLMs and 16% for MLLMs compared to existing scheduling methods. Our source code is avaiable at https://github.com/MICLAB-BUPT/STP.

Authors:Alik Pramanick, Mayank Bansal, Utkarsh Srivastava, Suklav Ghosh, Arijit Sur
Title: Trans-defense: Transformer-based Denoiser for Adversarial Defense with Spatial-Frequency Domain Representation
Abstract:
In recent times, deep neural networks (DNNs) have been successfully adopted for various applications. Despite their notable achievements, it has become evident that DNNs are vulnerable to sophisticated adversarial attacks, restricting their applications in security-critical systems. In this paper, we present two-phase training methods to tackle the attack: first, training the denoising network, and second, the deep classifier model. We propose a novel denoising strategy that integrates both spatial and frequency domain approaches to defend against adversarial attacks on images. Our analysis reveals that high-frequency components of attacked images are more severely corrupted compared to their lower-frequency counterparts. To address this, we leverage Discrete Wavelet Transform (DWT) for frequency analysis and develop a denoising network that combines spatial image features with wavelets through a transformer layer. Next, we retrain the classifier using the denoised images, which enhances the classifier's robustness against adversarial attacks. Experimental results across the MNIST, CIFAR-10, and Fashion-MNIST datasets reveal that the proposed method remarkably elevates classification accuracy, substantially exceeding the performance by utilizing a denoising network and adversarial training approaches. The code is available at https://github.com/Mayank94/Trans-Defense.

Authors:Chuxuan Hu, Maxwell Yang, James Weiland, Yeji Lim, Suhas Palawala, Daniel Kang
Title: DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries
Abstract:
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.

Authors:Tianli Liao, Ran Wang, Siqing Zhang, Lei Li, Guangen Liu, Chenyang Zhao, Heling Cao, Peng Li
Title: Object-IR: Leveraging Object Consistency and Mesh Deformation for Self-Supervised Image Retargeting
Abstract:
Eliminating geometric distortion in semantically important regions remains an intractable challenge in image retargeting. This paper presents Object-IR, a self-supervised architecture that reformulates image retargeting as a learning-based mesh warping optimization problem, where the mesh deformation is guided by object appearance consistency and geometric-preserving constraints. Given an input image and a target aspect ratio, we initialize a uniform rigid mesh at the output resolution and use a convolutional neural network to predict the motion of each mesh grid and obtain the deformed mesh. The retargeted result is generated by warping the input image according to the rigid mesh in the input image and the deformed mesh in the output resolution. To mitigate geometric distortion, we design a comprehensive objective function incorporating a) object-consistent loss to ensure that the important semantic objects retain their appearance, b) geometric-preserving loss to constrain simple scale transform of the important meshes, and c) boundary loss to enforce a clean rectangular output. Notably, our self-supervised paradigm eliminates the need for manually annotated retargeting datasets by deriving supervision directly from the input's geometric and semantic properties. Extensive evaluations on the RetargetMe benchmark demonstrate that our Object-IR achieves state-of-the-art performance, outperforming existing methods in quantitative metrics and subjective visual quality assessments. The framework efficiently processes arbitrary input resolutions (average inference time: 0.009s for 1024x683 resolution) while maintaining real-time performance on consumer-grade GPUs. The source code will soon be available at https://github.com/tlliao/Object-IR.

Authors:Jingnan Gao, Zhe Wang, Xianze Fang, Xingyu Ren, Zhuo Chen, Shengqi Liu, Yuhao Cheng, Jiangjing Lyu, Xiaokang Yang, Yichao Yan
Title: MoRE: 3D Visual Geometry Reconstruction Meets Mixture-of-Experts
Abstract:
Recent advances in language and vision have demonstrated that scaling up model capacity consistently improves performance across diverse tasks. In 3D visual geometry reconstruction, large-scale training has likewise proven effective for learning versatile representations. However, further scaling of 3D models is challenging due to the complexity of geometric supervision and the diversity of 3D data. To overcome these limitations, we propose MoRE, a dense 3D visual foundation model based on a Mixture-of-Experts (MoE) architecture that dynamically routes features to task-specific experts, allowing them to specialize in complementary data aspects and enhance both scalability and adaptability. Aiming to improve robustness under real-world conditions, MoRE incorporates a confidence-based depth refinement module that stabilizes and refines geometric estimation. In addition, it integrates dense semantic features with globally aligned 3D backbone representations for high-fidelity surface normal prediction. MoRE is further optimized with tailored loss functions to ensure robust learning across diverse inputs and multiple geometric tasks. Extensive experiments demonstrate that MoRE achieves state-of-the-art performance across multiple benchmarks and supports effective downstream applications without extra computation.

Authors:Liyang He, Zhenya Huang, Cheng Yang, Rui Li, Zheng Zhang, Kai Zhang, Zhi Li, Qi Liu, Enhong Chen
Title: A Survey on Deep Text Hashing: Efficient Semantic Text Retrieval with Binary Representation
Abstract:
With the rapid growth of textual content on the Internet, efficient large-scale semantic text retrieval has garnered increasing attention from both academia and industry. Text hashing, which projects original texts into compact binary hash codes, is a crucial method for this task. By using binary codes, the semantic similarity computation for text pairs is significantly accelerated via fast Hamming distance calculations, and storage costs are greatly reduced. With the advancement of deep learning, deep text hashing has demonstrated significant advantages over traditional, data-independent hashing techniques. By leveraging deep neural networks, these methods can learn compact and semantically rich binary representations directly from data, overcoming the performance limitations of earlier approaches. This survey investigates current deep text hashing methods by categorizing them based on their core components: semantic extraction, hash code quality preservation, and other key technologies. We then present a detailed evaluation schema with results on several popular datasets, followed by a discussion of practical applications and open-source tools for implementation. Finally, we conclude by discussing key challenges and future research directions, including the integration of deep text hashing with large language models to further advance the field. The project for this survey can be accessed at https://github.com/hly1998/DeepTextHashing.

Authors:Jaebyeong Jeon, Hyeonseo Jang, Jy-yong Sohn, Kibok Lee
Title: Soft Task-Aware Routing of Experts for Equivariant Representation Learning
Abstract:
Equivariant representation learning aims to capture variations induced by input transformations in the representation space, whereas invariant representation learning encodes semantic information by disregarding such transformations. Recent studies have shown that jointly learning both types of representations is often beneficial for downstream tasks, typically by employing separate projection heads. However, this design overlooks information shared between invariant and equivariant learning, which leads to redundant feature learning and inefficient use of model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a routing strategy for projection heads that models them as experts. STAR induces the experts to specialize in capturing either shared or task-specific information, thereby reducing redundant feature learning. We validate this effect by observing lower canonical correlations between invariant and equivariant embeddings. Experimental results show consistent improvements across diverse transfer learning tasks. The code is available at https://github.com/YonseiML/star.

Authors:Tao Liu, Chongyu Wang, Rongjie Li, Yingchen Yu, Xuming He, Bai Song
Title: GUI-Rise: Structured Reasoning and History Summarization for GUI Navigation
Abstract:
While Multimodal Large Language Models (MLLMs) have advanced GUI navigation agents, current approaches face limitations in cross-domain generalization and effective history utilization. We present a reasoning-enhanced framework that systematically integrates structured reasoning, action prediction, and history summarization. The structured reasoning component generates coherent Chain-of-Thought analyses combining progress estimation and decision reasoning, which inform both immediate action predictions and compact history summaries for future steps. Based on this framework, we train a GUI agent, \textbf{GUI-Rise}, through supervised fine-tuning on pseudo-labeled trajectories and reinforcement learning with Group Relative Policy Optimization (GRPO). This framework employs specialized rewards, including a history-aware objective, directly linking summary quality to subsequent action performance. Comprehensive evaluations on standard benchmarks demonstrate state-of-the-art results under identical training data conditions, with particularly strong performance in out-of-domain scenarios. These findings validate our framework's ability to maintain robust reasoning and generalization across diverse GUI navigation tasks. Code is available at https://leon022.github.io/GUI-Rise.

Authors:Kounianhua Du, Jianxing Liu, Kangning Zhang, Wenxiang Jiao, Yuan Lu, Jiarui Jin, Weiwen Liu, Yong Yu, Weinan Zhang
Title: Fints: Efficient Inference-Time Personalization for LLMs with Fine-Grained Instance-Tailored Steering
Abstract:
The rapid evolution of large language models (LLMs) has intensified the demand for effective personalization techniques that can adapt model behavior to individual user preferences. Despite the non-parametric methods utilizing the in-context learning ability of LLMs, recent parametric adaptation methods, including personalized parameter-efficient fine-tuning and reward modeling emerge. However, these methods face limitations in handling dynamic user patterns and high data sparsity scenarios, due to low adaptability and data efficiency. To address these challenges, we propose a fine-grained and instance-tailored steering framework that dynamically generates sample-level interference vectors from user data and injects them into the model's forward pass for personalized adaptation. Our approach introduces two key technical innovations: a fine-grained steering component that captures nuanced signals by hooking activations from attention and MLP layers, and an input-aware aggregation module that synthesizes these signals into contextually relevant enhancements. The method demonstrates high flexibility and data efficiency, excelling in fast-changing distribution and high data sparsity scenarios. In addition, the proposed method is orthogonal to existing methods and operates as a plug-in component compatible with different personalization techniques. Extensive experiments across diverse scenarios--including short-to-long text generation, and web function calling--validate the effectiveness and compatibility of our approach. Results show that our method significantly enhances personalization performance in fast-shifting environments while maintaining robustness across varying interaction modes and context lengths. Implementation is available at https://github.com/KounianhuaDu/Fints.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Yayue Deng, Jing Ma
Title: MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models
Abstract:
The proliferation of memes on social media necessitates the capabilities of multimodal Large Language Models (mLLMs) to effectively understand multimodal harmfulness. Existing evaluation approaches predominantly focus on mLLMs' detection accuracy for binary classification tasks, which often fail to reflect the in-depth interpretive nuance of harmfulness across diverse contexts. In this paper, we propose MemeArena, an agent-based arena-style evaluation framework that provides a context-aware and unbiased assessment for mLLMs' understanding of multimodal harmfulness. Specifically, MemeArena simulates diverse interpretive contexts to formulate evaluation tasks that elicit perspective-specific analyses from mLLMs. By integrating varied viewpoints and reaching consensus among evaluators, it enables fair and unbiased comparisons of mLLMs' abilities to interpret multimodal harmfulness. Extensive experiments demonstrate that our framework effectively reduces the evaluation biases of judge agents, with judgment results closely aligning with human preferences, offering valuable insights into reliable and comprehensive mLLM evaluations in multimodal harmfulness understanding. Our code and data are publicly available at https://github.com/Lbotirx/MemeArena.

Authors:Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Lei Li, Chun Yuan, Dacheng Tao
Title: Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications
Abstract:
Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.

Authors:Zixuan Hu, Li Shen, Zhenyi Wang, Yongxian Wei, Dacheng Tao
Title: Adaptive Defense against Harmful Fine-Tuning for Large Language Models via Bayesian Data Scheduler
Abstract:
Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large language models. Existing defense strategies preemptively build robustness via attack simulation but suffer from fundamental limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to the inherent difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying attack settings, as simulation fails to capture their variability and complexity. To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive tuning-stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning defense as a Bayesian inference problem, learning the posterior distribution of each data point's safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning process is then constrained by weighting data with their safety attributes sampled from the posterior, thus mitigating the influence of harmful data. By leveraging the post hoc nature of Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce a neural scheduler based on amortized Bayesian learning, enabling efficient transfer to new data without retraining. Comprehensive results across diverse attack and defense settings demonstrate the state-of-the-art performance of our approach. Code is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.

Authors:Mingyu Sung, Il-Min Kim, Sangseok Yun, Jae-Mo Kang
Title: H2-Cache: A Novel Hierarchical Dual-Stage Cache for High-Performance Acceleration of Generative Diffusion Models
Abstract:
Diffusion models have emerged as state-of-the-art in image generation, but their practical deployment is hindered by the significant computational cost of their iterative denoising process. While existing caching techniques can accelerate inference, they often create a challenging trade-off between speed and fidelity, suffering from quality degradation and high computational overhead. To address these limitations, we introduce H2-Cache, a novel hierarchical caching mechanism designed for modern generative diffusion model architectures. Our method is founded on the key insight that the denoising process can be functionally separated into a structure-defining stage and a detail-refining stage. H2-cache leverages this by employing a dual-threshold system, using independent thresholds to selectively cache each stage. To ensure the efficiency of our dual-check approach, we introduce pooled feature summarization (PFS), a lightweight technique for robust and fast similarity estimation. Extensive experiments on the Flux architecture demonstrate that H2-cache achieves significant acceleration (up to 5.08x) while maintaining image quality nearly identical to the baseline, quantitatively and qualitatively outperforming existing caching methods. Our work presents a robust and practical solution that effectively resolves the speed-quality dilemma, significantly lowering the barrier for the real-world application of high-fidelity diffusion models. Source code is available at https://github.com/Bluear7878/H2-cache-A-Hierarchical-Dual-Stage-Cache.

Authors:Yuanhao Tang, Xuechao Zou, Zhengpei Hu, Junliang Xing, Chengkun Zhang, Jianqiang Huang
Title: AFM-Net: Advanced Fusing Hierarchical CNN Visual Priors with Global Sequence Modeling for Remote Sensing Image Scene Classification
Abstract:
Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Existing approaches see CNNs excel at modeling local textures, while Transformers excel at capturing global context. However, efficiently integrating them remains a bottleneck due to the high computational cost of Transformers. To tackle this, we propose AFM-Net, a novel Advanced Hierarchical Fusing framework that achieves effective local and global co-representation through two pathways: a CNN branch for extracting hierarchical visual priors, and a Mamba branch for efficient global sequence modeling. The core innovation of AFM-Net lies in its Hierarchical Fusion Mechanism, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a Mixture-of-Experts classifier module, which dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that AFM-Net obtains 93.72, 95.54, and 96.92 percent accuracy, surpassing state-of-the-art methods with balanced performance and efficiency. Code is available at https://github.com/tangyuanhao-qhu/AFM-Net.

Authors:Tong Shen, Jingai Yu, Dong Zhou, Dong Li, Emad Barsoum
Title: E-MMDiT: Revisiting Multimodal Diffusion Transformer Design for Fast Image Synthesis under Limited Resources
Abstract:
Diffusion models have shown strong capabilities in generating high-quality images from text prompts. However, these models often require large-scale training data and significant computational resources to train, or suffer from heavy structure with high latency. To this end, we propose Efficient Multimodal Diffusion Transformer (E-MMDiT), an efficient and lightweight multimodal diffusion model with only 304M parameters for fast image synthesis requiring low training resources. We provide an easily reproducible baseline with competitive results. Our model for 512px generation, trained with only 25M public data in 1.5 days on a single node of 8 AMD MI300X GPUs, achieves 0.66 on GenEval and easily reaches to 0.72 with some post-training techniques such as GRPO. Our design philosophy centers on token reduction as the computational cost scales significantly with the token count. We adopt a highly compressive visual tokenizer to produce a more compact representation and propose a novel multi-path compression module for further compression of tokens. To enhance our design, we introduce Position Reinforcement, which strengthens positional information to maintain spatial coherence, and Alternating Subregion Attention (ASA), which performs attention within subregions to further reduce computational cost. In addition, we propose AdaLN-affine, an efficient lightweight module for computing modulation parameters in transformer blocks. Our code is available at https://github.com/AMD-AGI/Nitro-E and we hope E-MMDiT serves as a strong and practical baseline for future research and contributes to democratization of generative AI models.

Authors:Zhicong Sun, Jacqueline Lo, Jinxing Hu
Title: WildfireX-SLAM: A Large-scale Low-altitude RGB-D Dataset for Wildfire SLAM and Beyond
Abstract:
3D Gaussian splatting (3DGS) and its subsequent variants have led to remarkable progress in simultaneous localization and mapping (SLAM). While most recent 3DGS-based SLAM works focus on small-scale indoor scenes, developing 3DGS-based SLAM methods for large-scale forest scenes holds great potential for many real-world applications, especially for wildfire emergency response and forest management. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, and collecting such a dataset over real-world scenes is costly and technically infeasible. To this end, we have built a large-scale, comprehensive, and high-quality synthetic dataset for SLAM in wildfire and forest environments. Leveraging the Unreal Engine 5 Electric Dreams Environment Sample Project, we developed a pipeline to easily collect aerial and ground views, including ground-truth camera poses and a range of additional data modalities from unmanned aerial vehicle. Our pipeline also provides flexible controls on environmental factors such as light, weather, and types and conditions of wildfire, supporting the need for various tasks covering forest mapping, wildfire emergency response, and beyond. The resulting pilot dataset, WildfireX-SLAM, contains 5.5k low-altitude RGB-D aerial images from a large-scale forest map with a total size of 16 km2. On top of WildfireX-SLAM, a thorough benchmark is also conducted, which not only reveals the unique challenges of 3DGS-based SLAM in the forest but also highlights potential improvements for future works. The dataset and code will be publicly available. Project page: https://zhicongsun.github.io/wildfirexslam.

Authors:Haonan Wang, Jingyu Lu, Hongrui Li, Xiaomeng Li
Title: ZEBRA: Towards Zero-Shot Cross-Subject Generalization for Universal Brain Visual Decoding
Abstract:
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.

Authors:Hamed Mahdavi, Pouria Mahdavinia, Alireza Farhadi, Pegah Mohammadipour, Samira Malek, Majid Daliri, Pedram Mohammadipour, Alireza Hashemi, Amir Khasahmadi, Vasant Honavar
Title: CombiGraph-Vis: A Curated Multimodal Olympiad Benchmark for Discrete Mathematical Reasoning
Abstract:
State-of-the-art (SOTA) LLMs have progressed from struggling on proof-based Olympiad problems to solving most of the IMO 2025 problems, with leading systems reportedly handling 5 of 6 problems. Given this progress, we assess how well these models can grade proofs: detecting errors, judging their severity, and assigning fair scores beyond binary correctness. We study proof-analysis capabilities using a corpus of 90 Gemini 2.5 Pro-generated solutions that we grade on a 1-4 scale with detailed error annotations, and on MathArena solution sets for IMO/USAMO 2025 scored on a 0-7 scale. Our analysis shows that models can reliably flag incorrect (including subtly incorrect) solutions but exhibit calibration gaps in how partial credit is assigned. To address this, we introduce agentic workflows that extract and analyze reference solutions and automatically derive problem-specific rubrics for a multi-step grading process. We instantiate and compare different design choices for the grading workflows, and evaluate their trade-offs. Across our annotated corpus and MathArena, our proposed workflows achieve higher agreement with human grades and more consistent handling of partial credit across metrics. We release all code, data, and prompts/logs to facilitate future research.

Authors:Radoyeh Shojaei, Predrag Djurdjevic, Mostafa El-Khamy, James Goel, Kasper Mecklenburg, John Owens, Pınar Muyan-Özçelik, Tom St. John, Jinho Suh, Arjun Suresh
Title: MLPerf Automotive
Abstract:
We present MLPerf Automotive, the first standardized public benchmark for evaluating Machine Learning systems that are deployed for AI acceleration in automotive systems. Developed through a collaborative partnership between MLCommons and the Autonomous Vehicle Computing Consortium, this benchmark addresses the need for standardized performance evaluation methodologies in automotive machine learning systems. Existing benchmark suites cannot be utilized for these systems since automotive workloads have unique constraints including safety and real-time processing that distinguish them from the domains that previously introduced benchmarks target. Our benchmarking framework provides latency and accuracy metrics along with evaluation protocols that enable consistent and reproducible performance comparisons across different hardware platforms and software implementations. The first iteration of the benchmark consists of automotive perception tasks in 2D object detection, 2D semantic segmentation, and 3D object detection. We describe the methodology behind the benchmark design including the task selection, reference models, and submission rules. We also discuss the first round of benchmark submissions and the challenges involved in acquiring the datasets and the engineering efforts to develop the reference implementations. Our benchmark code is available at https://github.com/mlcommons/mlperf_automotive.

Authors:Eric T. Chang, Peter Ballentine, Zhanpeng He, Do-Gon Kim, Kai Jiang, Hua-Hsuan Liang, Joaquin Palacios, William Wang, Pedro Piacenza, Ioannis Kymissis, Matei Ciocarlie
Title: SpikeATac: A Multimodal Tactile Finger with Taxelized Dynamic Sensing for Dexterous Manipulation
Abstract:
In this work, we introduce SpikeATac, a multimodal tactile finger combining a taxelized and highly sensitive dynamic response (PVDF) with a static transduction method (capacitive) for multimodal touch sensing. Named for its `spiky' response, SpikeATac's 16-taxel PVDF film sampled at 4 kHz provides fast, sensitive dynamic signals to the very onset and breaking of contact. We characterize the sensitivity of the different modalities, and show that SpikeATac provides the ability to stop quickly and delicately when grasping fragile, deformable objects. Beyond parallel grasping, we show that SpikeATac can be used in a learning-based framework to achieve new capabilities on a dexterous multifingered robot hand. We use a learning recipe that combines reinforcement learning from human feedback with tactile-based rewards to fine-tune the behavior of a policy to modulate force. Our hardware platform and learning pipeline together enable a difficult dexterous and contact-rich task that has not previously been achieved: in-hand manipulation of fragile objects. Videos are available at \href{https://roamlab.github.io/spikeatac/}{roamlab.github.io/spikeatac}.

Authors:Md Tanvirul Alam, Nidhi Rastogi
Title: Limits of Generalization in RLVR: Two Case Studies in Mathematical Reasoning
Abstract:
Mathematical reasoning is a central challenge for large language models (LLMs), requiring not only correct answers but also faithful reasoning processes. Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising approach for enhancing such capabilities; however, its ability to foster genuine reasoning remains unclear. We investigate RLVR on two combinatorial problems with fully verifiable solutions: \emph{Activity Scheduling} and the \emph{Longest Increasing Subsequence}, using carefully curated datasets with unique optima. Across multiple reward designs, we find that RLVR improves evaluation metrics but often by reinforcing superficial heuristics rather than acquiring new reasoning strategies. These findings highlight the limits of RLVR generalization, emphasizing the importance of benchmarks that disentangle genuine mathematical reasoning from shortcut exploitation and provide faithful measures of progress. Code available at https://github.com/xashru/rlvr-seq-generalization.

Authors:Yana Wei, Zeen Chi, Chongyu Wang, Yu Wu, Shipeng Yan, Yongfei Liu, Xuming He
Title: Incremental Human-Object Interaction Detection with Invariant Relation Representation Learning
Abstract:
In open-world environments, human-object interactions (HOIs) evolve continuously, challenging conventional closed-world HOI detection models. Inspired by humans' ability to progressively acquire knowledge, we explore incremental HOI detection (IHOID) to develop agents capable of discerning human-object relations in such dynamic environments. This setup confronts not only the common issue of catastrophic forgetting in incremental learning but also distinct challenges posed by interaction drift and detecting zero-shot HOI combinations with sequentially arriving data. Therefore, we propose a novel exemplar-free incremental relation distillation (IRD) framework. IRD decouples the learning of objects and relations, and introduces two unique distillation losses for learning invariant relation features across different HOI combinations that share the same relation. Extensive experiments on HICO-DET and V-COCO datasets demonstrate the superiority of our method over state-of-the-art baselines in mitigating forgetting, strengthening robustness against interaction drift, and generalization on zero-shot HOIs. Code is available at \href{https://github.com/weiyana/ContinualHOI}{this HTTP URL}

Authors:Zheng Nie, Peijie Sun
Title: HADSF: Aspect Aware Semantic Control for Explainable Recommendation
Abstract:
Recent advances in large language models (LLMs) promise more effective information extraction for review-based recommender systems, yet current methods still (i) mine free-form reviews without scope control, producing redundant and noisy representations, (ii) lack principled metrics that link LLM hallucination to downstream effectiveness, and (iii) leave the cost-quality trade-off across model scales largely unexplored. We address these gaps with the Hyper-Adaptive Dual-Stage Semantic Framework (HADSF), a two-stage approach that first induces a compact, corpus-level aspect vocabulary via adaptive selection and then performs vocabulary-guided, explicitly constrained extraction of structured aspect-opinion triples. To assess the fidelity of the resulting representations, we introduce Aspect Drift Rate (ADR) and Opinion Fidelity Rate (OFR) and empirically uncover a nonmonotonic relationship between hallucination severity and rating prediction error. Experiments on approximately 3 million reviews across LLMs spanning 1.5B-70B parameters show that, when integrated into standard rating predictors, HADSF yields consistent reductions in prediction error and enables smaller models to achieve competitive performance in representative deployment scenarios. We release code, data pipelines, and metric implementations to support reproducible research on hallucination-aware, LLM-enhanced explainable recommendation. Code is available at https://github.com/niez233/HADSF

Authors:Md. Mehedi Hassan, Shafqat Alam, Shahriar Ahmed Seam, Maruf Ahmed
Title: SYNAPSE-Net: A Unified Framework with Lesion-Aware Hierarchical Gating for Robust Segmentation of Heterogeneous Brain Lesions
Abstract:
Automated segmentation of heterogeneous brain lesions from multi-modal MRI remains a critical challenge in clinical neuroimaging. Current deep learning models are typically specialized `point solutions' that lack generalization and high performance variance, limiting their clinical reliability. To address these gaps, we propose the Unified Multi-Stream SYNAPSE-Net, an adaptive framework designed for both generalization and robustness. The framework is built on a novel hybrid architecture integrating multi-stream CNN encoders, a Swin Transformer bottleneck for global context, a dynamic cross-modal attention fusion (CMAF) mechanism, and a hierarchical gated decoder for high-fidelity mask reconstruction. The architecture is trained with a variance reduction strategy that combines pathology specific data augmentation and difficulty-aware sampling method. The model was evaluated on three different challenging public datasets: the MICCAI 2017 WMH Challenge, the ISLES 2022 Challenge, and the BraTS 2020 Challenge. Our framework attained a state-of-the-art DSC value of 0.831 with the HD95 value of 3.03 in the WMH dataset. For ISLES 2022, it achieved the best boundary accuracy with a statistically significant difference (HD95 value of 9.69). For BraTS 2020, it reached the highest DSC value for the tumor core region (0.8651). These experimental findings suggest that our unified adaptive framework achieves state-of-the-art performance across multiple brain pathologies, providing a robust and clinically feasible solution for automated segmentation. The source code and the pre-trained models are available at https://github.com/mubid-01/SYNAPSE-Net-pre.

Authors:Zimeng Huang, Jinxin Ke, Xiaoxuan Fan, Yufeng Yang, Yang Liu, Liu Zhonghan, Zedi Wang, Junteng Dai, Haoyi Jiang, Yuyu Zhou, Keze Wang, Ziliang Chen
Title: MM-OPERA: Benchmarking Open-ended Association Reasoning for Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have exhibited remarkable progress. However, deficiencies remain compared to human intelligence, such as hallucination and shallow pattern matching. In this work, we aim to evaluate a fundamental yet underexplored intelligence: association, a cornerstone of human cognition for creative thinking and knowledge integration. Current benchmarks, often limited to closed-ended tasks, fail to capture the complexity of open-ended association reasoning vital for real-world applications. To address this, we present MM-OPERA, a systematic benchmark with 11,497 instances across two open-ended tasks: Remote-Item Association (RIA) and In-Context Association (ICA), aligning association intelligence evaluation with human psychometric principles. It challenges LVLMs to resemble the spirit of divergent thinking and convergent associative reasoning through free-form responses and explicit reasoning paths. We deploy tailored LLM-as-a-Judge strategies to evaluate open-ended outputs, applying process-reward-informed judgment to dissect reasoning with precision. Extensive empirical studies on state-of-the-art LVLMs, including sensitivity analysis of task instances, validity analysis of LLM-as-a-Judge strategies, and diversity analysis across abilities, domains, languages, cultures, etc., provide a comprehensive and nuanced understanding of the limitations of current LVLMs in associative reasoning, paving the way for more human-like and general-purpose AI. The dataset and code are available at https://github.com/MM-OPERA-Bench/MM-OPERA.

Authors:Yunhao Yang, Neel P. Bhatt, Pranay Samineni, Rohan Siva, Zhanyang Wang, Ufuk Topcu
Title: RepV: Safety-Separable Latent Spaces for Scalable Neurosymbolic Plan Verification
Abstract:
As AI systems migrate to safety-critical domains, verifying that their actions comply with well-defined rules remains a challenge. Formal methods provide provable guarantees but demand hand-crafted temporal-logic specifications, offering limited expressiveness and accessibility. Deep learning approaches enable evaluation of plans against natural-language constraints, yet their opaque decision process invites misclassifications with potentially severe consequences. We introduce RepV, a neurosymbolic verifier that unifies both views by learning a latent space where safe and unsafe plans are linearly separable. Starting from a modest seed set of plans labeled by an off-the-shelf model checker, RepV trains a lightweight projector that embeds each plan, together with a language model-generated rationale, into a low-dimensional space; a frozen linear boundary then verifies compliance for unseen natural-language rules in a single forward pass. Beyond binary classification, RepV provides a probabilistic guarantee on the likelihood of correct verification based on its position in the latent space. This guarantee enables a guarantee-driven refinement of the planner, improving rule compliance without human annotations. Empirical evaluations show that RepV improves compliance prediction accuracy by up to 15% compared to baseline methods while adding fewer than 0.2M parameters. Furthermore, our refinement framework outperforms ordinary fine-tuning baselines across various planning domains. These results show that safety-separable latent spaces offer a scalable, plug-and-play primitive for reliable neurosymbolic plan verification. Code and data are available at: https://repv-project.github.io/.

Authors:Moonsoo Jeong, Dongbeen Kim, Minseong Kim, Sungkil Lee
Title: DC4GS: Directional Consistency-Driven Adaptive Density Control for 3D Gaussian Splatting
Abstract:
We present a Directional Consistency (DC)-driven Adaptive Density Control (ADC) for 3D Gaussian Splatting (DC4GS). Whereas the conventional ADC bases its primitive splitting on the magnitudes of positional gradients, we further incorporate the DC of the gradients into ADC, and realize it through the angular coherence of the gradients. Our DC better captures local structural complexities in ADC, avoiding redundant splitting. When splitting is required, we again utilize the DC to define optimal split positions so that sub-primitives best align with the local structures than the conventional random placement. As a consequence, our DC4GS greatly reduces the number of primitives (up to 30% in our experiments) than the existing ADC, and also enhances reconstruction fidelity greatly.

Authors:Zachary Ravichandran, Fernando Cladera, Ankit Prabhu, Jason Hughes, Varun Murali, Camillo Taylor, George J. Pappas, Vijay Kumar
Title: Heterogeneous Robot Collaboration in Unstructured Environments with Grounded Generative Intelligence
Abstract:
Heterogeneous robot teams operating in realistic settings often must accomplish complex missions requiring collaboration and adaptation to information acquired online. Because robot teams frequently operate in unstructured environments -- uncertain, open-world settings without prior maps -- subtasks must be grounded in robot capabilities and the physical world. While heterogeneous teams have typically been designed for fixed specifications, generative intelligence opens the possibility of teams that can accomplish a wide range of missions described in natural language. However, current large language model (LLM)-enabled teaming methods typically assume well-structured and known environments, limiting deployment in unstructured environments. We present SPINE-HT, a framework that addresses these limitations by grounding the reasoning abilities of LLMs in the context of a heterogeneous robot team through a three-stage process. Given language specifications describing mission goals and team capabilities, an LLM generates grounded subtasks which are validated for feasibility. Subtasks are then assigned to robots based on capabilities such as traversability or perception and refined given feedback collected during online operation. In simulation experiments with closed-loop perception and control, our framework achieves nearly twice the success rate compared to prior LLM-enabled heterogeneous teaming approaches. In real-world experiments with a Clearpath Jackal, a Clearpath Husky, a Boston Dynamics Spot, and a high-altitude UAV, our method achieves an 87\% success rate in missions requiring reasoning about robot capabilities and refining subtasks with online feedback. More information is provided at https://zacravichandran.github.io/SPINE-HT.

Authors:Tim Windecker, Manthan Patel, Moritz Reuss, Richard Schwarzkopf, Cesar Cadena, Rudolf Lioutikov, Marco Hutter, Jonas Frey
Title: NaviTrace: Evaluating Embodied Navigation of Vision-Language Models
Abstract:
Vision-language models demonstrate unprecedented performance and generalization across a wide range of tasks and scenarios. Integrating these foundation models into robotic navigation systems opens pathways toward building general-purpose robots. Yet, evaluating these models' navigation capabilities remains constrained by costly real-world trials, overly simplified simulations, and limited benchmarks. We introduce NaviTrace, a high-quality Visual Question Answering benchmark where a model receives an instruction and embodiment type (human, legged robot, wheeled robot, bicycle) and must output a 2D navigation trace in image space. Across 1000 scenarios and more than 3000 expert traces, we systematically evaluate eight state-of-the-art VLMs using a newly introduced semantic-aware trace score. This metric combines Dynamic Time Warping distance, goal endpoint error, and embodiment-conditioned penalties derived from per-pixel semantics and correlates with human preferences. Our evaluation reveals consistent gap to human performance caused by poor spatial grounding and goal localization. NaviTrace establishes a scalable and reproducible benchmark for real-world robotic navigation. The benchmark and leaderboard can be found at https://leggedrobotics.github.io/navitrace_webpage/.

Authors:Francisco Villaescusa-Navarro, Boris Bolliet, Pablo Villanueva-Domingo, Adrian E. Bayer, Aidan Acquah, Chetana Amancharla, Almog Barzilay-Siegal, Pablo Bermejo, Camille Bilodeau, Pablo Cárdenas Ramírez, Miles Cranmer, Urbano L. França, ChangHoon Hahn, Yan-Fei Jiang, Raul Jimenez, Jun-Young Lee, Antonio Lerario, Osman Mamun, Thomas Meier, Anupam A. Ojha, Pavlos Protopapas, Shimanto Roy, David N. Spergel, Pedro Tarancón-Álvarez, Ujjwal Tiwari, Matteo Viel, Digvijay Wadekar, Chi Wang, Bonny Y. Wang, Licong Xu, Yossi Yovel, Shuwen Yue, Wen-Han Zhou, Qiyao Zhu, Jiajun Zou, Íñigo Zubeldia
Title: The Denario project: Deep knowledge AI agents for scientific discovery
Abstract:
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.

Authors:Fenfen Lin, Yesheng Liu, Haiyu Xu, Chen Yue, Zheqi He, Mingxuan Zhao, Miguel Hu Chen, Jiakang Liu, JG Yao, Xi Yang
Title: Do Vision-Language Models Measure Up? Benchmarking Visual Measurement Reading with MeasureBench
Abstract:
Reading measurement instruments is effortless for humans and requires relatively little domain expertise, yet it remains surprisingly challenging for current vision-language models (VLMs) as we find in preliminary evaluation. In this work, we introduce MeasureBench, a benchmark on visual measurement reading covering both real-world and synthesized images of various types of measurements, along with an extensible pipeline for data synthesis. Our pipeline procedurally generates a specified type of gauge with controllable visual appearance, enabling scalable variation in key details such as pointers, scales, fonts, lighting, and clutter. Evaluation on popular proprietary and open-weight VLMs shows that even the strongest frontier VLMs struggle measurement reading in general. A consistent failure mode is indicator localization: models can read digits or labels but misidentify the key positions of pointers or alignments, leading to big numeric errors despite plausible textual reasoning. We have also conducted preliminary experiments with reinforcement learning over synthetic data, and find encouraging results on in-domain synthetic subset but less promising for real-world images. Our analysis highlights a fundamental limitation of current VLMs in fine-grained spatial grounding. We hope this resource can help future advances on visually grounded numeracy and precise spatial perception of VLMs, bridging the gap between recognizing numbers and measuring the world.

Authors:Kangkang Sun, Jun Wu, Minyi Guo, Jianhua Li, Jianwei Huang
Title: Accurate Target Privacy Preserving Federated Learning Balancing Fairness and Utility
Abstract:
Federated Learning (FL) enables collaborative model training without data sharing, yet participants face a fundamental challenge, e.g., simultaneously ensuring fairness across demographic groups while protecting sensitive client data. We introduce a differentially private fair FL algorithm (\textit{FedPF}) that transforms this multi-objective optimization into a zero-sum game where fairness and privacy constraints compete against model utility. Our theoretical analysis reveals a surprising inverse relationship, i.e., stricter privacy protection fundamentally limits the system's ability to detect and correct demographic biases, creating an inherent tension between privacy and fairness. Counterintuitively, we prove that moderate fairness constraints initially improve model generalization before causing performance degradation, where a non-monotonic relationship that challenges conventional wisdom about fairness-utility tradeoffs. Experimental validation demonstrates up to 42.9 % discrimination reduction across three datasets while maintaining competitive accuracy, but more importantly, reveals that the privacy-fairness tension is unavoidable, i.e., achieving both objectives simultaneously requires carefully balanced compromises rather than optimization of either in isolation. The source code for our proposed algorithm is publicly accessible at https://github.com/szpsunkk/FedPF.

Authors:Samuel W. Remedios, Aaron Carass, Jerry L. Prince, Blake E. Dewey
Title: Diffusion-Driven Generation of Minimally Preprocessed Brain MRI
Abstract:
The purpose of this study is to present and compare three denoising diffusion probabilistic models (DDPMs) that generate 3D $T_1$-weighted MRI human brain images. Three DDPMs were trained using 80,675 image volumes from 42,406 subjects spanning 38 publicly available brain MRI datasets. These images had approximately 1 mm isotropic resolution and were manually inspected by three human experts to exclude those with poor quality, field-of-view issues, and excessive pathology. The images were minimally preprocessed to preserve the visual variability of the data. Furthermore, to enable the DDPMs to produce images with natural orientation variations and inhomogeneity, the images were neither registered to a common coordinate system nor bias field corrected. Evaluations included segmentation, Frechet Inception Distance (FID), and qualitative inspection. Regarding results, all three DDPMs generated coherent MR brain volumes. The velocity and flow prediction models achieved lower FIDs than the sample prediction model. However, all three models had higher FIDs compared to real images across multiple cohorts. In a permutation experiment, the generated brain regional volume distributions differed statistically from real data. However, the velocity and flow prediction models had fewer statistically different volume distributions in the thalamus and putamen. In conclusion this work presents and releases the first 3D non-latent diffusion model for brain data without skullstripping or registration. Despite the negative results in statistical testing, the presented DDPMs are capable of generating high-resolution 3D $T_1$-weighted brain images. All model weights and corresponding inference code are publicly available at https://github.com/piksl-research/medforj .

Authors:Jinting Wang, Chenxing Li, Li Liu
Title: GACA-DiT: Diffusion-based Dance-to-Music Generation with Genre-Adaptive Rhythm and Context-Aware Alignment
Abstract:
Dance-to-music (D2M) generation aims to automatically compose music that is rhythmically and temporally aligned with dance movements. Existing methods typically rely on coarse rhythm embeddings, such as global motion features or binarized joint-based rhythm values, which discard fine-grained motion cues and result in weak rhythmic alignment. Moreover, temporal mismatches introduced by feature downsampling further hinder precise synchronization between dance and music. To address these problems, we propose \textbf{GACA-DiT}, a diffusion transformer-based framework with two novel modules for rhythmically consistent and temporally aligned music generation. First, a \textbf{genre-adaptive rhythm extraction} module combines multi-scale temporal wavelet analysis and spatial phase histograms with adaptive joint weighting to capture fine-grained, genre-specific rhythm patterns. Second, a \textbf{context-aware temporal alignment} module resolves temporal mismatches using learnable context queries to align music latents with relevant dance rhythm features. Extensive experiments on the AIST++ and TikTok datasets demonstrate that GACA-DiT outperforms state-of-the-art methods in both objective metrics and human evaluation. Project page: https://beria-moon.github.io/GACA-DiT/.

Authors:Yukun Huang, Jiwen Yu, Yanning Zhou, Jianan Wang, Xintao Wang, Pengfei Wan, Xihui Liu
Title: OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes
Abstract:
There are two prevalent ways to constructing 3D scenes: procedural generation and 2D lifting. Among them, panorama-based 2D lifting has emerged as a promising technique, leveraging powerful 2D generative priors to produce immersive, realistic, and diverse 3D environments. In this work, we advance this technique to generate graphics-ready 3D scenes suitable for physically based rendering (PBR), relighting, and simulation. Our key insight is to repurpose 2D generative models for panoramic perception of geometry, textures, and PBR materials. Unlike existing 2D lifting approaches that emphasize appearance generation and ignore the perception of intrinsic properties, we present OmniX, a versatile and unified framework. Based on a lightweight and efficient cross-modal adapter structure, OmniX reuses 2D generative priors for a broad range of panoramic vision tasks, including panoramic perception, generation, and completion. Furthermore, we construct a large-scale synthetic panorama dataset containing high-quality multimodal panoramas from diverse indoor and outdoor scenes. Extensive experiments demonstrate the effectiveness of our model in panoramic visual perception and graphics-ready 3D scene generation, opening new possibilities for immersive and physically realistic virtual world generation.

Authors:Chao Feng, Zihao Wei, Andrew Owens
Title: Masked Diffusion Captioning for Visual Feature Learning
Abstract:
We learn visual features by captioning images with an image-conditioned masked diffusion language model, a formulation we call masked diffusion captioning (MDC). During training, text tokens in each image-caption pair are masked at a randomly chosen ratio, and a decoder conditioned on visual features is trained to reconstruct the original text. After training, the learned visual features can be applied to downstream vision tasks. Unlike autoregressive captioning, the strength of the visual learning signal in MDC does not depend on each token's position in the sequence, reducing the need for auxiliary objectives. Linear probing experiments across a variety of academic-scale models and datasets show that the learned visual features are competitive with those produced by autoregressive and contrastive approaches.

Authors:Cheng Zheng, William Koch, Baiang Li, Felix Heide
Title: HEIR: Learning Graph-Based Motion Hierarchies
Abstract:
Hierarchical structures of motion exist across research fields, including computer vision, graphics, and robotics, where complex dynamics typically arise from coordinated interactions among simpler motion components. Existing methods to model such dynamics typically rely on manually-defined or heuristic hierarchies with fixed motion primitives, limiting their generalizability across different tasks. In this work, we propose a general hierarchical motion modeling method that learns structured, interpretable motion relationships directly from data. Our method represents observed motions using graph-based hierarchies, explicitly decomposing global absolute motions into parent-inherited patterns and local motion residuals. We formulate hierarchy inference as a differentiable graph learning problem, where vertices represent elemental motions and directed edges capture learned parent-child dependencies through graph neural networks. We evaluate our hierarchical reconstruction approach on three examples: 1D translational motion, 2D rotational motion, and dynamic 3D scene deformation via Gaussian splatting. Experimental results show that our method reconstructs the intrinsic motion hierarchy in 1D and 2D cases, and produces more realistic and interpretable deformations compared to the baseline on dynamic 3D Gaussian splatting scenes. By providing an adaptable, data-driven hierarchical modeling paradigm, our method offers a formulation applicable to a broad range of motion-centric tasks. Project Page: https://light.princeton.edu/HEIR/

Authors:Yunchao Ma, Yizhuang Zhou, Yunhuan Yang, Tiancai Wang, Haoqiang Fan
Title: Running VLAs at Real-time Speed
Abstract:
In this paper, we show how to run pi0-level multi-view VLA at 30Hz frame rate and at most 480Hz trajectory frequency using a single consumer GPU. This enables dynamic and real-time tasks that were previously believed to be unattainable by large VLA models. To achieve it, we introduce a bag of strategies to eliminate the overheads in model inference. The real-world experiment shows that the pi0 policy with our strategy achieves a 100% success rate in grasping a falling pen task. Based on the results, we further propose a full streaming inference framework for real-time robot control of VLA. Code is available at https://github.com/Dexmal/realtime-vla.

Authors:Majed El Helou, Chiara Troiani, Benjamin Ryder, Jean Diaconu, Hervé Muyal, Marcelo Yannuzzi
Title: Delegated Authorization for Agents Constrained to Semantic Task-to-Scope Matching
Abstract:
Authorizing Large Language Model driven agents to dynamically invoke tools and access protected resources introduces significant risks, since current methods for delegating authorization grant overly broad permissions and give access to tools allowing agents to operate beyond the intended task scope. We introduce and assess a delegated authorization model enabling authorization servers to semantically inspect access requests to protected resources, and issue access tokens constrained to the minimal set of scopes necessary for the agents' assigned tasks. Given the unavailability of datasets centered on delegated authorization flows, particularly including both semantically appropriate and inappropriate scope requests for a given task, we introduce ASTRA, a dataset and data generation pipeline for benchmarking semantic matching between tasks and scopes. Our experiments show both the potential and current limitations of model-based matching, particularly as the number of scopes needed for task completion increases. Our results highlight the need for further research into semantic matching techniques enabling intent-aware authorization for multi-agent and tool-augmented applications, including fine-grained control, such as Task-Based Access Control (TBAC).

Authors:Alya Almsouti, Ainur Khamitova, Darya Taratynova, Mohammad Yaqub
Title: BRIQA: Balanced Reweighting in Image Quality Assessment of Pediatric Brain MRI
Abstract:
Assessing the severity of artifacts in pediatric brain Magnetic Resonance Imaging (MRI) is critical for diagnostic accuracy, especially in low-field systems where the signal-to-noise ratio is reduced. Manual quality assessment is time-consuming and subjective, motivating the need for robust automated solutions. In this work, we propose BRIQA (Balanced Reweighting in Image Quality Assessment), which addresses class imbalance in artifact severity levels. BRIQA uses gradient-based loss reweighting to dynamically adjust per-class contributions and employs a rotating batching scheme to ensure consistent exposure to underrepresented classes. Through experiments, no single architecture performs best across all artifact types, emphasizing the importance of architectural diversity. The rotating batching configuration improves performance across metrics by promoting balanced learning when combined with cross-entropy loss. BRIQA improves average macro F1 score from 0.659 to 0.706, with notable gains in Noise (0.430), Zipper (0.098), Positioning (0.097), Contrast (0.217), Motion (0.022), and Banding (0.012) artifact severity classification. The code is available at https://github.com/BioMedIA-MBZUAI/BRIQA.

Authors:Xiaoyi He, Danggui Chen, Zhenshuo Zhang, Zimeng Bai
Title: Hybrid DQN-TD3 Reinforcement Learning for Autonomous Navigation in Dynamic Environments
Abstract:
This paper presents a hierarchical path-planning and control framework that combines a high-level Deep Q-Network (DQN) for discrete sub-goal selection with a low-level Twin Delayed Deep Deterministic Policy Gradient (TD3) controller for continuous actuation. The high-level module selects behaviors and sub-goals; the low-level module executes smooth velocity commands. We design a practical reward shaping scheme (direction, distance, obstacle avoidance, action smoothness, collision penalty, time penalty, and progress), together with a LiDAR-based safety gate that prevents unsafe motions. The system is implemented in ROS + Gazebo (TurtleBot3) and evaluated with PathBench metrics, including success rate, collision rate, path efficiency, and re-planning efficiency, in dynamic and partially observable environments. Experiments show improved success rate and sample efficiency over single-algorithm baselines (DQN or TD3 alone) and rule-based planners, with better generalization to unseen obstacle configurations and reduced abrupt control changes. Code and evaluation scripts are available at the project repository.

Authors:Katarina Petrović, Lazar Atanackovic, Viggo Moro, Kacper Kapuśniak, İsmail İlkan Ceylan, Michael Bronstein, Avishek Joey Bose, Alexander Tong
Title: Curly Flow Matching for Learning Non-gradient Field Dynamics
Abstract:
Modeling the transport dynamics of natural processes from population-level observations is a ubiquitous problem in the natural sciences. Such models rely on key assumptions about the underlying process in order to enable faithful learning of governing dynamics that mimic the actual system behavior. The de facto assumption in current approaches relies on the principle of least action that results in gradient field dynamics and leads to trajectories minimizing an energy functional between two probability measures. However, many real-world systems, such as cell cycles in single-cell RNA, are known to exhibit non-gradient, periodic behavior, which fundamentally cannot be captured by current state-of-the-art methods such as flow and bridge matching. In this paper, we introduce Curly Flow Matching (Curly-FM), a novel approach that is capable of learning non-gradient field dynamics by designing and solving a Schrödinger bridge problem with a non-zero drift reference process -- in stark contrast to typical zero-drift reference processes -- which is constructed using inferred velocities in addition to population snapshot data. We showcase Curly-FM by solving the trajectory inference problems for single cells, computational fluid dynamics, and ocean currents with approximate velocities. We demonstrate that Curly-FM can learn trajectories that better match both the reference process and population marginals. Curly-FM expands flow matching models beyond the modeling of populations and towards the modeling of known periodic behavior in physical systems. Our code repository is accessible at: https://github.com/kpetrovicc/curly-flow-matching.git

Authors:Lin Xu, Xinyun Yuan, Yuxuan Liang, Suwan Yin, Yuankai Wu
Title: Aeolus: A Multi-structural Flight Delay Dataset
Abstract:
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data

Authors:Kentaro Ozeki, Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mineshima, Mitsuhiro Okada
Title: Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives
Abstract:
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.

Authors:Reda El Makroum, Sebastian Zwickl-Bernhard, Lukas Kranzl
Title: Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
Abstract:
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.

Authors:Fulin Lin, Shaowen Chen, Ruishan Fang, Hongwei Wang, Tao Lin
Title: Stop Wasting Your Tokens: Towards Efficient Runtime Multi-Agent Systems
Abstract:
While Multi-Agent Systems (MAS) excel at complex tasks, their growing autonomy with operational complexity often leads to critical inefficiencies, such as excessive token consumption and failures arising from misinformation. Existing methods primarily focus on post-hoc failure attribution, lacking proactive, real-time interventions to enhance robustness and efficiency. To this end, we introduce SupervisorAgent, a lightweight and modular framework for runtime, adaptive supervision that operates without altering the base agent's architecture. Triggered by an LLM-free adaptive filter, SupervisorAgent intervenes at critical junctures to proactively correct errors, guide inefficient behaviors, and purify observations. On the challenging GAIA benchmark, SupervisorAgent reduces the token consumption of the Smolagent framework by an average of 29.45% without compromising its success rate. Extensive experiments across five additional benchmarks (math reasoning, code generation, and question answering) and various SoTA foundation models validate the broad applicability and robustness of our approach. The code is available at https://github.com/LINs-lab/SupervisorAgent.

Authors:Yufeng Cui, Honghao Chen, Haoge Deng, Xu Huang, Xinghang Li, Jirong Liu, Yang Liu, Zhuoyan Luo, Jinsheng Wang, Wenxuan Wang, Yueze Wang, Chengyuan Wang, Fan Zhang, Yingli Zhao, Ting Pan, Xianduo Li, Zecheng Hao, Wenxuan Ma, Zhuo Chen, Yulong Ao, Tiejun Huang, Zhongyuan Wang, Xinlong Wang
Title: Emu3.5: Native Multimodal Models are World Learners
Abstract:
We introduce Emu3.5, a large-scale multimodal world model that natively predicts the next state across vision and language. Emu3.5 is pre-trained end-to-end with a unified next-token prediction objective on a corpus of vision-language interleaved data containing over 10 trillion tokens, primarily derived from sequential frames and transcripts of internet videos. The model naturally accepts interleaved vision-language inputs and generates interleaved vision-language outputs. Emu3.5 is further post-trained with large-scale reinforcement learning to enhance multimodal reasoning and generation. To improve inference efficiency, we propose Discrete Diffusion Adaptation (DiDA), which converts token-by-token decoding into bidirectional parallel prediction, accelerating per-image inference by about 20x without sacrificing performance. Emu3.5 exhibits strong native multimodal capabilities, including long-horizon vision-language generation, any-to-image (X2I) generation, and complex text-rich image generation. It also exhibits generalizable world-modeling abilities, enabling spatiotemporally consistent world exploration and open-world embodied manipulation across diverse scenarios and tasks. For comparison, Emu3.5 achieves performance comparable to Gemini 2.5 Flash Image (Nano Banana) on image generation and editing tasks and demonstrates superior results on a suite of interleaved generation tasks. We open-source Emu3.5 at https://github.com/baaivision/Emu3.5 to support community research.

Authors:Hao Xie, Zixun Huang, Yushen Zuo, Yakun Ju, Frank H. F. Leung, N. F. Law, Kin-Man Lam, Yong-Ping Zheng, Sai Ho Ling
Title: SA$^{2}$Net: Scale-Adaptive Structure-Affinity Transformation for Spine Segmentation from Ultrasound Volume Projection Imaging
Abstract:
Spine segmentation, based on ultrasound volume projection imaging (VPI), plays a vital role for intelligent scoliosis diagnosis in clinical applications. However, this task faces several significant challenges. Firstly, the global contextual knowledge of spines may not be well-learned if we neglect the high spatial correlation of different bone features. Secondly, the spine bones contain rich structural knowledge regarding their shapes and positions, which deserves to be encoded into the segmentation process. To address these challenges, we propose a novel scale-adaptive structure-aware network (SA$^{2}$Net) for effective spine segmentation. First, we propose a scale-adaptive complementary strategy to learn the cross-dimensional long-distance correlation features for spinal images. Second, motivated by the consistency between multi-head self-attention in Transformers and semantic level affinity, we propose structure-affinity transformation to transform semantic features with class-specific affinity and combine it with a Transformer decoder for structure-aware reasoning. In addition, we adopt a feature mixing loss aggregation method to enhance model training. This method improves the robustness and accuracy of the segmentation process. The experimental results demonstrate that our SA$^{2}$Net achieves superior segmentation performance compared to other state-of-the-art methods. Moreover, the adaptability of SA$^{2}$Net to various backbones enhances its potential as a promising tool for advanced scoliosis diagnosis using intelligent spinal image analysis. The code and experimental demo are available at https://github.com/taetiseo09/SA2Net.

Authors:Huajie Tan, Cheng Chi, Xiansheng Chen, Yuheng Ji, Zhongxia Zhao, Xiaoshuai Hao, Yaoxu Lyu, Mingyu Cao, Junkai Zhao, Huaihai Lyu, Enshen Zhou, Ning Chen, Yankai Fu, Cheng Peng, Wei Guo, Dong Liang, Zhuo Chen, Mengsi Lyu, Chenrui He, Yulong Ao, Yonghua Lin, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang
Title: RoboOS-NeXT: A Unified Memory-based Framework for Lifelong, Scalable, and Robust Multi-Robot Collaboration
Abstract:
The proliferation of collaborative robots across diverse tasks and embodiments presents a central challenge: achieving lifelong adaptability, scalable coordination, and robust scheduling in multi-agent systems. Existing approaches, from vision-language-action (VLA) models to hierarchical frameworks, fall short due to their reliance on limited or dividual-agent memory. This fundamentally constrains their ability to learn over long horizons, scale to heterogeneous teams, or recover from failures, highlighting the need for a unified memory representation. To address these limitations, we introduce RoboOS-NeXT, a unified memory-based framework for lifelong, scalable, and robust multi-robot collaboration. At the core of RoboOS-NeXT is the novel Spatio-Temporal-Embodiment Memory (STEM), which integrates spatial scene geometry, temporal event history, and embodiment profiles into a shared representation. This memory-centric design is integrated into a brain-cerebellum framework, where a high-level brain model performs global planning by retrieving and updating STEM, while low-level controllers execute actions locally. This closed loop between cognition, memory, and execution enables dynamic task allocation, fault-tolerant collaboration, and consistent state synchronization. We conduct extensive experiments spanning complex coordination tasks in restaurants, supermarkets, and households. Our results demonstrate that RoboOS-NeXT achieves superior performance across heterogeneous embodiments, validating its effectiveness in enabling lifelong, scalable, and robust multi-robot collaboration. Project website: https://flagopen.github.io/RoboOS/

Authors:Linzhuang Sun, Tianyu Guo, Hao Liang, Yuying Li, Qifeng Cai, Jingxuan Wei, Bihui Yu, Wentao Zhang, Bin Cui
Title: Rethinking Text-to-SQL: Dynamic Multi-turn SQL Interaction for Real-world Database Exploration
Abstract:
Recent advances in Text-to-SQL have achieved strong results in static, single-turn tasks, where models generate SQL queries from natural language questions. However, these systems fall short in real-world interactive scenarios, where user intents evolve and queries must be refined over multiple turns. In applications such as finance and business analytics, users iteratively adjust query constraints or dimensions based on intermediate results. To evaluate such dynamic capabilities, we introduce DySQL-Bench, a benchmark assessing model performance under evolving user interactions. Unlike previous manually curated datasets, DySQL-Bench is built through an automated two-stage pipeline of task synthesis and verification. Structured tree representations derived from raw database tables guide LLM-based task generation, followed by interaction-oriented filtering and expert validation. Human evaluation confirms 100% correctness of the synthesized data. We further propose a multi-turn evaluation framework simulating realistic interactions among an LLM-simulated user, the model under test, and an executable database. The model must adapt its reasoning and SQL generation as user intents change. DySQL-Bench covers 13 domains across BIRD and Spider 2 databases, totaling 1,072 tasks. Even GPT-4o attains only 58.34% overall accuracy and 23.81% on the Pass@5 metric, underscoring the benchmark's difficulty. All code and data are released at https://github.com/Aurora-slz/Real-World-SQL-Bench .

Authors:Sadegh Shirani, Mohsen Bayati
Title: Simulating and Experimenting with Social Media Mobilization Using LLM Agents
Abstract:
Online social networks have transformed the ways in which political mobilization messages are disseminated, raising new questions about how peer influence operates at scale. Building on the landmark 61-million-person Facebook experiment \citep{bond201261}, we develop an agent-based simulation framework that integrates real U.S. Census demographic distributions, authentic Twitter network topology, and heterogeneous large language model (LLM) agents to examine the effect of mobilization messages on voter turnout. Each simulated agent is assigned demographic attributes, a personal political stance, and an LLM variant (\texttt{GPT-4.1}, \texttt{GPT-4.1-Mini}, or \texttt{GPT-4.1-Nano}) reflecting its political sophistication. Agents interact over realistic social network structures, receiving personalized feeds and dynamically updating their engagement behaviors and voting intentions. Experimental conditions replicate the informational and social mobilization treatments of the original Facebook study. Across scenarios, the simulator reproduces qualitative patterns observed in field experiments, including stronger mobilization effects under social message treatments and measurable peer spillovers. Our framework provides a controlled, reproducible environment for testing counterfactual designs and sensitivity analyses in political mobilization research, offering a bridge between high-validity field experiments and flexible computational modeling.\footnote{Code and data available at https://github.com/CausalMP/LLM-SocioPol}

Authors:Fang Liu, Simiao Liu, Yinghao Zhu, Xiaoli Lian, Li Zhang
Title: SecureReviewer: Enhancing Large Language Models for Secure Code Review through Secure-aware Fine-tuning
Abstract:
Identifying and addressing security issues during the early phase of the development lifecycle is critical for mitigating the long-term negative impacts on software systems. Code review serves as an effective practice that enables developers to check their teammates' code before integration into the codebase. To streamline the generation of review comments, various automated code review approaches have been proposed, where LLM-based methods have significantly advanced the capabilities of automated review generation. However, existing models primarily focus on general-purpose code review, their effectiveness in identifying and addressing security-related issues remains underexplored. Moreover, adapting existing code review approaches to target security issues faces substantial challenges, including data scarcity and inadequate evaluation metrics. To address these limitations, we propose SecureReviewer, a new approach designed for enhancing LLMs' ability to identify and resolve security-related issues during code review. Specifically, we first construct a dataset tailored for training and evaluating secure code review capabilities. Leveraging this dataset, we fine-tune LLMs to generate code review comments that can effectively identify security issues and provide fix suggestions with our proposed secure-aware fine-tuning strategy. To mitigate hallucination in LLMs and enhance the reliability of their outputs, we integrate the RAG technique, which grounds the generated comments in domain-specific security knowledge. Additionally, we introduce SecureBLEU, a new evaluation metric designed to assess the effectiveness of review comments in addressing security issues. Experimental results demonstrate that SecureReviewer outperforms state-of-the-art baselines in both security issue detection accuracy and the overall quality and practical utility of generated review comments.

Authors:Rhodri Guerrier, Adam W. Harley, Dima Damen
Title: PointSt3R: Point Tracking through 3D Grounded Correspondence
Abstract:
Recent advances in foundational 3D reconstruction models, such as DUSt3R and MASt3R, have shown great potential in 2D and 3D correspondence in static scenes. In this paper, we propose to adapt them for the task of point tracking through 3D grounded correspondence. We first demonstrate that these models are competitive point trackers when focusing on static points, present in current point tracking benchmarks ($+33.5\%$ on EgoPoints vs. CoTracker2). We propose to combine the reconstruction loss with training for dynamic correspondence along with a visibility head, and fine-tuning MASt3R for point tracking using a relatively small amount of synthetic data. Importantly, we only train and evaluate on pairs of frames where one contains the query point, effectively removing any temporal context. Using a mix of dynamic and static point correspondences, we achieve competitive or superior point tracking results on four datasets (e.g. competitive on TAP-Vid-DAVIS 73.8 $δ_{avg}$ / 85.8\% occlusion acc. for PointSt3R compared to 75.7 / 88.3\% for CoTracker2; and significantly outperform CoTracker3 on EgoPoints 61.3 vs 54.2 and RGB-S 87.0 vs 82.8). We also present results on 3D point tracking along with several ablations on training datasets and percentage of dynamic correspondences.

Authors:Chengwei Liu, Haoyin Yan, Shaofei Xue, Xiaotao Liang, Yinghao Liu, Zheng Xue, Gang Song, Boyang Zhou
Title: UniTok-Audio: A Unified Audio Generation Framework via Generative Modeling on Discrete Codec Tokens
Abstract:
Generative modeling has recently achieved remarkable success across text, image, and audio domains, demonstrating powerful capabilities for unified representation learning. However, audio generation models still face challenges in terms of audio quality and generalization ability across tasks. This fragmentation results in redundant development efforts, inconsistent performance, and limited extensibility. To address these issues, we propose \textbf{UniTok-Audio}, a scalable and extensible framework for unified audio generation tasks. Specifically, 1) UniTok-Audio extracts continuous feature of conditions to generates discrete tokens of target audio in an autoregressive manner; 2) a special task identifier token unifies different learning patterns of multiple tasks in a single framework; 3) a dual-stream audio codec involving acoustic and semantic branch is developed for high-fidelity waveform reconstruction. Experimental results demonstrate that UniTok-Audio achieves competitive performance in comparation with state-of-the-art task-specific or multi-task systems across five time-aligned tasks: speech restoration, target speaker extraction, speech separation, voice conversion, and language-queried audio source separation. To foster future research, we will open-source our codebase. The demo page of our work can be found here: https://alibaba.github.io/unified-audio.

Authors:Furkan Pala, Islem Rekik
Title: UnifiedFL: A Dynamic Unified Learning Framework for Equitable Federation
Abstract:
Federated learning (FL) has emerged as a key paradigm for collaborative model training across multiple clients without sharing raw data, enabling privacy-preserving applications in areas such as radiology and pathology. However, works on collaborative training across clients with fundamentally different neural architectures and non-identically distributed datasets remain scarce. Existing FL frameworks face several limitations. Despite claiming to support architectural heterogeneity, most recent FL methods only tolerate variants within a single model family (e.g., shallower, deeper, or wider CNNs), still presuming a shared global architecture and failing to accommodate federations where clients deploy fundamentally different network types (e.g., CNNs, GNNs, MLPs). Moreover, existing approaches often address only statistical heterogeneity while overlooking the domain-fracture problem, where each client's data distribution differs markedly from that faced at testing time, undermining model generalizability. When clients use different architectures, have non-identically distributed data, and encounter distinct test domains, current methods perform poorly. To address these challenges, we propose UnifiedFL, a dynamic federated learning framework that represents heterogeneous local networks as nodes and edges in a directed model graph optimized by a shared graph neural network (GNN). UnifiedFL introduces (i) a common GNN to parameterize all architectures, (ii) distance-driven clustering via Euclidean distances between clients' parameters, and (iii) a two-tier aggregation policy balancing convergence and diversity. Experiments on MedMNIST classification and hippocampus segmentation benchmarks demonstrate UnifiedFL's superior performance. Code and data: https://github.com/basiralab/UnifiedFL

Authors:Mykhailo Poliakov, Nadiya Shvai
Title: MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Abstract:
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.

Authors:David Schmotz, Sahar Abdelnabi, Maksym Andriushchenko
Title: Agent Skills Enable a New Class of Realistic and Trivially Simple Prompt Injections
Abstract:
Enabling continual learning in LLMs remains a key unresolved research challenge. In a recent announcement, a frontier LLM company made a step towards this by introducing Agent Skills, a framework that equips agents with new knowledge based on instructions stored in simple markdown files. Although Agent Skills can be a very useful tool, we show that they are fundamentally insecure, since they enable trivially simple prompt injections. We demonstrate how to hide malicious instructions in long Agent Skill files and referenced scripts to exfiltrate sensitive data, such as internal files or passwords. Importantly, we show how to bypass system-level guardrails of a popular coding agent: a benign, task-specific approval with the "Don't ask again" option can carry over to closely related but harmful actions. Overall, we conclude that despite ongoing research efforts and scaling model capabilities, frontier LLMs remain vulnerable to very simple prompt injections in realistic scenarios. Our code is available at https://github.com/aisa-group/promptinject-agent-skills.

Authors:Luting Wang, Yinghao Xiang, Hongliang Huang, Dongjun Li, Chen Gao, Si Liu
Title: Towards Realistic Earth-Observation Constellation Scheduling: Benchmark and Methodology
Abstract:
Agile Earth Observation Satellites (AEOSs) constellations offer unprecedented flexibility for monitoring the Earth's surface, but their scheduling remains challenging under large-scale scenarios, dynamic environments, and stringent constraints. Existing methods often simplify these complexities, limiting their real-world performance. We address this gap with a unified framework integrating a standardized benchmark suite and a novel scheduling model. Our benchmark suite, AEOS-Bench, contains $3,907$ finely tuned satellite assets and $16,410$ scenarios. Each scenario features $1$ to $50$ satellites and $50$ to $300$ imaging tasks. These scenarios are generated via a high-fidelity simulation platform, ensuring realistic satellite behavior such as orbital dynamics and resource constraints. Ground truth scheduling annotations are provided for each scenario. To our knowledge, AEOS-Bench is the first large-scale benchmark suite tailored for realistic constellation scheduling. Building upon this benchmark, we introduce AEOS-Former, a Transformer-based scheduling model that incorporates a constraint-aware attention mechanism. A dedicated internal constraint module explicitly models the physical and operational limits of each satellite. Through simulation-based iterative learning, AEOS-Former adapts to diverse scenarios, offering a robust solution for AEOS constellation scheduling. Experimental results demonstrate that AEOS-Former outperforms baseline models in task completion and energy efficiency, with ablation studies highlighting the contribution of each component. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.

Authors:Hieu M. Vu, Tan M. Nguyen
Title: Angular Steering: Behavior Control via Rotation in Activation Space
Abstract:
Controlling specific behaviors in large language models while preserving their general capabilities is a central challenge for safe and reliable artificial intelligence deployment. Current steering methods, such as vector addition and directional ablation, are constrained within a two-dimensional subspace defined by the activation and feature direction, making them sensitive to chosen parameters and potentially affecting unrelated features due to unintended interactions in activation space. We introduce Angular Steering, a novel and flexible method for behavior modulation that operates by rotating activations within a fixed two-dimensional subspace. By formulating steering as a geometric rotation toward or away from a target behavior direction, Angular Steering provides continuous, fine-grained control over behaviors such as refusal and compliance. We demonstrate this method using refusal steering emotion steering as use cases. Additionally, we propose Adaptive Angular Steering, a selective variant that rotates only activations aligned with the target feature, further enhancing stability and coherence. Angular Steering generalizes existing addition and orthogonalization techniques under a unified geometric rotation framework, simplifying parameter selection and maintaining model stability across a broader range of adjustments. Experiments across multiple model families and sizes show that Angular Steering achieves robust behavioral control while maintaining general language modeling performance, underscoring its flexibility, generalization, and robustness compared to prior approaches. Code and artifacts are available at https://github.com/lone17/angular-steering/.

Authors:Kyungmin Lee, Sibeen Kim, Minho Park, Hyunseung Kim, Dongyoon Hwang, Hojoon Lee, Jaegul Choo
Title: PHUMA: Physically-Grounded Humanoid Locomotion Dataset
Abstract:
Motion imitation is a promising approach for humanoid locomotion, enabling agents to acquire humanlike behaviors. Existing methods typically rely on high-quality motion capture datasets such as AMASS, but these are scarce and expensive, limiting scalability and diversity. Recent studies attempt to scale data collection by converting large-scale internet videos, exemplified by Humanoid-X. However, they often introduce physical artifacts such as floating, penetration, and foot skating, which hinder stable imitation. In response, we introduce PHUMA, a Physically-grounded HUMAnoid locomotion dataset that leverages human video at scale, while addressing physical artifacts through careful data curation and physics-constrained retargeting. PHUMA enforces joint limits, ensures ground contact, and eliminates foot skating, producing motions that are both large-scale and physically reliable. We evaluated PHUMA in two sets of conditions: (i) imitation of unseen motion from self-recorded test videos and (ii) path following with pelvis-only guidance. In both cases, PHUMA-trained policies outperform Humanoid-X and AMASS, achieving significant gains in imitating diverse motions. The code is available at https://davian-robotics.github.io/PHUMA.

Authors:Rajiv Movva, Smitha Milli, Sewon Min, Emma Pierson
Title: What's In My Human Feedback? Learning Interpretable Descriptions of Preference Data
Abstract:
Human feedback can alter language models in unpredictable and undesirable ways, as practitioners lack a clear understanding of what feedback data encodes. While prior work studies preferences over certain attributes (e.g., length or sycophancy), automatically extracting relevant features without pre-specifying hypotheses remains challenging. We introduce What's In My Human Feedback? (WIMHF), a method to explain feedback data using sparse autoencoders. WIMHF characterizes both (1) the preferences a dataset is capable of measuring and (2) the preferences that the annotators actually express. Across 7 datasets, WIMHF identifies a small number of human-interpretable features that account for the majority of the preference prediction signal achieved by black-box models. These features reveal a wide diversity in what humans prefer, and the role of dataset-level context: for example, users on Reddit prefer informality and jokes, while annotators in HH-RLHF and PRISM disprefer them. WIMHF also surfaces potentially unsafe preferences, such as that LMArena users tend to vote against refusals, often in favor of toxic content. The learned features enable effective data curation: re-labeling the harmful examples in Arena yields large safety gains (+37%) with no cost to general performance. They also allow fine-grained personalization: on the Community Alignment dataset, we learn annotator-specific weights over subjective features that improve preference prediction. WIMHF provides a human-centered analysis method for practitioners to better understand and use preference data.

Authors:Yanran Tang, Ruihong Qiu, Xue Li, Zi Huang
Title: ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Abstract:
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.

Authors:Wei Shang, Wanying Zhang, Shuhang Gu, Pengfei Zhu, Qinghua Hu, Dongwei Ren
Title: BasicAVSR: Arbitrary-Scale Video Super-Resolution via Image Priors and Enhanced Motion Compensation
Abstract:
Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR.

Authors:Xin Hu, Pengfei Xu, Jin Zhou, Hongbo Fu, Hui Huang
Title: StructLayoutFormer:Conditional Structured Layout Generation via Structure Serialization and Disentanglement
Abstract:
Structured layouts are preferable in many 2D visual contents (\eg, GUIs, webpages) since the structural information allows convenient layout editing. Computational frameworks can help create structured layouts but require heavy labor input. Existing data-driven approaches are effective in automatically generating fixed layouts but fail to produce layout structures. We present StructLayoutFormer, a novel Transformer-based approach for conditional structured layout generation. We use a structure serialization scheme to represent structured layouts as sequences. To better control the structures of generated layouts, we disentangle the structural information from the element placements. Our approach is the first data-driven approach that achieves conditional structured layout generation and produces realistic layout structures explicitly. We compare our approach with existing data-driven layout generation approaches by including post-processing for structure extraction. Extensive experiments have shown that our approach exceeds these baselines in conditional structured layout generation. We also demonstrate that our approach is effective in extracting and transferring layout structures. The code is publicly available at %\href{https://github.com/Teagrus/StructLayoutFormer} {https://github.com/Teagrus/StructLayoutFormer}.

Authors:Feng Ju, Zeyu Qin, Rui Min, Zhitao He, Lingpeng Kong, Yi R. Fung
Title: Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking
Abstract:
While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .

Authors:Minjoon Jung, Junbin Xiao, Junghyun Kim, Byoung-Tak Zhang, Angela Yao
Title: EgoExo-Con: Exploring View-Invariant Video Temporal Understanding
Abstract:
Can Video-LLMs achieve consistent temporal understanding when videos capture the same event from different viewpoints? To study this, we introduce EgoExo-Con (Consistency), a benchmark of comprehensively synchronized egocentric and exocentric video pairs with human-refined queries in natural language. EgoExo-Con emphasizes two temporal understanding tasks: Temporal Verification and Temporal Grounding. It evaluates not only correctness but consistency across viewpoints. Our analysis reveals two critical limitations of existing Video-LLMs: (1) models often fail to maintain consistency, with results far worse than their single-view performances. (2) When naively finetuned with synchronized videos of both viewpoints, the models show improved consistency but often underperform those trained on a single view. For improvements, we propose View-GRPO, a novel reinforcement learning framework that effectively strengthens view-specific temporal reasoning while encouraging consistent comprehension across viewpoints. Our method demonstrates its superiority over naive SFT and GRPO, especially for improving cross-view consistency. All resources will be made publicly available.

Authors:Nick Masi, Randall Balestriero
Title: SAFE: A Novel Approach to AI Weather Evaluation through Stratified Assessments of Forecasts over Earth
Abstract:
The dominant paradigm in machine learning is to assess model performance based on average loss across all samples in some test set. This amounts to averaging performance geospatially across the Earth in weather and climate settings, failing to account for the non-uniform distribution of human development and geography. We introduce Stratified Assessments of Forecasts over Earth (SAFE), a package for elucidating the stratified performance of a set of predictions made over Earth. SAFE integrates various data domains to stratify by different attributes associated with geospatial gridpoints: territory (usually country), global subregion, income, and landcover (land or water). This allows us to examine the performance of models for each individual stratum of the different attributes (e.g., the accuracy in every individual country). To demonstrate its importance, we utilize SAFE to benchmark a zoo of state-of-the-art AI-based weather prediction models, finding that they all exhibit disparities in forecasting skill across every attribute. We use this to seed a benchmark of model forecast fairness through stratification at different lead times for various climatic variables. By moving beyond globally-averaged metrics, we for the first time ask: where do models perform best or worst, and which models are most fair? To support further work in this direction, the SAFE package is open source and available at https://github.com/N-Masi/safe

Authors:Weifei Jin, Yuxin Cao, Junjie Su, Minhui Xue, Jie Hao, Ke Xu, Jin Song Dong, Derui Wang
Title: ALMGuard: Safety Shortcuts and Where to Find Them as Guardrails for Audio-Language Models
Abstract:
Recent advances in Audio-Language Models (ALMs) have significantly improved multimodal understanding capabilities. However, the introduction of the audio modality also brings new and unique vulnerability vectors. Previous studies have proposed jailbreak attacks that specifically target ALMs, revealing that defenses directly transferred from traditional audio adversarial attacks or text-based Large Language Model (LLM) jailbreaks are largely ineffective against these ALM-specific threats. To address this issue, we propose ALMGuard, the first defense framework tailored to ALMs. Based on the assumption that safety-aligned shortcuts naturally exist in ALMs, we design a method to identify universal Shortcut Activation Perturbations (SAPs) that serve as triggers that activate the safety shortcuts to safeguard ALMs at inference time. To better sift out effective triggers while preserving the model's utility on benign tasks, we further propose Mel-Gradient Sparse Mask (M-GSM), which restricts perturbations to Mel-frequency bins that are sensitive to jailbreaks but insensitive to speech understanding. Both theoretical analyses and empirical results demonstrate the robustness of our method against both seen and unseen attacks. Overall, \MethodName reduces the average success rate of advanced ALM-specific jailbreak attacks to 4.6% across four models, while maintaining comparable utility on benign benchmarks, establishing it as the new state of the art. Our code and data are available at https://github.com/WeifeiJin/ALMGuard.

Authors:Fazel Arasteh, Arian Haghparast, Manos Papagelis
Title: Network-Constrained Policy Optimization for Adaptive Multi-agent Vehicle Routing
Abstract:
Traffic congestion in urban road networks leads to longer trip times and higher emissions, especially during peak periods. While the Shortest Path First (SPF) algorithm is optimal for a single vehicle in a static network, it performs poorly in dynamic, multi-vehicle settings, often worsening congestion by routing all vehicles along identical paths. We address dynamic vehicle routing through a multi-agent reinforcement learning (MARL) framework for coordinated, network-aware fleet navigation. We first propose Adaptive Navigation (AN), a decentralized MARL model where each intersection agent provides routing guidance based on (i) local traffic and (ii) neighborhood state modeled using Graph Attention Networks (GAT). To improve scalability in large networks, we further propose Hierarchical Hub-based Adaptive Navigation (HHAN), an extension of AN that assigns agents only to key intersections (hubs). Vehicles are routed hub-to-hub under agent control, while SPF handles micro-routing within each hub region. For hub coordination, HHAN adopts centralized training with decentralized execution (CTDE) under the Attentive Q-Mixing (A-QMIX) framework, which aggregates asynchronous vehicle decisions via attention. Hub agents use flow-aware state features that combine local congestion and predictive dynamics for proactive routing. Experiments on synthetic grids and real urban maps (Toronto, Manhattan) show that AN reduces average travel time versus SPF and learning baselines, maintaining 100% routing success. HHAN scales to networks with hundreds of intersections, achieving up to 15.9% improvement under heavy traffic. These findings highlight the potential of network-constrained MARL for scalable, coordinated, and congestion-aware routing in intelligent transportation systems.

Authors:Ali Rasekh, Erfan Bagheri Soula, Omid Daliran, Simon Gottschalk, Mohsen Fayyaz
Title: Enhancing Temporal Understanding in Video-LLMs through Stacked Temporal Attention in Vision Encoders
Abstract:
Despite significant advances in Multimodal Large Language Models (MLLMs), understanding complex temporal dynamics in videos remains a major challenge. Our experiments show that current Video Large Language Model (Video-LLM) architectures have critical limitations in temporal understanding, struggling with tasks that require detailed comprehension of action sequences and temporal progression. In this work, we propose a Video-LLM architecture that introduces stacked temporal attention modules directly within the vision encoder. This design incorporates a temporal attention in vision encoder, enabling the model to better capture the progression of actions and the relationships between frames before passing visual tokens to the LLM. Our results show that this approach significantly improves temporal reasoning and outperforms existing models in video question answering tasks, specifically in action recognition. We improve on benchmarks including VITATECS, MVBench, and Video-MME by up to +5.5%. By enhancing the vision encoder with temporal structure, we address a critical gap in video understanding for Video-LLMs. Project page and code are available at: https://alirasekh.github.io/STAVEQ2/.

Authors:Semyon Lomasov, Judah Goldfeder, Mehmet Hamza Erol, Matthew So, Yao Yan, Addison Howard, Nathan Kutz, Ravid Shwartz Ziv
Title: Exploring Human-AI Conceptual Alignment through the Prism of Chess
Abstract:
Do AI systems truly understand human concepts or merely mimic surface patterns? We investigate this through chess, where human creativity meets precise strategic concepts. Analyzing a 270M-parameter transformer that achieves grandmaster-level play, we uncover a striking paradox: while early layers encode human concepts like center control and knight outposts with up to 85\% accuracy, deeper layers, despite driving superior performance, drift toward alien representations, dropping to 50-65\% accuracy. To test conceptual robustness beyond memorization, we introduce the first Chess960 dataset: 240 expert-annotated positions across 6 strategic concepts. When opening theory is eliminated through randomized starting positions, concept recognition drops 10-20\% across all methods, revealing the model's reliance on memorized patterns rather than abstract understanding. Our layer-wise analysis exposes a fundamental tension in current architectures: the representations that win games diverge from those that align with human thinking. These findings suggest that as AI systems optimize for performance, they develop increasingly alien intelligence, a critical challenge for creative AI applications requiring genuine human-AI collaboration. Dataset and code are available at: https://github.com/slomasov/ChessConceptsLLM.

Authors:Siyi Wu, Chiaxin Liang, Ziqian Bi, Leyi Zhao, Tianyang Wang, Junhao Song, Yichao Zhang, Keyu Chen, Xinyuan Song
Title: AutoSurvey2: Empowering Researchers with Next Level Automated Literature Surveys
Abstract:
The rapid growth of research literature, particularly in large language models (LLMs), has made producing comprehensive and current survey papers increasingly difficult. This paper introduces autosurvey2, a multi-stage pipeline that automates survey generation through retrieval-augmented synthesis and structured evaluation. The system integrates parallel section generation, iterative refinement, and real-time retrieval of recent publications to ensure both topical completeness and factual accuracy. Quality is assessed using a multi-LLM evaluation framework that measures coverage, structure, and relevance in alignment with expert review standards. Experimental results demonstrate that autosurvey2 consistently outperforms existing retrieval-based and automated baselines, achieving higher scores in structural coherence and topical relevance while maintaining strong citation fidelity. By combining retrieval, reasoning, and automated evaluation into a unified framework, autosurvey2 provides a scalable and reproducible solution for generating long-form academic surveys and contributes a solid foundation for future research on automated scholarly writing. All code and resources are available at https://github.com/annihi1ation/auto_research.

Authors:Sung-Hoon Yoon, Minghan Li, Gaspard Beaudouin, Congcong Wen, Muhammad Rafay Azhar, Mengyu Wang
Title: SplitFlow: Flow Decomposition for Inversion-Free Text-to-Image Editing
Abstract:
Rectified flow models have become a de facto standard in image generation due to their stable sampling trajectories and high-fidelity outputs. Despite their strong generative capabilities, they face critical limitations in image editing tasks: inaccurate inversion processes for mapping real images back into the latent space, and gradient entanglement issues during editing often result in outputs that do not faithfully reflect the target prompt. Recent efforts have attempted to directly map source and target distributions via ODE-based approaches without inversion; however,these methods still yield suboptimal editing quality. In this work, we propose a flow decomposition-and-aggregation framework built upon an inversion-free formulation to address these limitations. Specifically, we semantically decompose the target prompt into multiple sub-prompts, compute an independent flow for each, and aggregate them to form a unified editing trajectory. While we empirically observe that decomposing the original flow enhances diversity in the target space, generating semantically aligned outputs still requires consistent guidance toward the full target prompt. To this end, we design a projection and soft-aggregation mechanism for flow, inspired by gradient conflict resolution in multi-task learning. This approach adaptively weights the sub-target velocity fields, suppressing semantic redundancy while emphasizing distinct directions, thereby preserving both diversity and consistency in the final edited output. Experimental results demonstrate that our method outperforms existing zero-shot editing approaches in terms of semantic fidelity and attribute disentanglement. The code is available at https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.

Authors:Tcharlies Schmitz
Title: Modular Linear Tokenization (MLT)
Abstract:
This paper introduces Modular Linear Tokenization (MLT), a reversible and deterministic technique for encoding high-cardinality categorical identifiers into compact numerical vectors. Unlike traditional hashing or one-hot encodings, MLT preserves bijective mappings by leveraging modular arithmetic over finite fields and invertible linear transformations. The method offers explicit control of dimensionality and computational scalability while maintaining full reversibility, even for millions of identifiers. Experimental results on the MovieLens 20M dataset show that MLT achieves comparable predictive performance to supervised embeddings while requiring significantly fewer parameters and lower training cost. An open-source implementation of MLT is available on PyPI (https://pypi.org/project/light-mlt/) and GitHub (https://github.com/tcharliesschmitz/light-mlt).

Authors:Nicolas Dufour, Lucas Degeorge, Arijit Ghosh, Vicky Kalogeiton, David Picard
Title: MIRO: MultI-Reward cOnditioned pretraining improves T2I quality and efficiency
Abstract:
Current text-to-image generative models are trained on large uncurated datasets to enable diverse generation capabilities. However, this does not align well with user preferences. Recently, reward models have been specifically designed to perform post-hoc selection of generated images and align them to a reward, typically user preference. This discarding of informative data together with the optimizing for a single reward tend to harm diversity, semantic fidelity and efficiency. Instead of this post-processing, we propose to condition the model on multiple reward models during training to let the model learn user preferences directly. We show that this not only dramatically improves the visual quality of the generated images but it also significantly speeds up the training. Our proposed method, called MIRO, achieves state-of-the-art performances on the GenEval compositional benchmark and user-preference scores (PickAScore, ImageReward, HPSv2).

Authors:Xiaoke Huang, Ningsen Wang, Hui Liu, Xianfeng Tang, Yuyin Zhou
Title: MedVLSynther: Synthesizing High-Quality Visual Question Answering from Medical Documents with Generator-Verifier LMMs
Abstract:
Large Multimodal Models (LMMs) are increasingly capable of answering medical questions that require joint reasoning over images and text, yet training general medical VQA systems is impeded by the lack of large, openly usable, high-quality corpora. We present MedVLSynther, a rubric-guided generator-verifier framework that synthesizes high-quality multiple-choice VQA items directly from open biomedical literature by conditioning on figures, captions, and in-text references. The generator produces self-contained stems and parallel, mutually exclusive options under a machine-checkable JSON schema; a multi-stage verifier enforces essential gates (self-containment, single correct answer, clinical validity, image-text consistency), awards fine-grained positive points, and penalizes common failure modes before acceptance. Applying this pipeline to PubMed Central yields MedSynVQA: 13,087 audited questions over 14,803 images spanning 13 imaging modalities and 28 anatomical regions. Training open-weight LMMs with reinforcement learning using verifiable rewards improves accuracy across six medical VQA benchmarks, achieving averages of 55.85 (3B) and 58.15 (7B), with up to 77.57 on VQA-RAD and 67.76 on PathVQA, outperforming strong medical LMMs. A Ablations verify that both generation and verification are necessary and that more verified data consistently helps, and a targeted contamination analysis detects no leakage from evaluation suites. By operating entirely on open literature and open-weight models, MedVLSynther offers an auditable, reproducible, and privacy-preserving path to scalable medical VQA training data.

Authors:Sungho Koh, SeungJu Cha, Hyunwoo Oh, Kwanyoung Lee, Dong-Jin Kim
Title: ScaleDiff: Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion
Abstract:
Text-to-image diffusion models often exhibit degraded performance when generating images beyond their training resolution. Recent training-free methods can mitigate this limitation, but they often require substantial computation or are incompatible with recent Diffusion Transformer models. In this paper, we propose ScaleDiff, a model-agnostic and highly efficient framework for extending the resolution of pretrained diffusion models without any additional training. A core component of our framework is Neighborhood Patch Attention (NPA), an efficient mechanism that reduces computational redundancy in the self-attention layer with non-overlapping patches. We integrate NPA into an SDEdit pipeline and introduce Latent Frequency Mixing (LFM) to better generate fine details. Furthermore, we apply Structure Guidance to enhance global structure during the denoising process. Experimental results demonstrate that ScaleDiff achieves state-of-the-art performance among training-free methods in terms of both image quality and inference speed on both U-Net and Diffusion Transformer architectures.

Authors:Junyu Luo, Bohan Wu, Xiao Luo, Zhiping Xiao, Yiqiao Jin, Rong-Cheng Tu, Nan Yin, Yifan Wang, Jingyang Yuan, Wei Ju, Ming Zhang
Title: A Survey on Efficient Large Language Model Training: From Data-centric Perspectives
Abstract:
Post-training of Large Language Models (LLMs) is crucial for unlocking their task generalization potential and domain-specific capabilities. However, the current LLM post-training paradigm faces significant data challenges, including the high costs of manual annotation and diminishing marginal returns on data scales. Therefore, achieving data-efficient post-training has become a key research question. In this paper, we present the first systematic survey of data-efficient LLM post-training from a data-centric perspective. We propose a taxonomy of data-efficient LLM post-training methods, covering data selection, data quality enhancement, synthetic data generation, data distillation and compression, and self-evolving data ecosystems. We summarize representative approaches in each category and outline future research directions. By examining the challenges in data-efficient LLM post-training, we highlight open problems and propose potential research avenues. We hope our work inspires further exploration into maximizing the potential of data utilization in large-scale model training. Paper List: https://github.com/luo-junyu/Awesome-Data-Efficient-LLM

Authors:Jorge Martinez-Gil, Mario Pichler, Nefeli Bountouni, Sotiris Koussouris, Marielena Márquez Barreiro, Sergio Gusmeroli
Title: An Agentic Framework for Rapid Deployment of Edge AI Solutions in Industry 5.0
Abstract:
We present a novel framework for Industry 5.0 that simplifies the deployment of AI models on edge devices in various industrial settings. The design reduces latency and avoids external data transfer by enabling local inference and real-time processing. Our implementation is agent-based, which means that individual agents, whether human, algorithmic, or collaborative, are responsible for well-defined tasks, enabling flexibility and simplifying integration. Moreover, our framework supports modular integration and maintains low resource requirements. Preliminary evaluations concerning the food industry in real scenarios indicate improved deployment time and system adaptability performance. The source code is publicly available at https://github.com/AI-REDGIO-5-0/ci-component.

Authors:William Réveillard, Richard Combes
Title: Multimodal Bandits: Regret Lower Bounds and Optimal Algorithms
Abstract:
We consider a stochastic multi-armed bandit problem with i.i.d. rewards where the expected reward function is multimodal with at most m modes. We propose the first known computationally tractable algorithm for computing the solution to the Graves-Lai optimization problem, which in turn enables the implementation of asymptotically optimal algorithms for this bandit problem. The code for the proposed algorithms is publicly available at https://github.com/wilrev/MultimodalBandits

Authors:Jaewon Chu, Seunghun Lee, Hyunwoo J. Kim
Title: PRESTO: Preimage-Informed Instruction Optimization for Prompting Black-Box LLMs
Abstract:
Large language models (LLMs) have achieved remarkable success across diverse domains, due to their strong instruction-following capabilities. This has led to increasing interest in optimizing instructions for black-box LLMs, whose internal parameters are inaccessible but widely used due to their strong performance. To optimize instructions for black-box LLMs, recent methods employ white-box LLMs to generate candidate instructions from optimized soft prompts. However, white-box LLMs often map different soft prompts to the same instruction, leading to redundant queries. While previous studies regarded this many-to-one mapping as a structure that hinders optimization efficiency, we reinterpret it as a useful prior knowledge that can accelerate the optimization. To this end, we introduce PREimage-informed inSTruction Optimization (PRESTO), a novel framework that leverages the preimage structure of soft prompts for efficient optimization. PRESTO consists of three key components: (1) score sharing, which shares the evaluation score with all soft prompts in a preimage; (2) preimage-based initialization, which selects initial data points that maximize search space coverage using preimage information; and (3) score consistency regularization, which enforces prediction consistency within each preimage. By leveraging preimages, PRESTO achieves the effect of effectively obtaining 14 times more scored data under the same query budget, resulting in more efficient optimization. Experimental results on 33 instruction optimization tasks demonstrate the superior performance of PRESTO. Code is available at https://github.com/mlvlab/PRESTO

Authors:Kun Chen, Peng Shi, Haibo Qiu, Zhixiong Zeng, Siqi Yang, Wenji Mao, Lin Ma
Title: Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start
Abstract:
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling.

Authors:Jialong Sun, Xinpeng Ling, Jiaxuan Zou, Jiawen Kang, Kejia Zhang
Title: FreIE: Low-Frequency Spectral Bias in Neural Networks for Time-Series Tasks
Abstract:
The inherent autocorrelation of time series data presents an ongoing challenge to multivariate time series prediction. Recently, a widely adopted approach has been the incorporation of frequency domain information to assist in long-term prediction tasks. Many researchers have independently observed the spectral bias phenomenon in neural networks, where models tend to fit low-frequency signals before high-frequency ones. However, these observations have often been attributed to the specific architectures designed by the researchers, rather than recognizing the phenomenon as a universal characteristic across models. To unify the understanding of the spectral bias phenomenon in long-term time series prediction, we conducted extensive empirical experiments to measure spectral bias in existing mainstream models. Our findings reveal that virtually all models exhibit this phenomenon. To mitigate the impact of spectral bias, we propose the FreLE (Frequency Loss Enhancement) algorithm, which enhances model generalization through both explicit and implicit frequency regularization. This is a plug-and-play model loss function unit. A large number of experiments have proven the superior performance of FreLE. Code is available at https://github.com/Chenxing-Xuan/FreLE.

Authors:Yaniv Nikankin, Dana Arad, Itay Itzhak, Anja Reusch, Adi Simhi, Gal Kesten-Pomeranz, Yonatan Belinkov
Title: BlackboxNLP-2025 MIB Shared Task: Improving Circuit Faithfulness via Better Edge Selection
Abstract:
One of the main challenges in mechanistic interpretability is circuit discovery, determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models. Our code is available at: https://github.com/technion-cs-nlp/MIB-Shared-Task.

Authors:Amir Noorizadegan, Sifan Wang, Leevan Ling
Title: A Practitioner's Guide to Kolmogorov-Arnold Networks
Abstract:
Kolmogorov-Arnold Networks (KANs) have recently emerged as a promising alternative to traditional Multilayer Perceptrons (MLPs), inspired by the Kolmogorov-Arnold representation theorem. Unlike MLPs, which use fixed activation functions on nodes, KANs employ learnable univariate basis functions on edges, offering enhanced expressivity and interpretability. This review provides a systematic and comprehensive overview of the rapidly expanding KAN landscape, moving beyond simple performance comparisons to offer a structured synthesis of theoretical foundations, architectural variants, and practical implementation strategies. By collecting and categorizing a vast array of open-source implementations, we map the vibrant ecosystem supporting KAN development. We begin by bridging the conceptual gap between KANs and MLPs, establishing their formal equivalence and highlighting the superior parameter efficiency of the KAN formulation. A central theme of our review is the critical role of the basis function; we survey a wide array of choices, including B-splines, Chebyshev and Jacobi polynomials, ReLU compositions, Gaussian RBFs, and Fourier series, and analyze their respective trade-offs in terms of smoothness, locality, and computational cost. We then categorize recent advancements into a clear roadmap, covering techniques for improving accuracy, efficiency, and regularization. Key topics include physics-informed loss design, adaptive sampling, domain decomposition, hybrid architectures, and specialized methods for handling discontinuities. Finally, we provide a practical "Choose-Your-KAN" guide to help practitioners select appropriate architectures, and we conclude by identifying current research gaps. The associated GitHub repository https://github.com/AmirNoori68/kan-review complements this paper and serves as a structured reference for ongoing KAN research.

Authors:Chiung-Yi Tseng, Somshubhra Roy, Maisha Thasin, Danyang Zhang, Blessing Effiong
Title: StreetMath: Study of LLMs' Approximation Behaviors
Abstract:
There is a substantial body of literature examining the mathematical reasoning capabilities of large language models (LLMs), particularly their performance on precise arithmetic operations in autoregressive architectures. However, their ability to perform approximate reasoning in informal, fast-paced mathematical operations has received far less attention, especially among non-autoregressive decoder models. Our work addresses this gap by introducing StreetMath, a benchmark designed to evaluate models' approximation abilities under real-world approximation scenarios. We conduct extensive evaluations across different LLM architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and Mamba-GPT-3B. Furthermore, we apply mechanistic interpretability techniques to probe their internal computational states. Our analysis reveals that LLMs generally attempt to compute exact values or invoke external tools even in tasks that call for approximation. Moreover, while models sometimes reach the correct answer in early layers or steps, they still consume more tokens when solving approximation tasks. Additional experiments indicate that exact and approximate arithmetic operations rely on largely separate neural components. Drawing upon research on cognitive psychology, we argue that LLMs do not exhibit cognitive miserliness in the same way humans do in street math settings. We open source our work https://github.com/ctseng777/StreetMath

Authors:Baolu Li, Yiming Zhang, Qinghe Wang, Liqian Ma, Xiaoyu Shi, Xintao Wang, Pengfei Wan, Zhenfei Yin, Yunzhi Zhuge, Huchuan Lu, Xu Jia
Title: VFXMaster: Unlocking Dynamic Visual Effect Generation via In-Context Learning
Abstract:
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.

Authors:Naoki Kiyohara, Edward Johns, Yingzhen Li
Title: Neural Stochastic Flows: Solver-Free Modelling and Inference for SDE Solutions
Abstract:
Stochastic differential equations (SDEs) are well suited to modelling noisy and irregularly sampled time series found in finance, physics, and machine learning. Traditional approaches require costly numerical solvers to sample between arbitrary time points. We introduce Neural Stochastic Flows (NSFs) and their latent variants, which directly learn (latent) SDE transition laws using conditional normalising flows with architectural constraints that preserve properties inherited from stochastic flows. This enables one-shot sampling between arbitrary states and yields up to two orders of magnitude speed-ups at large time gaps. Experiments on synthetic SDE simulations and on real-world tracking and video data show that NSFs maintain distributional accuracy comparable to numerical approaches while dramatically reducing computation for arbitrary time-point sampling.

Authors:Chumeng Liang, Jiaxuan You
Title: DiagramEval: Evaluating LLM-Generated Diagrams via Graphs
Abstract:
Diagrams play a central role in research papers for conveying ideas, yet they are often notoriously complex and labor-intensive to create. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure. We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs). However, due to the complexity of components and the multimodal nature of diagrams, sufficiently discriminative and explainable metrics for evaluating the quality of LLM-generated diagrams remain lacking. In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment and path alignment. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, quantitatively demonstrating the validity of our metrics. Furthermore, we show how the enhanced explainability of our proposed metrics offers valuable insights into the characteristics of LLM-generated diagrams. Code: https://github.com/ulab-uiuc/diagram-eval.

Authors:Xu Zheng, Zihao Dongfang, Lutao Jiang, Boyuan Zheng, Yulong Guo, Zhenquan Zhang, Giuliano Albanese, Runyi Yang, Mengjiao Ma, Zixin Zhang, Chenfei Liao, Dingcheng Zhen, Yuanhuiyi Lyu, Yuqian Fu, Bin Ren, Linfeng Zhang, Danda Pani Paudel, Nicu Sebe, Luc Van Gool, Xuming Hu
Title: Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks
Abstract:
Humans possess spatial reasoning abilities that enable them to understand spaces through multimodal observations, such as vision and sound. Large multimodal reasoning models extend these abilities by learning to perceive and reason, showing promising performance across diverse spatial tasks. However, systematic reviews and publicly available benchmarks for these models remain limited. In this survey, we provide a comprehensive review of multimodal spatial reasoning tasks with large models, categorizing recent progress in multimodal large language models (MLLMs) and introducing open benchmarks for evaluation. We begin by outlining general spatial reasoning, focusing on post-training techniques, explainability, and architecture. Beyond classical 2D tasks, we examine spatial relationship reasoning, scene and layout understanding, as well as visual question answering and grounding in 3D space. We also review advances in embodied AI, including vision-language navigation and action models. Additionally, we consider emerging modalities such as audio and egocentric video, which contribute to novel spatial understanding through new sensors. We believe this survey establishes a solid foundation and offers insights into the growing field of multimodal spatial reasoning. Updated information about this survey, codes and implementation of the open benchmarks can be found at https://github.com/zhengxuJosh/Awesome-Spatial-Reasoning.

Authors:He Hu, Yucheng Zhou, Chiyuan Ma, Qianning Wang, Zheng Zhang, Fei Ma, Laizhong Cui, Qi Tian
Title: TheraMind: A Strategic and Adaptive Agent for Longitudinal Psychological Counseling
Abstract:
Large language models (LLMs) in psychological counseling have attracted increasing attention. However, existing approaches often lack emotional understanding, adaptive strategies, and the use of therapeutic methods across multiple sessions with long-term memory, leaving them far from real clinical practice. To address these critical gaps, we introduce TheraMind, a strategic and adaptive agent for longitudinal psychological counseling. The cornerstone of TheraMind is a novel dual-loop architecture that decouples the complex counseling process into an Intra-Session Loop for tactical dialogue management and a Cross-Session Loop for strategic therapeutic planning. The Intra-Session Loop perceives the patient's emotional state to dynamically select response strategies while leveraging cross-session memory to ensure continuity. Crucially, the Cross-Session Loop empowers the agent with long-term adaptability by evaluating the efficacy of the applied therapy after each session and adjusting the method for subsequent interactions. We validate our approach in a high-fidelity simulation environment grounded in real clinical cases. Extensive evaluations show that TheraMind outperforms other methods, especially on multi-session metrics like Coherence, Flexibility, and Therapeutic Attunement, validating the effectiveness of its dual-loop design in emulating strategic, adaptive, and longitudinal therapeutic behavior. The code is publicly available at https://0mwwm0.github.io/TheraMind/.

Authors:Christodoulos Benetatos, Yongyi Zang, Randal Leistikow
Title: Efficient Vocal Source Separation Through Windowed Sink Attention
Abstract:
State-of-the-art vocal separation models like Mel-Band-Roformer rely on full temporal self-attention mechanisms, where each temporal frame interacts with every other frames. This incurs heavy computational costs that scales quadratically with input audio length, motivating chunking and windowing approaches. Through analysis of a pre-trained vocal separation model, we discovered that temporal attention patterns are highly localized. Building on this insight, we replaced full attention with windowed sink attention (WSA) with small temporal attention window and attention sinks. We show empirically that fine-tuning from the original checkpoint recovers 92% of the original SDR performance while reducing FLOPs by 44.5x. We release our code and checkpoints under MIT license at https://github.com/smulelabs/windowed-roformer.

Authors:Dan Barry, Davoud Shariat Panah, Alessandro Ragano, Jan Skoglund, Andrew Hines
Title: Binaspect -- A Python Library for Binaural Audio Analysis, Visualization & Feature Generation
Abstract:
We present Binaspect, an open-source Python library for binaural audio analysis, visualization, and feature generation. Binaspect generates interpretable "azimuth maps" by calculating modified interaural time and level difference spectrograms, and clustering those time-frequency (TF) bins into stable time-azimuth histogram representations. This allows multiple active sources to appear as distinct azimuthal clusters, while degradations manifest as broadened, diffused, or shifted distributions. Crucially, Binaspect operates blindly on audio, requiring no prior knowledge of head models. These visualizations enable researchers and engineers to observe how binaural cues are degraded by codec and renderer design choices, among other downstream processes. We demonstrate the tool on bitrate ladders, ambisonic rendering, and VBAP source positioning, where degradations are clearly revealed. In addition to their diagnostic value, the proposed representations can be exported as structured features suitable for training machine learning models in quality prediction, spatial audio classification, and other binaural tasks. Binaspect is released under an open-source license with full reproducibility scripts at https://github.com/QxLabIreland/Binaspect.

Authors:Yesmine Abdennadher, Eleonora Cicciarella, Michele Rossi
Title: Convolutional Spiking-based GRU Cell for Spatio-temporal Data
Abstract:
Spike-based temporal messaging enables SNNs to efficiently process both purely temporal and spatio-temporal time-series or event-driven data. Combining SNNs with Gated Recurrent Units (GRUs), a variant of recurrent neural networks, gives rise to a robust framework for sequential data processing; however, traditional RNNs often lose local details when handling long sequences. Previous approaches, such as SpikGRU, fail to capture fine-grained local dependencies in event-based spatio-temporal data. In this paper, we introduce the Convolutional Spiking GRU (CS-GRU) cell, which leverages convolutional operations to preserve local structure and dependencies while integrating the temporal precision of spiking neurons with the efficient gating mechanisms of GRUs. This versatile architecture excels on both temporal datasets (NTIDIGITS, SHD) and spatio-temporal benchmarks (MNIST, DVSGesture, CIFAR10DVS). Our experiments show that CS-GRU outperforms state-of-the-art GRU variants by an average of 4.35%, achieving over 90% accuracy on sequential tasks and up to 99.31% on MNIST. It is worth noting that our solution achieves 69% higher efficiency compared to SpikGRU. The code is available at: https://github.com/YesmineAbdennadher/CS-GRU.

Authors:John-Joseph Brady, Benjamin Cox, Víctor Elvira, Yunpeng Li
Title: PyDPF: A Python Package for Differentiable Particle Filtering
Abstract:
State-space models (SSMs) are a widely used tool in time series analysis. In the complex systems that arise from real-world data, it is common to employ particle filtering (PF), an efficient Monte Carlo method for estimating the hidden state corresponding to a sequence of observations. Applying particle filtering requires specifying both the parametric form and the parameters of the system, which are often unknown and must be estimated. Gradient-based optimisation techniques cannot be applied directly to standard particle filters, as the filters themselves are not differentiable. However, several recently proposed methods modify the resampling step to make particle filtering differentiable. In this paper, we present an implementation of several such differentiable particle filters (DPFs) with a unified API built on the popular PyTorch framework. Our implementation makes these algorithms easily accessible to a broader research community and facilitates straightforward comparison between them. We validate our framework by reproducing experiments from several existing studies and demonstrate how DPFs can be applied to address several common challenges with state space modelling.

Authors:Jiani Zheng, Zhiyang Teng, Xiangtai Li, Anran Wang, Yu Tian, Kunpeng Qiu, Ye Tian, Haochen Wang, Zhuochen Wang
Title: PairUni: Pairwise Training for Unified Multimodal Language Models
Abstract:
Unified vision-language models (UVLMs) must perform both understanding and generation within a single architecture, but these tasks rely on heterogeneous data and supervision, making it difficult to balance them during reinforcement learning (RL). We propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. We first use GPT-o3 to augment single-task data, generating captions for understanding samples and question-answer (QA) pairs for generation samples, forming aligned pairs from the same instance. Additionally, for each generation sample, we retrieve a semantically related understanding example to form a retrieved pair, linking different but related data points. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present Pair-GPRO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. We curate a high-quality dataset of 16K UG pairs named PairUG for RL fine-tuning and evaluate PairUni on the powerful Janus-Pro UVLMs. Our approach achieves balanced improvements on various UVLMs, outperforming strong UVLM RL baselines. Code: \href{https://github.com/Haochen-Wang409/PairUni}{github.com/Haochen-Wang409/PairUni}

Authors:Run Peng, Ziqiao Ma, Amy Pang, Sikai Li, Zhang Xi-Jia, Yingzhuo Yu, Cristian-Paul Bara, Joyce Chai
Title: Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry
Abstract:
While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles

Authors:Amin Parchami-Araghi, Sukrut Rao, Jonas Fischer, Bernt Schiele
Title: FaCT: Faithful Concept Traces for Explaining Neural Network Decisions
Abstract:
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.

Authors:Thang-Long Nguyen-Ho, Minh-Khoi Pham, Hoang-Bao Le
Title: Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report
Abstract:
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.

Authors:Auguste Poiroux, Antoine Bosselut, Viktor Kunčak
Title: RLMEval: Evaluating Research-Level Neural Theorem Proving
Abstract:
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.

Authors:Doan Nam Long Vu, Rui Tan, Lena Moench, Svenja Jule Francke, Daniel Woiwod, Florian Thomas-Odenthal, Sanna Stroth, Tilo Kircher, Christiane Hermann, Udo Dannlowski, Hamidreza Jamalabadi, Shaoxiong Ji
Title: Roleplaying with Structure: Synthetic Therapist-Client Conversation Generation from Questionnaires
Abstract:
The development of AI for mental health is hindered by a lack of authentic therapy dialogues, due to strict privacy regulations and the fact that clinical sessions were historically rarely recorded. We present an LLM-driven pipeline that generates synthetic counseling dialogues based on structured client profiles and psychological questionnaires. Grounded on the principles of Cognitive Behavioral Therapy (CBT), our method creates synthetic therapeutic conversations for clinical disorders such as anxiety and depression. Our framework, SQPsych (Structured Questionnaire-based Psychotherapy), converts structured psychological input into natural language dialogues through therapist-client simulations. Due to data governance policies and privacy restrictions prohibiting the transmission of clinical questionnaire data to third-party services, previous methodologies relying on proprietary models are infeasible in our setting. We address this limitation by generating a high-quality corpus using open-weight LLMs, validated through human expert evaluation and LLM-based assessments. Our SQPsychLLM models fine-tuned on SQPsychConv achieve strong performance on counseling benchmarks, surpassing baselines in key therapeutic skills. Our findings highlight the potential of synthetic data to enable scalable, data-secure, and clinically informed AI for mental health support. We will release our code, models, and corpus at https://ai-mh.github.io/SQPsych

Authors:Yuhang Hu, Zhenyu Yang, Shihan Wang, Shengsheng Qian, Bin Wen, Fan Yang, Tingting Gao, Changsheng Xu
Title: StreamingCoT: A Dataset for Temporal Dynamics and Multimodal Chain-of-Thought Reasoning in Streaming VideoQA
Abstract:
The rapid growth of streaming video applications demands multimodal models with enhanced capabilities for temporal dynamics understanding and complex reasoning. However, current Video Question Answering (VideoQA) datasets suffer from two critical limitations: 1) Static annotation mechanisms fail to capture the evolving nature of answers in temporal video streams, and 2) The absence of explicit reasoning process annotations restricts model interpretability and logical deduction capabilities. To address these challenges, We introduce StreamingCoT, the first dataset explicitly designed for temporally evolving reasoning in streaming VideoQA and multimodal Chain-of-Thought (CoT) tasks. Our framework first establishes a dynamic hierarchical annotation architecture that generates per-second dense descriptions and constructs temporally-dependent semantic segments through similarity fusion, paired with question-answer sets constrained by temporal evolution patterns. We further propose an explicit reasoning chain generation paradigm that extracts spatiotemporal objects via keyframe semantic alignment, derives object state transition-based reasoning paths using large language models, and ensures logical coherence through human-verified validation. This dataset establishes a foundation for advancing research in streaming video understanding, complex temporal reasoning, and multimodal inference. Our StreamingCoT and its construction toolkit can be accessed at https://github.com/Fleeting-hyh/StreamingCoT.

Authors:Jiaqi Wu, Qinlao Zhao, Zefeng Chen, Kai Qin, Yifei Zhao, Xueqian Wang, Yuhang Yao
Title: GAP: Graph-Based Agent Planning with Parallel Tool Use and Reinforcement Learning
Abstract:
Autonomous agents powered by large language models (LLMs) have shown impressive capabilities in tool manipulation for complex task-solving. However, existing paradigms such as ReAct rely on sequential reasoning and execution, failing to exploit the inherent parallelism among independent sub-tasks. This sequential bottleneck leads to inefficient tool utilization and suboptimal performance in multi-step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a novel framework that explicitly models inter-task dependencies through graph-based planning to enable adaptive parallel and serial tool execution. Our approach trains agent foundation models to decompose complex tasks into dependency-aware sub-task graphs, autonomously determining which tools can be executed in parallel and which must follow sequential dependencies. This dependency-aware orchestration achieves substantial improvements in both execution efficiency and task accuracy. To train GAP, we construct a high-quality dataset of graph-based planning traces derived from the Multi-Hop Question Answering (MHQA) benchmark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on the curated dataset, followed by reinforcement learning (RL) with a correctness-based reward function on strategically sampled queries where tool-based reasoning provides maximum value. Experimental results on MHQA datasets demonstrate that GAP significantly outperforms traditional ReAct baselines, particularly on multi-step retrieval tasks, while achieving dramatic improvements in tool invocation efficiency through intelligent parallelization. The project page is available at: https://github.com/WJQ7777/Graph-Agent-Planning.

Authors:Zongxi Yu, Xiaolong Qian, Shaohua Gao, Qi Jiang, Yao Gao, Kailun Yang, Kaiwei Wang
Title: Seeing Clearly and Deeply: An RGBD Imaging Approach with a Bio-inspired Monocentric Design
Abstract:
Achieving high-fidelity, compact RGBD imaging presents a dual challenge: conventional compact optics struggle with RGB sharpness across the entire depth-of-field, while software-only Monocular Depth Estimation (MDE) is an ill-posed problem reliant on unreliable semantic priors. While deep optics with elements like DOEs can encode depth, they introduce trade-offs in fabrication complexity and chromatic aberrations, compromising simplicity. To address this, we first introduce a novel bio-inspired all-spherical monocentric lens, around which we build the Bionic Monocentric Imaging (BMI) framework, a holistic co-design. This optical design naturally encodes depth into its depth-varying Point Spread Functions (PSFs) without requiring complex diffractive or freeform elements. We establish a rigorous physically-based forward model to generate a synthetic dataset by precisely simulating the optical degradation process. This simulation pipeline is co-designed with a dual-head, multi-scale reconstruction network that employs a shared encoder to jointly recover a high-fidelity All-in-Focus (AiF) image and a precise depth map from a single coded capture. Extensive experiments validate the state-of-the-art performance of the proposed framework. In depth estimation, the method attains an Abs Rel of 0.026 and an RMSE of 0.130, markedly outperforming leading software-only approaches and other deep optics systems. For image restoration, the system achieves an SSIM of 0.960 and a perceptual LPIPS score of 0.082, thereby confirming a superior balance between image fidelity and depth accuracy. This study illustrates that the integration of bio-inspired, fully spherical optics with a joint reconstruction algorithm constitutes an effective strategy for addressing the intrinsic challenges in high-performance compact RGBD imaging. Source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI.

Authors:Moritz Lucas, Hamid Ebrahimy, Viacheslav Barkov, Ralf Pecenka, Kai-Uwe Kühnberger, Björn Waske
Title: Mapping and Classification of Trees Outside Forests using Deep Learning
Abstract:
Trees Outside Forests (TOF) play an important role in agricultural landscapes by supporting biodiversity, sequestering carbon, and regulating microclimates. Yet, most studies have treated TOF as a single class or relied on rigid rule-based thresholds, limiting ecological interpretation and adaptability across regions. To address this, we evaluate deep learning for TOF classification using a newly generated dataset and high-resolution aerial imagery from four agricultural landscapes in Germany. Specifically, we compare convolutional neural networks (CNNs), vision transformers, and hybrid CNN-transformer models across six semantic segmentation architectures (ABCNet, LSKNet, FT-UNetFormer, DC-Swin, BANet, and U-Net) to map four categories of woody vegetation: Forest, Patch, Linear, and Tree, derived from previous studies and governmental products. Overall, the models achieved good classification accuracy across the four landscapes, with the FT-UNetFormer performing best (mean Intersection-over-Union 0.74; mean F1 score 0.84), underscoring the importance of spatial context understanding in TOF mapping and classification. Our results show good results for Forest and Linear class and reveal challenges particularly in classifying complex structures with high edge density, notably the Patch and Tree class. Our generalization experiments highlight the need for regionally diverse training data to ensure reliable large-scale mapping. The dataset and code are openly available at https://github.com/Moerizzy/TOFMapper

Authors:Qianqian Qiao, DanDan Zheng, Yihang Bo, Bao Peng, Heng Huang, Longteng Jiang, Huaye Wang, Jingdong Chen, Jun Zhou, Xin Jin
Title: VADB: A Large-Scale Video Aesthetic Database with Professional and Multi-Dimensional Annotations
Abstract:
Video aesthetic assessment, a vital area in multimedia computing, integrates computer vision with human cognition. Its progress is limited by the lack of standardized datasets and robust models, as the temporal dynamics of video and multimodal fusion challenges hinder direct application of image-based methods. This study introduces VADB, the largest video aesthetic database with 10,490 diverse videos annotated by 37 professionals across multiple aesthetic dimensions, including overall and attribute-specific aesthetic scores, rich language comments and objective tags. We propose VADB-Net, a dual-modal pre-training framework with a two-stage training strategy, which outperforms existing video quality assessment models in scoring tasks and supports downstream video aesthetic assessment tasks. The dataset and source code are available at https://github.com/BestiVictory/VADB.

Authors:Chihiro Nagashima, Akira Takahashi, Zhi Zhong, Shusuke Takahashi, Yuki Mitsufuji
Title: Studies for : A Human-AI Co-Creative Sound Artwork Using a Real-time Multi-channel Sound Generation Model
Abstract:
This paper explores the integration of AI technologies into the artistic workflow through the creation of Studies for, a generative sound installation developed in collaboration with sound artist Evala (https://www.ntticc.or.jp/en/archive/works/studies-for/). The installation employs SpecMaskGIT, a lightweight yet high-quality sound generation AI model, to generate and playback eight-channel sound in real-time, creating an immersive auditory experience over the course of a three-month exhibition. The work is grounded in the concept of a "new form of archive," which aims to preserve the artistic style of an artist while expanding beyond artists' past artworks by continued generation of new sound elements. This speculative approach to archival preservation is facilitated by training the AI model on a dataset consisting of over 200 hours of Evala's past sound artworks. By addressing key requirements in the co-creation of art using AI, this study highlights the value of the following aspects: (1) the necessity of integrating artist feedback, (2) datasets derived from an artist's past works, and (3) ensuring the inclusion of unexpected, novel outputs. In Studies for, the model was designed to reflect the artist's artistic identity while generating new, previously unheard sounds, making it a fitting realization of the concept of "a new form of archive." We propose a Human-AI co-creation framework for effectively incorporating sound generation AI models into the sound art creation process and suggest new possibilities for creating and archiving sound art that extend an artist's work beyond their physical existence. Demo page: https://sony.github.io/studies-for/

Authors:Junsheng Zhou, Xingyu Shi, Haichuan Song, Yi Fang, Yu-Shen Liu, Zhizhong Han
Title: U-CAN: Unsupervised Point Cloud Denoising with Consistency-Aware Noise2Noise Matching
Abstract:
Point clouds captured by scanning sensors are often perturbed by noise, which have a highly negative impact on downstream tasks (e.g. surface reconstruction and shape understanding). Previous works mostly focus on training neural networks with noisy-clean point cloud pairs for learning denoising priors, which requires extensively manual efforts. In this work, we introduce U-CAN, an Unsupervised framework for point cloud denoising with Consistency-Aware Noise2Noise matching. Specifically, we leverage a neural network to infer a multi-step denoising path for each point of a shape or scene with a noise to noise matching scheme. We achieve this by a novel loss which enables statistical reasoning on multiple noisy point cloud observations. We further introduce a novel constraint on the denoised geometry consistency for learning consistency-aware denoising patterns. We justify that the proposed constraint is a general term which is not limited to 3D domain and can also contribute to the area of 2D image denoising. Our evaluations under the widely used benchmarks in point cloud denoising, upsampling and image denoising show significant improvement over the state-of-the-art unsupervised methods, where U-CAN also produces comparable results with the supervised methods.

Authors:Ana M. Rodriguez, Jaime Acosta, Anantaa Kotal, Aritran Piplai
Title: AgentCyTE: Leveraging Agentic AI to Generate Cybersecurity Training & Experimentation Scenarios
Abstract:
Designing realistic and adaptive networked threat scenarios remains a core challenge in cybersecurity research and training, still requiring substantial manual effort. While large language models (LLMs) show promise for automated synthesis, unconstrained generation often yields configurations that fail validation or execution. We present AgentCyTE, a framework integrating LLM-based reasoning with deterministic, schema-constrained network emulation to generate and refine executable threat environments. Through an agentic feedback loop, AgentCyTE observes scenario outcomes, validates correctness, and iteratively enhances realism and consistency. This hybrid approach preserves LLM flexibility while enforcing structural validity, enabling scalable, data-driven experimentation and reliable scenario generation for threat modeling and adaptive cybersecurity training. Our framework can be accessed at: https://github.com/AnantaaKotal/AgentCyTE

Authors:Yingjie Gao, Yanan Zhang, Zhi Cai, Di Huang
Title: Test-Time Adaptive Object Detection with Foundation Model
Abstract:
In recent years, test-time adaptive object detection has attracted increasing attention due to its unique advantages in online domain adaptation, which aligns more closely with real-world application scenarios. However, existing approaches heavily rely on source-derived statistical characteristics while making the strong assumption that the source and target domains share an identical category space. In this paper, we propose the first foundation model-powered test-time adaptive object detection method that eliminates the need for source data entirely and overcomes traditional closed-set limitations. Specifically, we design a Multi-modal Prompt-based Mean-Teacher framework for vision-language detector-driven test-time adaptation, which incorporates text and visual prompt tuning to adapt both language and vision representation spaces on the test data in a parameter-efficient manner. Correspondingly, we propose a Test-time Warm-start strategy tailored for the visual prompts to effectively preserve the representation capability of the vision branch. Furthermore, to guarantee high-quality pseudo-labels in every test batch, we maintain an Instance Dynamic Memory (IDM) module that stores high-quality pseudo-labels from previous test samples, and propose two novel strategies-Memory Enhancement and Memory Hallucination-to leverage IDM's high-quality instances for enhancing original predictions and hallucinating images without available pseudo-labels, respectively. Extensive experiments on cross-corruption and cross-dataset benchmarks demonstrate that our method consistently outperforms previous state-of-the-art methods, and can adapt to arbitrary cross-domain and cross-category target data. Code is available at https://github.com/gaoyingjay/ttaod_foundation.

Authors:Wenhao Zheng, Chenwei Sun, Wenbo Zhang, Jiancheng Lv, Xianggen Liu
Title: Target-Guided Bayesian Flow Networks for Quantitatively Constrained CAD Generation
Abstract:
Deep generative models, such as diffusion models, have shown promising progress in image generation and audio generation via simplified continuity assumptions. However, the development of generative modeling techniques for generating multi-modal data, such as parametric CAD sequences, still lags behind due to the challenges in addressing long-range constraints and parameter sensitivity. In this work, we propose a novel framework for quantitatively constrained CAD generation, termed Target-Guided Bayesian Flow Network (TGBFN). For the first time, TGBFN handles the multi-modality of CAD sequences (i.e., discrete commands and continuous parameters) in a unified continuous and differentiable parameter space rather than in the discrete data space. In addition, TGBFN penetrates the parameter update kernel and introduces a guided Bayesian flow to control the CAD properties. To evaluate TGBFN, we construct a new dataset for quantitatively constrained CAD generation. Extensive comparisons across single-condition and multi-condition constrained generation tasks demonstrate that TGBFN achieves state-of-the-art performance in generating high-fidelity, condition-aware CAD sequences. The code is available at https://github.com/scu-zwh/TGBFN.

Authors:Chao Song, Zhiyuan Liu, Han Huang, Liang Wang, Qiong Wang, Jianyu Shi, Hui Yu, Yihang Zhou, Yang Zhang
Title: EnzyControl: Adding Functional and Substrate-Specific Control for Enzyme Backbone Generation
Abstract:
Designing enzyme backbones with substrate-specific functionality is a critical challenge in computational protein engineering. Current generative models excel in protein design but face limitations in binding data, substrate-specific control, and flexibility for de novo enzyme backbone generation. To address this, we introduce EnzyBind, a dataset with 11,100 experimentally validated enzyme-substrate pairs specifically curated from PDBbind. Building on this, we propose EnzyControl, a method that enables functional and substrate-specific control in enzyme backbone generation. Our approach generates enzyme backbones conditioned on MSA-annotated catalytic sites and their corresponding substrates, which are automatically extracted from curated enzyme-substrate data. At the core of EnzyControl is EnzyAdapter, a lightweight, modular component integrated into a pretrained motif-scaffolding model, allowing it to become substrate-aware. A two-stage training paradigm further refines the model's ability to generate accurate and functional enzyme structures. Experiments show that our EnzyControl achieves the best performance across structural and functional metrics on EnzyBind and EnzyBench benchmarks, with particularly notable improvements of 13\% in designability and 13\% in catalytic efficiency compared to the baseline models. The code is released at https://github.com/Vecteur-libre/EnzyControl.

Authors:Xiyu Zhang, Chong Bao, Yipeng Chen, Hongjia Zhai, Yitong Dong, Hujun Bao, Zhaopeng Cui, Guofeng Zhang
Title: AtlasGS: Atlanta-world Guided Surface Reconstruction with Implicit Structured Gaussians
Abstract:
3D reconstruction of indoor and urban environments is a prominent research topic with various downstream applications. However, existing geometric priors for addressing low-texture regions in indoor and urban settings often lack global consistency. Moreover, Gaussian Splatting and implicit SDF fields often suffer from discontinuities or exhibit computational inefficiencies, resulting in a loss of detail. To address these issues, we propose an Atlanta-world guided implicit-structured Gaussian Splatting that achieves smooth indoor and urban scene reconstruction while preserving high-frequency details and rendering efficiency. By leveraging the Atlanta-world model, we ensure the accurate surface reconstruction for low-texture regions, while the proposed novel implicit-structured GS representations provide smoothness without sacrificing efficiency and high-frequency details. Specifically, we propose a semantic GS representation to predict the probability of all semantic regions and deploy a structure plane regularization with learnable plane indicators for global accurate surface reconstruction. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in both indoor and urban scenes, delivering superior surface reconstruction quality.

Authors:Chanhyeong Yang, Taehoon Song, Jihwan Park, Hyunwoo J. Kim
Title: Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI Detection
Abstract:
Zero-shot Human-Object Interaction detection aims to localize humans and objects in an image and recognize their interaction, even when specific verb-object pairs are unseen during training. Recent works have shown promising results using prompt learning with pretrained vision-language models such as CLIP, which align natural language prompts with visual features in a shared embedding space. However, existing approaches still fail to handle the visual complexity of interaction, including (1) intra-class visual diversity, where instances of the same verb appear in diverse poses and contexts, and (2) inter-class visual entanglement, where distinct verbs yield visually similar patterns. To address these challenges, we propose VDRP, a framework for Visual Diversity and Region-aware Prompt learning. First, we introduce a visual diversity-aware prompt learning strategy that injects group-wise visual variance into the context embedding. We further apply Gaussian perturbation to encourage the prompts to capture diverse visual variations of a verb. Second, we retrieve region-specific concepts from the human, object, and union regions. These are used to augment the diversity-aware prompt embeddings, yielding region-aware prompts that enhance verb-level discrimination. Experiments on the HICO-DET benchmark demonstrate that our method achieves state-of-the-art performance under four zero-shot evaluation settings, effectively addressing both intra-class diversity and inter-class visual entanglement. Code is available at https://github.com/mlvlab/VDRP.

Authors:Weijia Zhang, Zijia Liu, Haoru Li, Haoqi Chen, Jiaxuan You
Title: SeeingEye: Agentic Information Flow Unlocks Multimodal Reasoning In Text-only LLMs
Abstract:
Recent advances in text-only large language models (LLMs), such as DeepSeek-R1, demonstrate remarkable reasoning ability. However, these models remain fragile or entirely incapable when extended to multi-modal tasks. Existing approaches largely rely on single-form captions, which lack diversity and often fail to adapt across different types of Visual Question Answering (VQA) benchmarks. As a result, they provide no principled or efficient channel for transmitting fine-grained visual information. We introduce Seeing Eye, a modular framework that unlocks multimodal reasoning in text-only LLMs through an agent-based small VLM translator. This translator acts as a perception agent: it can invoke specialized tools (e.g., OCR and crop) and iteratively distill multimodal inputs into structured intermediate representations (SIRs) tailored to the question. These SIRs are then passed to the text-only LLM, which serves as a reasoning agent. Crucially, the translator and reasoner engage in multi-round feedback and interaction, enabling the extraction of targeted visual details and yielding more confident answers. Experiments on knowledge-intensive VQA benchmarks, including MMMU and MIA-Bench, demonstrate that Seeing Eye not only reduces inference cost but also surpasses much larger end-to-end VLMs. For example, an instantiation combining a 3B-parameter vision translator with an 8B-parameter language reasoner outperforms a monolithic 32B VLM on challenging knowledge-based questions. Our results highlight that decoupling perception from reasoning via agent information flow offers a scalable and plug-and-play pathway to multimodal reasoning, allowing strong text-only LLMs to fully leverage their reasoning capabilities. Code is available at: https://github.com/ulab-uiuc/SeeingEye

Authors:Peilin Tan, Liang Xie, Churan Zhi, Dian Tu, Chuanqi Shi
Title: H3M-SSMoEs: Hypergraph-based Multimodal Learning with LLM Reasoning and Style-Structured Mixture of Experts
Abstract:
Stock movement prediction remains fundamentally challenging due to complex temporal dependencies, heterogeneous modalities, and dynamically evolving inter-stock relationships. Existing approaches often fail to unify structural, semantic, and regime-adaptive modeling within a scalable framework. This work introduces H3M-SSMoEs, a novel Hypergraph-based MultiModal architecture with LLM reasoning and Style-Structured Mixture of Experts, integrating three key innovations: (1) a Multi-Context Multimodal Hypergraph that hierarchically captures fine-grained spatiotemporal dynamics via a Local Context Hypergraph (LCH) and persistent inter-stock dependencies through a Global Context Hypergraph (GCH), employing shared cross-modal hyperedges and Jensen-Shannon Divergence weighting mechanism for adaptive relational learning and cross-modal alignment; (2) a LLM-enhanced reasoning module, which leverages a frozen large language model with lightweight adapters to semantically fuse and align quantitative and textual modalities, enriching representations with domain-specific financial knowledge; and (3) a Style-Structured Mixture of Experts (SSMoEs) that combines shared market experts and industry-specialized experts, each parameterized by learnable style vectors enabling regime-aware specialization under sparse activation. Extensive experiments on three major stock markets demonstrate that H3M-SSMoEs surpasses state-of-the-art methods in both superior predictive accuracy and investment performance, while exhibiting effective risk control. Datasets, source code, and model weights are available at our GitHub repository: https://github.com/PeilinTime/H3M-SSMoEs.

Authors:Xiang liu, Zhaoxiang Liu, Huan Hu, Zipeng Wang, Ping Chen, Zezhou Chen, Kai Wang, Shiguo Lian
Title: PSTF-AttControl: Per-Subject-Tuning-Free Personalized Image Generation with Controllable Face Attributes
Abstract:
Recent advancements in personalized image generation have significantly improved facial identity preservation, particularly in fields such as entertainment and social media. However, existing methods still struggle to achieve precise control over facial attributes in a per-subject-tuning-free (PSTF) way. Tuning-based techniques like PreciseControl have shown promise by providing fine-grained control over facial features, but they often require extensive technical expertise and additional training data, limiting their accessibility. In contrast, PSTF approaches simplify the process by enabling image generation from a single facial input, but they lack precise control over facial attributes. In this paper, we introduce a novel, PSTF method that enables both precise control over facial attributes and high-fidelity preservation of facial identity. Our approach utilizes a face recognition model to extract facial identity features, which are then mapped into the $W^+$ latent space of StyleGAN2 using the e4e encoder. We further enhance the model with a Triplet-Decoupled Cross-Attention module, which integrates facial identity, attribute features, and text embeddings into the UNet architecture, ensuring clean separation of identity and attribute information. Trained on the FFHQ dataset, our method allows for the generation of personalized images with fine-grained control over facial attributes, while without requiring additional fine-tuning or training data for individual identities. We demonstrate that our approach successfully balances personalization with precise facial attribute control, offering a more efficient and user-friendly solution for high-quality, adaptable facial image synthesis. The code is publicly available at https://github.com/UnicomAI/PSTF-AttControl.

Authors:Chi Zhao, Jing Liu, Elena Parilina
Title: Strategic inputs: feature selection from game-theoretic perspective
Abstract:
The exponential growth of data volumes has led to escalating computational costs in machine learning model training. However, many features fail to contribute positively to model performance while consuming substantial computational resources. This paper presents an end-to-end feature selection framework for tabular data based on game theory. We formulate feature selection procedure based on a cooperative game where features are modeled as players, and their importance is determined through the evaluation of synergistic interactions and marginal contributions. The proposed framework comprises four core components: sample selection, game-theoretic feature importance evaluation, redundant feature elimination, and optimized model training. Experimental results demonstrate that the proposed method achieves substantial computation reduction while preserving predictive performance, thereby offering an efficient solution of the computational challenges of large-scale machine learning. The source code is available at https://github.com/vectorsss/strategy_inputs.

Authors:Yinhan He, Wendy Zheng, Yaochen Zhu, Zaiyi Zheng, Lin Su, Sriram Vasudevan, Qi Guo, Liangjie Hong, Jundong Li
Title: SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
Abstract:
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.

Authors:Michal Stary, Julien Gaubil, Ayush Tewari, Vincent Sitzmann
Title: Understanding Multi-View Transformers
Abstract:
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .

Authors:Qiucheng Wu, Handong Zhao, Zhixin Shu, Jing Shi, Yang Zhang, Shiyu Chang
Title: VividCam: Learning Unconventional Camera Motions from Virtual Synthetic Videos
Abstract:
Although recent text-to-video generative models are getting more capable of following external camera controls, imposed by either text descriptions or camera trajectories, they still struggle to generalize to unconventional camera motions, which is crucial in creating truly original and artistic videos. The challenge lies in the difficulty of finding sufficient training videos with the intended uncommon camera motions. To address this challenge, we propose VividCam, a training paradigm that enables diffusion models to learn complex camera motions from synthetic videos, releasing the reliance on collecting realistic training videos. VividCam incorporates multiple disentanglement strategies that isolates camera motion learning from synthetic appearance artifacts, ensuring more robust motion representation and mitigating domain shift. We demonstrate that our design synthesizes a wide range of precisely controlled and complex camera motions using surprisingly simple synthetic data. Notably, this synthetic data often consists of basic geometries within a low-poly 3D scene and can be efficiently rendered by engines like Unity. Our video results can be found in https://wuqiuche.github.io/VividCamDemoPage/ .

Authors:Alexander Martin, William Walden, Reno Kriz, Dengjia Zhang, Kate Sanders, Eugene Yang, Chihsheng Jin, Benjamin Van Durme
Title: Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
Abstract:
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.

Authors:Mingyu Huang, Shasha Zhou, Ke Li
Title: Augmenting Biological Fitness Prediction Benchmarks with Landscapes Features from GraphFLA
Abstract:
Machine learning models increasingly map biological sequence-fitness landscapes to predict mutational effects. Effective evaluation of these models requires benchmarks curated from empirical data. Despite their impressive scales, existing benchmarks lack topographical information regarding the underlying fitness landscapes, which hampers interpretation and comparison of model performance beyond averaged scores. Here, we introduce GraphFLA, a Python framework that constructs and analyzes fitness landscapes from mutagensis data in diverse modalities (e.g., DNA, RNA, protein, and beyond) with up to millions of mutants. GraphFLA calculates 20 biologically relevant features that characterize 4 fundamental aspects of landscape topography. By applying GraphFLA to over 5,300 landscapes from ProteinGym, RNAGym, and CIS-BP, we demonstrate its utility in interpreting and comparing the performance of dozens of fitness prediction models, highlighting factors influencing model accuracy and respective advantages of different models. In addition, we release 155 combinatorially complete empirical fitness landscapes, encompassing over 2.2 million sequences across various modalities. All the codes and datasets are available at https://github.com/COLA-Laboratory/GraphFLA.

Authors:Clément Bénard
Title: Tree Ensemble Explainability through the Hoeffding Functional Decomposition and TreeHFD Algorithm
Abstract:
Tree ensembles have demonstrated state-of-the-art predictive performance across a wide range of problems involving tabular data. Nevertheless, the black-box nature of tree ensembles is a strong limitation, especially for applications with critical decisions at stake. The Hoeffding or ANOVA functional decomposition is a powerful explainability method, as it breaks down black-box models into a unique sum of lower-dimensional functions, provided that input variables are independent. In standard learning settings, input variables are often dependent, and the Hoeffding decomposition is generalized through hierarchical orthogonality constraints. Such generalization leads to unique and sparse decompositions with well-defined main effects and interactions. However, the practical estimation of this decomposition from a data sample is still an open problem. Therefore, we introduce the TreeHFD algorithm to estimate the Hoeffding decomposition of a tree ensemble from a data sample. We show the convergence of TreeHFD, along with the main properties of orthogonality, sparsity, and causal variable selection. The high performance of TreeHFD is demonstrated through experiments on both simulated and real data, using our treehfd Python package (https://github.com/ThalesGroup/treehfd). Besides, we empirically show that the widely used TreeSHAP method, based on Shapley values, is strongly connected to the Hoeffding decomposition.

Authors:Milad Yazdani, Mahdi Mostajabdaveh, Zirui Zhou, Ying Xiong
Title: MASPRM: Multi-Agent System Process Reward Model
Abstract:
Practical deployment of Multi-Agent Systems (MAS) demands strong test-time performance, motivating methods that guide inference-time search and selectively spend compute to improve quality. We present the Multi-Agent System Process Reward Model (MASPRM). It assigns per-action, per-agent values to partial inter-agent transcripts and acts as an inference-time controller. MASPRM is trained from multi-agent Monte Carlo Tree Search (MCTS) rollouts without requiring step-level human annotations, by propagating returns to local targets. At inference, MASPRM guides step-level beam search and MCTS, focusing computation on promising branches and pruning early. On GSM8K and MATH, MASPRM-guided decoding with an outcome reward model (ORM) applied to the final answer, improves exact match (EM) over a single straight-through MAS pass by $+30.7$ and $+22.9$ points, respectively. A MASPRM trained on GSM8K transfers zero-shot to MATH without retraining, adding $8.4$ EM points at the same budget. MASPRM is a plug-in value model that estimates per-agent progress and complements verifier-style decoders, enabling more reliable, compute-aware multi-agent reasoning. Code: https://github.com/milad1378yz/MASPRM

Authors:Evgeny Ukhanov
Title: Formal Verification of a Token Sale Launchpad: A Compositional Approach in Dafny
Abstract:
The proliferation of decentralized financial (DeFi) systems and smart contracts has underscored the critical need for software correctness. Bugs in such systems can lead to catastrophic financial losses. Formal verification offers a path to achieving mathematical certainty about software behavior. This paper presents the formal verification of the core logic for a token sale launchpad, implemented and proven correct using the Dafny programming language and verification system. We detail a compositional, bottom-up verification strategy, beginning with the proof of fundamental non-linear integer arithmetic properties, and building upon them to verify complex business logic, including asset conversion, time-based discounts, and capped-sale refund mechanics. The principal contributions are the formal proofs of critical safety and lifecycle properties. Most notably, we prove that refunds in a capped sale can never exceed the user's original deposit amount, and that the precision loss in round-trip financial calculations is strictly bounded. Furthermore, we verify the complete lifecycle logic, including user withdrawals under various sale mechanics and the correctness of post-sale token allocation, vesting, and claiming. This work serves as a comprehensive case study in applying rigorous verification techniques to build high-assurance financial software.

Authors:Gousia Habib, Aniket Bhardwaj, Ritvik Sharma, Shoeib Amin Banday, Ishfaq Ahmad Malik
Title: CFL-SparseMed: Communication-Efficient Federated Learning for Medical Imaging with Top-k Sparse Updates
Abstract:
Secure and reliable medical image classification is crucial for effective patient treatment, but centralized models face challenges due to data and privacy concerns. Federated Learning (FL) enables privacy-preserving collaborations but struggles with heterogeneous, non-IID data and high communication costs, especially in large networks. We propose \textbf{CFL-SparseMed}, an FL approach that uses Top-k Sparsification to reduce communication overhead by transmitting only the top k gradients. This unified solution effectively addresses data heterogeneity while maintaining model accuracy. It enhances FL efficiency, preserves privacy, and improves diagnostic accuracy and patient care in non-IID medical imaging settings. The reproducibility source code is available on \href{https://github.com/Aniket2241/APK_contruct}{Github}.

Authors:Tianheng Ling, Chao Qian, Peter Zdankin, Torben Weis, Gregor Schiele
Title: StrikeWatch: Wrist-worn Gait Recognition with Compact Time-series Models on Low-power FPGAs
Abstract:
Running offers substantial health benefits, but improper gait patterns can lead to injuries, particularly without expert feedback. While prior gait analysis systems based on cameras, insoles, or body-mounted sensors have demonstrated effectiveness, they are often bulky and limited to offline, post-run analysis. Wrist-worn wearables offer a more practical and non-intrusive alternative, yet enabling real-time gait recognition on such devices remains challenging due to noisy Inertial Measurement Unit (IMU) signals, limited computing resources, and dependence on cloud connectivity. This paper introduces StrikeWatch, a compact wrist-worn system that performs entirely on-device, real-time gait recognition using IMU signals. As a case study, we target the detection of heel versus forefoot strikes to enable runners to self-correct harmful gait patterns through visual and auditory feedback during running. We propose four compact DL architectures (1D-CNN, 1D-SepCNN, LSTM, and Transformer) and optimize them for energy-efficient inference on two representative embedded Field-Programmable Gate Arrays (FPGAs): the AMD Spartan-7 XC7S15 and the Lattice iCE40UP5K. Using our custom-built hardware prototype, we collect a labeled dataset from outdoor running sessions and evaluate all models via a fully automated deployment pipeline. Our results reveal clear trade-offs between model complexity and hardware efficiency. Evaluated across 12 participants, 6-bit quantized 1D-SepCNN achieves the highest average F1 score of 0.847 while consuming just 0.350 μJ per inference with a latency of 0.140 ms on the iCE40UP5K running at 20 MHz. This configuration supports up to 13.6 days of continuous inference on a 320 mAh battery. All datasets and code are available in the GitHub repository https://github.com/tianheng-ling/StrikeWatch.

Authors:Chonghyuk Song, Michal Stary, Boyuan Chen, George Kopanas, Vincent Sitzmann
Title: Generative View Stitching
Abstract:
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersvärd's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.

Authors:Haoge Deng, Ting Pan, Fan Zhang, Yang Liu, Zhuoyan Luo, Yufeng Cui, Wenxuan Wang, Chunhua Shen, Shiguang Shan, Zhaoxiang Zhang, Xinlong Wang
Title: Uniform Discrete Diffusion with Metric Path for Video Generation
Abstract:
Continuous-space video generation has advanced rapidly, while discrete approaches lag behind due to error accumulation and long-context inconsistency. In this work, we revisit discrete generative modeling and present Uniform discRete diffuSion with metric pAth (URSA), a simple yet powerful framework that bridges the gap with continuous approaches for the scalable video generation. At its core, URSA formulates the video generation task as an iterative global refinement of discrete spatiotemporal tokens. It integrates two key designs: a Linearized Metric Path and a Resolution-dependent Timestep Shifting mechanism. These designs enable URSA to scale efficiently to high-resolution image synthesis and long-duration video generation, while requiring significantly fewer inference steps. Additionally, we introduce an asynchronous temporal fine-tuning strategy that unifies versatile tasks within a single model, including interpolation and image-to-video generation. Extensive experiments on challenging video and image generation benchmarks demonstrate that URSA consistently outperforms existing discrete methods and achieves performance comparable to state-of-the-art continuous diffusion methods. Code and models are available at https://github.com/baaivision/URSA

Authors:Wei Shen, Jiawei Zhang, Minhui Huang, Cong Shen
Title: A Single-Loop First-Order Algorithm for Linearly Constrained Bilevel Optimization
Abstract:
We study bilevel optimization problems where the lower-level problems are strongly convex and have coupled linear constraints. To overcome the potential non-smoothness of the hyper-objective and the computational challenges associated with the Hessian matrix, we utilize penalty and augmented Lagrangian methods to reformulate the original problem as a single-level one. Especially, we establish a strong theoretical connection between the reformulated function and the original hyper-objective by characterizing the closeness of their values and derivatives. Based on this reformulation, we propose a single-loop, first-order algorithm for linearly constrained bilevel optimization (SFLCB). We provide rigorous analyses of its non-asymptotic convergence rates, showing an improvement over prior double-loop algorithms -- form $O(ε^{-3}\log(ε^{-1}))$ to $O(ε^{-3})$. The experiments corroborate our theoretical findings and demonstrate the practical efficiency of the proposed SFLCB algorithm. Simulation code is provided at https://github.com/ShenGroup/SFLCB.

Authors:Tongyi DeepResearch Team, Baixuan Li, Bo Zhang, Dingchu Zhang, Fei Huang, Guangyu Li, Guoxin Chen, Huifeng Yin, Jialong Wu, Jingren Zhou, Kuan Li, Liangcai Su, Litu Ou, Liwen Zhang, Pengjun Xie, Rui Ye, Wenbiao Yin, Xinmiao Yu, Xinyu Wang, Xixi Wu, Xuanzhong Chen, Yida Zhao, Zhen Zhang, Zhengwei Tao, Zhongwang Zhang, Zile Qiao, Chenxi Wang, Donglei Yu, Gang Fu, Haiyang Shen, Jiayin Yang, Jun Lin, Junkai Zhang, Kui Zeng, Li Yang, Hailong Yin, Maojia Song, Ming Yan, Peng Xia, Qian Xiao, Rui Min, Ruixue Ding, Runnan Fang, Shaowei Chen, Shen Huang, Shihang Wang, Shihao Cai, Weizhou Shen, Xiaobin Wang, Xin Guan, Xinyu Geng, Yingcheng Shi, Yuning Wu, Zhuo Chen, Zijian Li, Yong Jiang
Title: Tongyi DeepResearch Technical Report
Abstract:
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.

Authors:Xuanzhong Chen, Zile Qiao, Guoxin Chen, Liangcai Su, Zhen Zhang, Xinyu Wang, Pengjun Xie, Fei Huang, Jingren Zhou, Yong Jiang
Title: AgentFrontier: Expanding the Capability Frontier of LLM Agents with ZPD-Guided Data Synthesis
Abstract:
Training large language model agents on tasks at the frontier of their capabilities is key to unlocking advanced reasoning. We introduce a data synthesis approach inspired by the educational theory of the Zone of Proximal Development (ZPD), which defines this frontier as tasks an LLM cannot solve alone but can master with guidance. To operationalize this, we present the AgentFrontier Engine, an automated pipeline that synthesizes high-quality, multidisciplinary data situated precisely within the LLM's ZPD. This engine supports both continued pre-training with knowledge-intensive data and targeted post-training on complex reasoning tasks. From the same framework, we derive the ZPD Exam, a dynamic and automated benchmark designed to evaluate agent capabilities on these frontier tasks. We train AgentFrontier-30B-A3B model on our synthesized data, which achieves state-of-the-art results on demanding benchmarks like Humanity's Last Exam, even surpassing some leading proprietary agents. Our work demonstrates that a ZPD-guided approach to data synthesis offers a scalable and effective path toward building more capable LLM agents.

Authors:Zihan Liu, Zhikang Niu, Qiuyang Xiao, Zhisheng Zheng, Ruoqi Yuan, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Jianze Liang, Xie Chen, Leilei Sun, Dahua Lin, Jiaqi Wang
Title: STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Abstract:
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.

Authors:Yun Zhang, Zhaoliang Zheng, Johnson Liu, Zhiyu Huang, Zewei Zhou, Zonglin Meng, Tianhui Cai, Jiaqi Ma
Title: MIC-BEV: Multi-Infrastructure Camera Bird's-Eye-View Transformer with Relation-Aware Fusion for 3D Object Detection
Abstract:
Infrastructure-based perception plays a crucial role in intelligent transportation systems, offering global situational awareness and enabling cooperative autonomy. However, existing camera-based detection models often underperform in such scenarios due to challenges such as multi-view infrastructure setup, diverse camera configurations, degraded visual inputs, and various road layouts. We introduce MIC-BEV, a Transformer-based bird's-eye-view (BEV) perception framework for infrastructure-based multi-camera 3D object detection. MIC-BEV flexibly supports a variable number of cameras with heterogeneous intrinsic and extrinsic parameters and demonstrates strong robustness under sensor degradation. The proposed graph-enhanced fusion module in MIC-BEV integrates multi-view image features into the BEV space by exploiting geometric relationships between cameras and BEV cells alongside latent visual cues. To support training and evaluation, we introduce M2I, a synthetic dataset for infrastructure-based object detection, featuring diverse camera configurations, road layouts, and environmental conditions. Extensive experiments on both M2I and the real-world dataset RoScenes demonstrate that MIC-BEV achieves state-of-the-art performance in 3D object detection. It also remains robust under challenging conditions, including extreme weather and sensor degradation. These results highlight the potential of MIC-BEV for real-world deployment. The dataset and source code are available at: https://github.com/HandsomeYun/MIC-BEV.

Authors:Mingyi Deng, Lijun Huang, Yani Fan, Jiayi Zhang, Fashen Ren, Jinyi Bai, Fuzhen Yang, Dayi Miao, Zhaoyang Yu, Yifan Wu, Yanfei Zhang, Fengwei Teng, Yingjia Wan, Song Hu, Yude Li, Xin Jin, Conghao Hu, Haoyu Li, Qirui Fu, Tai Zhong, Xinyu Wang, Xiangru Tang, Nan Tang, Chenglin Wu, Yuyu Luo
Title: InteractComp: Evaluating Search Agents With Ambiguous Queries
Abstract:
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.

Authors:Mia Kan, Yilin Liu, Niloy Mitra
Title: SAGE: Structure-Aware Generative Video Transitions between Diverse Clips
Abstract:
Video transitions aim to synthesize intermediate frames between two clips, but naive approaches such as linear blending introduce artifacts that limit professional use or break temporal coherence. Traditional techniques (cross-fades, morphing, frame interpolation) and recent generative inbetweening methods can produce high-quality plausible intermediates, but they struggle with bridging diverse clips involving large temporal gaps or significant semantic differences, leaving a gap for content-aware and visually coherent transitions. We address this challenge by drawing on artistic workflows, distilling strategies such as aligning silhouettes and interpolating salient features to preserve structure and perceptual continuity. Building on this, we propose SAGE (Structure-Aware Generative vidEo transitions) as a zeroshot approach that combines structural guidance, provided via line maps and motion flow, with generative synthesis, enabling smooth, semantically consistent transitions without fine-tuning. Extensive experiments and comparison with current alternatives, namely [FILM, TVG, DiffMorpher, VACE, GI], demonstrate that SAGE outperforms both classical and generative baselines on quantitative metrics and user studies for producing transitions between diverse clips. Code to be released on acceptance.

Authors:Xuanpu Zhang, Xuesong Niu, Ruidong Chen, Dan Song, Jianhao Zeng, Penghui Du, Haoxiang Cao, Kai Wu, An-an Liu
Title: Group Relative Attention Guidance for Image Editing
Abstract:
Recently, image editing based on Diffusion-in-Transformer models has undergone rapid development. However, existing editing methods often lack effective control over the degree of editing, limiting their ability to achieve more customized results. To address this limitation, we investigate the MM-Attention mechanism within the DiT model and observe that the Query and Key tokens share a bias vector that is only layer-dependent. We interpret this bias as representing the model's inherent editing behavior, while the delta between each token and its corresponding bias encodes the content-specific editing signals. Based on this insight, we propose Group Relative Attention Guidance, a simple yet effective method that reweights the delta values of different tokens to modulate the focus of the model on the input image relative to the editing instruction, enabling continuous and fine-grained control over editing intensity without any tuning. Extensive experiments conducted on existing image editing frameworks demonstrate that GRAG can be integrated with as few as four lines of code, consistently enhancing editing quality. Moreover, compared to the commonly used Classifier-Free Guidance, GRAG achieves smoother and more precise control over the degree of editing. Our code will be released at https://github.com/little-misfit/GRAG-Image-Editing.

Authors:Nitin Rai, Daeun, Choi, Nathan S. Boyd, Arnold W. Schumann
Title: Advancing site-specific disease and pest management in precision agriculture: From reasoning-driven foundation models to adaptive, feedback-based learning
Abstract:
Site-specific disease management (SSDM) in crops has advanced rapidly through machine and deep learning (ML and DL) for real-time computer vision. Research evolved from handcrafted feature extraction to large-scale automated feature learning. With foundation models (FMs), crop disease datasets are now processed in fundamentally new ways. Unlike traditional neural networks, FMs integrate visual and textual data, interpret symptoms in text, reason about symptom-management relationships, and support interactive QA for growers and educators. Adaptive and imitation learning in robotics further enables field-based disease management. This review screened approx. 40 articles on FM applications for SSDM, focusing on large-language models (LLMs) and vision-language models (VLMs), and discussing their role in adaptive learning (AL), reinforcement learning (RL), and digital twin frameworks for targeted spraying. Key findings: (a) FMs are gaining traction with surging literature in 2023-24; (b) VLMs outpace LLMs, with a 5-10x increase in publications; (c) RL and AL are still nascent for smart spraying; (d) digital twins with RL can simulate targeted spraying virtually; (e) addressing the sim-to-real gap is critical for real-world deployment; (f) human-robot collaboration remains limited, especially in human-in-the-loop approaches where robots detect early symptoms and humans validate uncertain cases; (g) multi-modal FMs with real-time feedback will drive next-gen SSDM. For updates, resources, and contributions, visit, https://github.com/nitin-dominic/AgriPathogenDatabase, to submit papers, code, or datasets.

Authors:Nicolai Steinke, Daniel Goehring
Title: GroundLoc: Efficient Large-Scale Outdoor LiDAR-Only Localization
Abstract:
In this letter, we introduce GroundLoc, a LiDAR-only localization pipeline designed to localize a mobile robot in large-scale outdoor environments using prior maps. GroundLoc employs a Bird's-Eye View (BEV) image projection focusing on the perceived ground area and utilizes the place recognition network R2D2, or alternatively, the non-learning approach Scale-Invariant Feature Transform (SIFT), to identify and select keypoints for BEV image map registration. Our results demonstrate that GroundLoc outperforms state-of-the-art methods on the SemanticKITTI and HeLiPR datasets across various sensors. In the multi-session localization evaluation, GroundLoc reaches an Average Trajectory Error (ATE) well below 50 cm on all Ouster OS2 128 sequences while meeting online runtime requirements. The system supports various sensor models, as evidenced by evaluations conducted with Velodyne HDL-64E, Ouster OS2 128, Aeva Aeries II, and Livox Avia sensors. The prior maps are stored as 2D raster image maps, which can be created from a single drive and require only 4 MB of storage per square kilometer. The source code is available at https://github.com/dcmlr/groundloc.

Authors:Harsha Kokel, Aamod Khatiwada, Tejaswini Pedapati, Haritha Ananthakrishnan, Oktie Hassanzadeh, Horst Samulowitz, Kavitha Srinivas
Title: Evaluating Joinable Column Discovery Approaches for Context-Aware Search
Abstract:
Joinable Column Discovery is a critical challenge in automating enterprise data analysis. While existing approaches focus on syntactic overlap and semantic similarity, there remains limited understanding of which methods perform best for different data characteristics and how multiple criteria influence discovery effectiveness. We present a comprehensive experimental evaluation of joinable column discovery methods across diverse scenarios. Our study compares syntactic and semantic techniques on seven benchmarks covering relational databases and data lakes. We analyze six key criteria -- unique values, intersection size, join size, reverse join size, value semantics, and metadata semantics -- and examine how combining them through ensemble ranking affects performance. Our analysis reveals differences in method behavior across data contexts and highlights the benefits of integrating multiple criteria for robust join discovery. We provide empirical evidence on when each criterion matters, compare pre-trained embedding models for semantic joins, and offer practical guidelines for selecting suitable methods based on dataset characteristics. Our findings show that metadata and value semantics are crucial for data lakes, size-based criteria play a stronger role in relational databases, and ensemble approaches consistently outperform single-criterion methods.

Authors:Seyoung Song, Nawon Kim, Songeun Chae, Kiwoong Park, Jiho Jin, Haneul Yoo, Kyunghyun Cho, Alice Oh
Title: Open Korean Historical Corpus: A Millennia-Scale Diachronic Collection of Public Domain Texts
Abstract:
The history of the Korean language is characterized by a discrepancy between its spoken and written forms and a pivotal shift from Chinese characters to the Hangul alphabet. However, this linguistic evolution has remained largely unexplored in NLP due to a lack of accessible historical corpora. To address this gap, we introduce the Open Korean Historical Corpus, a large-scale, openly licensed dataset spanning 1,300 years and 6 languages, as well as under-represented writing systems like Korean-style Sinitic (Idu) and Hanja-Hangul mixed script. This corpus contains 18 million documents and 5 billion tokens from 19 sources, ranging from the 7th century to 2025. We leverage this resource to quantitatively analyze major linguistic shifts: (1) Idu usage peaked in the 1860s before declining sharply; (2) the transition from Hanja to Hangul was a rapid transformation starting around 1890; and (3) North Korea's lexical divergence causes modern tokenizers to produce up to 51 times higher out-of-vocabulary rates. This work provides a foundational resource for quantitative diachronic analysis by capturing the history of the Korean language. Moreover, it can serve as a pre-training corpus for large language models, potentially improving their understanding of Sino-Korean vocabulary in modern Hangul as well as archaic writing systems.

Authors:Venkata S Govindarajan, Laura Biester
Title: Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written
Abstract:
Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton

Authors:Huanyu Zhang, Wenshan Wu, Chengzu Li, Ning Shang, Yan Xia, Yangyu Huang, Yifan Zhang, Li Dong, Zhang Zhang, Liang Wang, Tieniu Tan, Furu Wei
Title: Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.

Authors:Charles Javerliat, Pierre Raimbaud, Guillaume Lavoué
Title: Kineo: Calibration-Free Metric Motion Capture From Sparse RGB Cameras
Abstract:
Markerless multiview motion capture is often constrained by the need for precise camera calibration, limiting accessibility for non-experts and in-the-wild captures. Existing calibration-free approaches mitigate this requirement but suffer from high computational cost and reduced reconstruction accuracy. We present Kineo, a fully automatic, calibration-free pipeline for markerless motion capture from videos captured by unsynchronized, uncalibrated, consumer-grade RGB cameras. Kineo leverages 2D keypoints from off-the-shelf detectors to simultaneously calibrate cameras, including Brown-Conrady distortion coefficients, and reconstruct 3D keypoints and dense scene point maps at metric scale. A confidence-driven spatio-temporal keypoint sampling strategy, combined with graph-based global optimization, ensures robust calibration at a fixed computational cost independent of sequence length. We further introduce a pairwise reprojection consensus score to quantify 3D reconstruction reliability for downstream tasks. Evaluations on EgoHumans and Human3.6M demonstrate substantial improvements over prior calibration-free methods. Compared to previous state-of-the-art approaches, Kineo reduces camera translation error by approximately 83-85%, camera angular error by 86-92%, and world mean-per-joint error (W-MPJPE) by 83-91%. Kineo is also efficient in real-world scenarios, processing multi-view sequences faster than their duration in specific configuration (e.g., 36min to process 1h20min of footage). The full pipeline and evaluation code are openly released to promote reproducibility and practical adoption at https://liris-xr.github.io/kineo/.

Authors:Toan Van Nguyen, Rasmus G. K. Christiansen, Dirk Kraft, Leon Bodenhagen
Title: A Hybrid Approach for Visual Multi-Object Tracking
Abstract:
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2

Authors:Toan Van Nguyen, Rasmus G. K. Christiansen, Dirk Kraft, Leon Bodenhagen
Title: GenTrack: A New Generation of Multi-Object Tracking
Abstract:
This paper introduces a novel multi-object tracking (MOT) method, dubbed GenTrack, whose main contributions include: a hybrid tracking approach employing both stochastic and deterministic manners to robustly handle unknown and time-varying numbers of targets, particularly in maintaining target identity (ID) consistency and managing nonlinear dynamics, leveraging particle swarm optimization (PSO) with some proposed fitness measures to guide stochastic particles toward their target distribution modes, enabling effective tracking even with weak and noisy object detectors, integration of social interactions among targets to enhance PSO-guided particles as well as improve continuous updates of both strong (matched) and weak (unmatched) tracks, thereby reducing ID switches and track loss, especially during occlusions, a GenTrack-based redefined visual MOT baseline incorporating a comprehensive state and observation model based on space consistency, appearance, detection confidence, track penalties, and social scores for systematic and efficient target updates, and the first-ever publicly available source-code reference implementation with minimal dependencies, featuring three variants, including GenTrack Basic, PSO, and PSO-Social, facilitating flexible reimplementation. Experimental results have shown that GenTrack provides superior performance on standard benchmarks and real-world scenarios compared to state-of-the-art trackers, with integrated implementations of baselines for fair comparison. Potential directions for future work are also discussed. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack

Authors:Zhuangfan Huang, Xiaosong Li, Gao Wang, Tao Ye, Haishu Tan, Huafeng Li
Title: A Luminance-Aware Multi-Scale Network for Polarization Image Fusion with a Multi-Scene Dataset
Abstract:
Polarization image fusion combines S0 and DOLP images to reveal surface roughness and material properties through complementary texture features, which has important applications in camouflage recognition, tissue pathology analysis, surface defect detection and other fields. To intergrate coL-Splementary information from different polarized images in complex luminance environment, we propose a luminance-aware multi-scale network (MLSN). In the encoder stage, we propose a multi-scale spatial weight matrix through a brightness-branch , which dynamically weighted inject the luminance into the feature maps, solving the problem of inherent contrast difference in polarized images. The global-local feature fusion mechanism is designed at the bottleneck layer to perform windowed self-attention computation, to balance the global context and local details through residual linking in the feature dimension restructuring stage. In the decoder stage, to further improve the adaptability to complex lighting, we propose a Brightness-Enhancement module, establishing the mapping relationship between luminance distribution and texture features, realizing the nonlinear luminance correction of the fusion result. We also present MSP, an 1000 pairs of polarized images that covers 17 types of indoor and outdoor complex lighting scenes. MSP provides four-direction polarization raw maps, solving the scarcity of high-quality datasets in polarization image fusion. Extensive experiment on MSP, PIF and GAND datasets verify that the proposed MLSN outperms the state-of-the-art methods in subjective and objective evaluations, and the MS-SSIM and SD metircs are higher than the average values of other methods by 8.57%, 60.64%, 10.26%, 63.53%, 22.21%, and 54.31%, respectively. The source code and dataset is avalable at https://github.com/1hzf/MLS-UNet.

Authors:Ziyang Zhang, Yifan Gao, Xuenan Xu, Baoxiangli, Wen Wu, Chao Zhang
Title: Bayesian Speech synthesizers Can Learn from Multiple Teachers
Abstract:
Codec-based text-to-speech (TTS) models have recently gained traction for their efficiency and strong performance in voice cloning. However, codec-based TTS faces limitations due to the challenges of pretraining robust speech codecs and the quality degradation introduced by quantization errors. Emerging evidence suggests that continuous-valued generative models can alleviate these issues and serve as a promising alternative. Yet, effectively modelling diverse speech patterns and developing reliable sampling strategies for continuous-valued autoregressive (AR) TTS remains underexplored. In this work, we propose BELLE, Bayesian evidential learning with language modelling for TTS, a novel continuous-valued AR framework that directly predicts mel-spectrograms from textual input. BELLE treats each mel-spectrogram frame as a Gaussian distribution sampled from a learned hyper distribution, enabling principled uncertainty estimation, particularly in scenarios with parallel data (i.e., one text-audio prompt paired with multiple speech samples). To obtain such data, diverse speech samples are synthesized using multiple pre-trained TTS models given the same text-audio prompts, which are distilled into BELLE via Bayesian evidential learning. Experimental results indicate that BELLE demonstrates highly competitive performance compared with the current best open-source TTS models, even though BELLE is trained on a large amount of synthetic data and uses only approximately one-tenth of their training data. Audio samples generated by BELLE are available at https://belletts.github.io/Belle/. The code, checkpoints, and synthetic data will be released after the paper is accepted.

Authors:Yunxuan Jiang, Silan Hu, Xiaoning Wang, Yuanyuan Zhang, Xiangyu Chang
Title: VDSAgents: A PCS-Guided Multi-Agent System for Veridical Data Science Automation
Abstract:
Large language models (LLMs) become increasingly integrated into data science workflows for automated system design. However, these LLM-driven data science systems rely solely on the internal reasoning of LLMs, lacking guidance from scientific and theoretical principles. This limits their trustworthiness and robustness, especially when dealing with noisy and complex real-world datasets. This paper provides VDSAgents, a multi-agent system grounded in the Predictability-Computability-Stability (PCS) principles proposed in the Veridical Data Science (VDS) framework. Guided by PCS principles, the system implements a modular workflow for data cleaning, feature engineering, modeling, and evaluation. Each phase is handled by an elegant agent, incorporating perturbation analysis, unit testing, and model validation to ensure both functionality and scientific auditability. We evaluate VDSAgents on nine datasets with diverse characteristics, comparing it with state-of-the-art end-to-end data science systems, such as AutoKaggle and DataInterpreter, using DeepSeek-V3 and GPT-4o as backends. VDSAgents consistently outperforms the results of AutoKaggle and DataInterpreter, which validates the feasibility of embedding PCS principles into LLM-driven data science automation.

Authors:Zhiheng Xi, Jixuan Huang, Xin Guo, Boyang Hong, Dingwen Yang, Xiaoran Fan, Shuo Li, Zehui Chen, Junjie Ye, Siyu Yuan, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Rui Zheng, Tao Gui, Qi Zhang, Xuanjing Huang
Title: Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Abstract:
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.

Authors:Shangyu Xing, Siyuan Wang, Chenyuan Yang, Xinyu Dai, Xiang Ren
Title: Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.

Authors:Richard Koebe, Noah Saibel, Juan Miguel Lopez Alcaraz, Simon Schäfer, Nils Strodthoff
Title: Towards actionable hypotension prediction -- predicting catecholamine therapy initiation in the intensive care unit
Abstract:
Hypotension in critically ill ICU patients is common and life-threatening. Escalation to catecholamine therapy marks a key management step, with both undertreatment and overtreatment posing risks. Most machine learning (ML) models predict hypotension using fixed MAP thresholds or MAP forecasting, overlooking the clinical decision behind treatment escalation. Predicting catecholamine initiation, the start of vasoactive or inotropic agent administration offers a more clinically actionable target reflecting real decision-making. Using the MIMIC-III database, we modeled catecholamine initiation as a binary event within a 15-minute prediction window. Input features included statistical descriptors from a two-hour sliding MAP context window, along with demographics, biometrics, comorbidities, and ongoing treatments. An Extreme Gradient Boosting (XGBoost) model was trained and interpreted via SHapley Additive exPlanations (SHAP). The model achieved an AUROC of 0.822 (0.813-0.830), outperforming the hypotension baseline (MAP < 65, AUROC 0.686 [0.675-0.699]). SHAP analysis highlighted recent MAP values, MAP trends, and ongoing treatments (e.g., sedatives, electrolytes) as dominant predictors. Subgroup analysis showed higher performance in males, younger patients (<53 years), those with higher BMI (>32), and patients without comorbidities or concurrent medications. Predicting catecholamine initiation based on MAP dynamics, treatment context, and patient characteristics supports the critical decision of when to escalate therapy, shifting focus from threshold-based alarms to actionable decision support. This approach is feasible across a broad ICU cohort under natural event imbalance. Future work should enrich temporal and physiological context, extend label definitions to include therapy escalation, and benchmark against existing hypotension prediction systems.

Authors:Wenhao Wang, Peizhi Niu, Zhao Xu, Zhaoyu Chen, Jian Du, Yaxin Du, Xianghe Pang, Keduan Huang, Yanfeng Wang, Qiang Yan, Siheng Chen
Title: MCP-Flow: Facilitating LLM Agents to Master Real-World, Diverse and Scaling MCP Tools
Abstract:
Large Language Models (LLMs) increasingly rely on external tools to perform complex, realistic tasks, yet their ability to utilize the rapidly expanding Model Contextual Protocol (MCP) ecosystem remains limited. Existing MCP research covers few servers, depends on costly manual curation, and lacks training support, hindering progress toward real-world deployment. To overcome these limitations, we introduce MCP-Flow, an automated web-agent-driven pipeline for large-scale server discovery, data synthesis, and model training. MCP-Flow collects and filters data from 1166 servers and 11536 tools, producing 68733 high-quality instruction-function call pairs and 6439 trajectories, far exceeding prior work in scale and diversity. Extensive experiments demonstrate MCP-Flow's effectiveness in driving superior MCP tool selection, function-call generation, and enhanced agentic task performance. MCP-Flow thus provides a scalable foundation for advancing LLM agents' proficiency in real-world MCP environments. MCP-Flow is publicly available at \href{https://github.com/wwh0411/MCP-Flow}{https://github.com/wwh0411/MCP-Flow}.

Authors:Jiarui Ji, Zehua Zhang, Zhewei Wei, Bin Tong, Guan Wang, Bo Zheng
Title: GRAPHIA: Harnessing Social Graph Data to Enhance LLM-Based Social Simulation
Abstract:
Large language models (LLMs) have shown promise in simulating human-like social behaviors. Social graphs provide high-quality supervision signals that encode both local interactions and global network structure, yet they remain underutilized for LLM training. To address this gap, we propose Graphia, the first general LLM-based social graph simulation framework that leverages graph data as supervision for LLM post-training via reinforcement learning. With GNN-based structural rewards, Graphia trains specialized agents to predict whom to interact with (destination selection) and how to interact (edge generation), followed by designed graph generation pipelines. We evaluate Graphia under two settings: Transductive Dynamic Graph Generation (TDGG), a micro-level task with our proposed node-wise interaction alignment metrics; and Inductive Dynamic Graph Generation (IDGG), a macro-level task with our proposed metrics for aligning emergent network properties. On three real-world networks, Graphia improves micro-level alignment by 6.1% in the composite destination selection score, 12% in edge classification accuracy, and 27.9% in edge content BERTScore over the strongest baseline. For macro-level alignment, it achieves 41.11% higher structural similarity and 32.98% better replication of social phenomena such as power laws and echo chambers. Graphia also supports counterfactual simulation, generating plausible behavioral shifts under platform incentives. Our results show that social graphs can serve as high-quality supervision signals for LLM post-training, closing the gap between agent behaviors and network dynamics for LLM-based simulation. Code is available at https://github.com/Ji-Cather/Graphia.git.

Authors:Zixian Zhang, Takfarinas Saber
Title: MAGNET: A Multi-Graph Attentional Network for Code Clone Detection
Abstract:
Code clone detection is a fundamental task in software engineering that underpins refactoring, debugging, plagiarism detection, and vulnerability analysis. Existing methods often rely on singular representations such as abstract syntax trees (ASTs), control flow graphs (CFGs), and data flow graphs (DFGs), which capture only partial aspects of code semantics. Hybrid approaches have emerged, but their fusion strategies are typically handcrafted and ineffective. In this study, we propose MAGNET, a multi-graph attentional framework that jointly leverages AST, CFG, and DFG representations to capture syntactic and semantic features of source code. MAGNET integrates residual graph neural networks with node-level self-attention to learn both local and long-range dependencies, introduces a gated cross-attention mechanism for fine-grained inter-graph interactions, and employs Set2Set pooling to fuse multi-graph embeddings into unified program-level representations. Extensive experiments on BigCloneBench and Google Code Jam demonstrate that MAGNET achieves state-of-the-art performance with an overall F1 score of 96.5\% and 99.2\% on the two datasets, respectively. Ablation studies confirm the critical contributions of multi-graph fusion and each attentional component. Our code is available at https://github.com/ZixianReid/Multigraph_match

Authors:Ai Jian, Jingqing Ruan, Xing Ma, Dailin Li, QianLin Zhou, Ke Zeng, Xunliang Cai
Title: PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Abstract:
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. While generative reward models (GRMs) offer greater interpretability than traditional scalar RMs, current training paradigms remain limited. Pair-wise methods rely on binary good-versus-bad labels, which cause mismatches for point-wise inference and necessitate complex pairing strategies for effective application in RLHF. On the other hand, point-wise methods require more elaborate absolute labeling with rubric-driven criteria, resulting in poor adaptability and high annotation costs. In this work, we propose the Preference-Aware Task-Adaptive Reward Model (PaTaRM), a unified framework that integrates a preference-aware reward (PAR) mechanism with dynamic rubric adaptation. PaTaRM leverages relative preference information from pairwise data to construct robust point-wise training signals, eliminating the need for explicit point-wise labels. Simultaneously, it employs a task-adaptive rubric system that flexibly generates evaluation criteria for both global task consistency and instance-specific fine-grained reasoning. This design enables efficient, generalizable, and interpretable reward modeling for RLHF. Extensive experiments show that PaTaRM achieves an average relative improvement of 4.7% on RewardBench and RMBench across Qwen3-8B and Qwen3-14B models. Furthermore, PaTaRM boosts downstream RLHF performance, with an average improvement of 13.6% across IFEval and InFoBench benchmarks, confirming its effectiveness and robustness. Our code is available at https://github.com/JaneEyre0530/PaTaRM.

Authors:Waseem Shariff, Timothy Hanley, Maciej Stec, Hossein Javidnia, Peter Corcoran
Title: Benchmarking Microsaccade Recognition with Event Cameras: A Novel Dataset and Evaluation
Abstract:
Microsaccades are small, involuntary eye movements vital for visual perception and neural processing. Traditional microsaccade studies typically use eye trackers or frame-based analysis, which, while precise, are costly and limited in scalability and temporal resolution. Event-based sensing offers a high-speed, low-latency alternative by capturing fine-grained spatiotemporal changes efficiently. This work introduces a pioneering event-based microsaccade dataset to support research on small eye movement dynamics in cognitive computing. Using Blender, we render high-fidelity eye movement scenarios and simulate microsaccades with angular displacements from 0.5 to 2.0 degrees, divided into seven distinct classes. These are converted to event streams using v2e, preserving the natural temporal dynamics of microsaccades, with durations ranging from 0.25 ms to 2.25 ms. We evaluate the dataset using Spiking-VGG11, Spiking-VGG13, and Spiking-VGG16, and propose Spiking-VGG16Flow, an optical-flow-enhanced variant implemented in SpikingJelly. The models achieve around 90 percent average accuracy, successfully classifying microsaccades by angular displacement, independent of event count or duration. These results demonstrate the potential of spiking neural networks for fine motion recognition and establish a benchmark for event-based vision research. The dataset, code, and trained models will be publicly available at https://waseemshariff126.github.io/microsaccades/ .

Authors:Adi Simhi, Jonathan Herzig, Itay Itzhak, Dana Arad, Zorik Gekhman, Roi Reichart, Fazl Barez, Gabriel Stanovsky, Idan Szpektor, Yonatan Belinkov
Title: HACK: Hallucinations Along Certainty and Knowledge Axes
Abstract:
Hallucinations in LLMs present a critical barrier to their reliable usage. Existing research usually categorizes hallucination by their external properties rather than by the LLMs' underlying internal properties. This external focus overlooks that hallucinations may require tailored mitigation strategies based on their underlying mechanism. We propose a framework for categorizing hallucinations along two axes: knowledge and certainty. Since parametric knowledge and certainty may vary across models, our categorization method involves a model-specific dataset construction process that differentiates between those types of hallucinations. Along the knowledge axis, we distinguish between hallucinations caused by a lack of knowledge and those occurring despite the model having the knowledge of the correct response. To validate our framework along the knowledge axis, we apply steering mitigation, which relies on the existence of parametric knowledge to manipulate model activations. This addresses the lack of existing methods to validate knowledge categorization by showing a significant difference between the two hallucination types. We further analyze the distinct knowledge and hallucination patterns between models, showing that different hallucinations do occur despite shared parametric knowledge. Turning to the certainty axis, we identify a particularly concerning subset of hallucinations where models hallucinate with certainty despite having the correct knowledge internally. We introduce a new evaluation metric to measure the effectiveness of mitigation methods on this subset, revealing that while some methods perform well on average, they fail disproportionately on these critical cases. Our findings highlight the importance of considering both knowledge and certainty in hallucination analysis and call for targeted mitigation approaches that consider the hallucination underlying factors.

Authors:Jinhong Deng, Wen Li, Joey Tianyi Zhou, Yang He
Title: SCOPE: Saliency-Coverage Oriented Token Pruning for Efficient Multimodel LLMs
Abstract:
Multimodal Large Language Models (MLLMs) typically process a large number of visual tokens, leading to considerable computational overhead, even though many of these tokens are redundant. Existing visual token pruning methods primarily focus on selecting the most salient tokens based on attention scores, resulting in the semantic incompleteness of the selected tokens. In this paper, we propose a novel visual token pruning strategy, called \textbf{S}aliency-\textbf{C}overage \textbf{O}riented token \textbf{P}runing for \textbf{E}fficient MLLMs (SCOPE), to jointly model both the saliency and coverage of the selected visual tokens to better preserve semantic completeness. Specifically, we introduce a set-coverage for a given set of selected tokens, computed based on the token relationships. We then define a token-coverage gain for each unselected token, quantifying how much additional coverage would be obtained by including it. By integrating the saliency score into the token-coverage gain, we propose our SCOPE score and iteratively select the token with the highest SCOPE score. We conduct extensive experiments on multiple vision-language understanding benchmarks using the LLaVA-1.5 and LLaVA-Next models. Experimental results demonstrate that our method consistently outperforms prior approaches. Our code is available at \href{https://github.com/kinredon/SCOPE}{https://github.com/kinredon/SCOPE}.

Authors:Anshul Kaushal, Kunal Jangid, Vinod K. Kurmi
Title: CLFSeg: A Fuzzy-Logic based Solution for Boundary Clarity and Uncertainty Reduction in Medical Image Segmentation
Abstract:
Accurate polyp and cardiac segmentation for early detection and treatment is essential for the diagnosis and treatment planning of cancer-like diseases. Traditional convolutional neural network (CNN) based models have represented limited generalizability, robustness, and inability to handle uncertainty, which affects the segmentation performance. To solve these problems, this paper introduces CLFSeg, an encoder-decoder based framework that aggregates the Fuzzy-Convolutional (FC) module leveraging convolutional layers and fuzzy logic. This module enhances the segmentation performance by identifying local and global features while minimizing the uncertainty, noise, and ambiguity in boundary regions, ensuring computing efficiency. In order to handle class imbalance problem while focusing on the areas of interest with tiny and boundary regions, binary cross-entropy (BCE) with dice loss is incorporated. Our proposed model exhibits exceptional performance on four publicly available datasets, including CVC-ColonDB, CVC-ClinicDB, EtisLaribPolypDB, and ACDC. Extensive experiments and visual studies show CLFSeg surpasses the existing SOTA performance and focuses on relevant regions of interest in anatomical structures. The proposed CLFSeg improves performance while ensuring computing efficiency, which makes it a potential solution for real-world medical diagnostic scenarios. Project page is available at https://visdomlab.github.io/CLFSeg/

Authors:Aodi Wu, Xubo Luo
Title: Enhancing Vision-Language Models for Autonomous Driving through Task-Specific Prompting and Spatial Reasoning
Abstract:
This technical report presents our solution for the RoboSense Challenge at IROS 2025, which evaluates Vision-Language Models (VLMs) on autonomous driving scene understanding across perception, prediction, planning, and corruption detection tasks. We propose a systematic framework built on four core components. First, a Mixture-of-Prompts router classifies questions and dispatches them to task-specific expert prompts, eliminating interference across diverse question types. Second, task-specific prompts embed explicit coordinate systems, spatial reasoning rules, role-playing, Chain-of-Thought/Tree-of-Thought reasoning, and few-shot examples tailored to each task. Third, a visual assembly module composes multi-view images with object crops, magenta markers, and adaptive historical frames based on question requirements. Fourth, we configure model inference parameters (temperature, top-p, message roles) per task to optimize output quality. Implemented on Qwen2.5-VL-72B, our approach achieves 70.87% average accuracy on Phase-1 (clean data) and 72.85% on Phase-2 (corrupted data), demonstrating that structured prompting and spatial grounding substantially enhance VLM performance on safety-critical autonomous driving tasks. Code and prompt are available at https://github.com/wuaodi/UCAS-CSU-phase2.

Authors:Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin
Title: VC4VG: Optimizing Video Captions for Text-to-Video Generation
Abstract:
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.

Authors:Minsuk Ji, Sanghyeok Lee, Namhyuk Ahn
Title: Compositional Image Synthesis with Inference-Time Scaling
Abstract:
Despite their impressive realism, modern text-to-image models still struggle with compositionality, often failing to render accurate object counts, attributes, and spatial relations. To address this challenge, we present a training-free framework that combines an object-centric approach with self-refinement to improve layout faithfulness while preserving aesthetic quality. Specifically, we leverage large language models (LLMs) to synthesize explicit layouts from input prompts, and we inject these layouts into the image generation process, where a object-centric vision-language model (VLM) judge reranks multiple candidates to select the most prompt-aligned outcome iteratively. By unifying explicit layout-grounding with self-refine-based inference-time scaling, our framework achieves stronger scene alignment with prompts compared to recent text-to-image models. The code are available at https://github.com/gcl-inha/ReFocus.

Authors:Haotian Zhou, Xiaole Wang, He Li, Fusheng Sun, Shengyu Guo, Guolei Qi, Jianghuan Xu, Huijing Zhao
Title: LagMemo: Language 3D Gaussian Splatting Memory for Multi-modal Open-vocabulary Multi-goal Visual Navigation
Abstract:
Navigating to a designated goal using visual information is a fundamental capability for intelligent robots. Most classical visual navigation methods are restricted to single-goal, single-modality, and closed set goal settings. To address the practical demands of multi-modal, open-vocabulary goal queries and multi-goal visual navigation, we propose LagMemo, a navigation system that leverages a language 3D Gaussian Splatting memory. During exploration, LagMemo constructs a unified 3D language memory. With incoming task goals, the system queries the memory, predicts candidate goal locations, and integrates a local perception-based verification mechanism to dynamically match and validate goals during navigation. For fair and rigorous evaluation, we curate GOAT-Core, a high-quality core split distilled from GOAT-Bench tailored to multi-modal open-vocabulary multi-goal visual navigation. Experimental results show that LagMemo's memory module enables effective multi-modal open-vocabulary goal localization, and that LagMemo outperforms state-of-the-art methods in multi-goal visual navigation. Project page: https://weekgoodday.github.io/lagmemo

Authors:Zhenxin Li, Wenhao Yao, Zi Wang, Xinglong Sun, Jingde Chen, Nadine Chang, Maying Shen, Jingyu Song, Zuxuan Wu, Shiyi Lan, Jose M. Alvarez
Title: ZTRS: Zero-Imitation End-to-end Autonomous Driving with Trajectory Scoring
Abstract:
End-to-end autonomous driving maps raw sensor inputs directly into ego-vehicle trajectories to avoid cascading errors from perception modules and to leverage rich semantic cues. Existing frameworks largely rely on Imitation Learning (IL), which can be limited by sub-optimal expert demonstrations and covariate shift during deployment. On the other hand, Reinforcement Learning (RL) has recently shown potential in scaling up with simulations, but is typically confined to low-dimensional symbolic inputs (e.g. 3D objects and maps), falling short of full end-to-end learning from raw sensor data. We introduce ZTRS (Zero-Imitation End-to-End Autonomous Driving with Trajectory Scoring), a framework that combines the strengths of both worlds: sensor inputs without losing information and RL training for robust planning. To the best of our knowledge, ZTRS is the first framework that eliminates IL entirely by only learning from rewards while operating directly on high-dimensional sensor data. ZTRS utilizes offline reinforcement learning with our proposed Exhaustive Policy Optimization (EPO), a variant of policy gradient tailored for enumerable actions and rewards. ZTRS demonstrates strong performance across three benchmarks: Navtest (generic real-world open-loop planning), Navhard (open-loop planning in challenging real-world and synthetic scenarios), and HUGSIM (simulated closed-loop driving). Specifically, ZTRS achieves the state-of-the-art result on Navhard and outperforms IL-based baselines on HUGSIM. Code will be available at https://github.com/woxihuanjiangguo/ZTRS.

Authors:Shufan Shen, Zhaobo Qi, Junshu Sun, Qingming Huang, Qi Tian, Shuhui Wang
Title: Enhancing Pre-trained Representation Classifiability can Boost its Interpretability
Abstract:
The visual representation of a pre-trained model prioritizes the classifiability on downstream tasks, while the widespread applications for pre-trained visual models have posed new requirements for representation interpretability. However, it remains unclear whether the pre-trained representations can achieve high interpretability and classifiability simultaneously. To answer this question, we quantify the representation interpretability by leveraging its correlation with the ratio of interpretable semantics within the representations. Given the pre-trained representations, only the interpretable semantics can be captured by interpretations, whereas the uninterpretable part leads to information loss. Based on this fact, we propose the Inherent Interpretability Score (IIS) that evaluates the information loss, measures the ratio of interpretable semantics, and quantifies the representation interpretability. In the evaluation of the representation interpretability with different classifiability, we surprisingly discover that the interpretability and classifiability are positively correlated, i.e., representations with higher classifiability provide more interpretable semantics that can be captured in the interpretations. This observation further supports two benefits to the pre-trained representations. First, the classifiability of representations can be further improved by fine-tuning with interpretability maximization. Second, with the classifiability improvement for the representations, we obtain predictions based on their interpretations with less accuracy degradation. The discovered positive correlation and corresponding applications show that practitioners can unify the improvements in interpretability and classifiability for pre-trained vision models. Codes are available at https://github.com/ssfgunner/IIS.

Authors:Kang Zhang, Trung X. Pham, Suyeon Lee, Axi Niu, Arda Senocak, Joon Son Chung
Title: Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation
Abstract:
We present MGAudio, a novel flow-based framework for open-domain video-to-audio generation, which introduces model-guided dual-role alignment as a central design principle. Unlike prior approaches that rely on classifier-based or classifier-free guidance, MGAudio enables the generative model to guide itself through a dedicated training objective designed for video-conditioned audio generation. The framework integrates three main components: (1) a scalable flow-based Transformer model, (2) a dual-role alignment mechanism where the audio-visual encoder serves both as a conditioning module and as a feature aligner to improve generation quality, and (3) a model-guided objective that enhances cross-modal coherence and audio realism. MGAudio achieves state-of-the-art performance on VGGSound, reducing FAD to 0.40, substantially surpassing the best classifier-free guidance baselines, and consistently outperforms existing methods across FD, IS, and alignment metrics. It also generalizes well to the challenging UnAV-100 benchmark. These results highlight model-guided dual-role alignment as a powerful and scalable paradigm for conditional video-to-audio generation. Code is available at: https://github.com/pantheon5100/mgaudio

Authors:Yihan Wang, Peiyu Liu, Runyu Chen, Jiaxing Pu, Wei Xu
Title: Squrve: A Unified and Modular Framework for Complex Real-World Text-to-SQL Tasks
Abstract:
Text-to-SQL technology has evolved rapidly, with diverse academic methods achieving impressive results. However, deploying these techniques in real-world systems remains challenging due to limited integration tools. Despite these advances, we introduce Squrve, a unified, modular, and extensive Text-to-SQL framework designed to bring together research advances and real-world applications. Squrve first establishes a universal execution paradigm that standardizes invocation interfaces, then proposes a multi-actor collaboration mechanism based on seven abstracted effective atomic actor components. Experiments on widely adopted benchmarks demonstrate that the collaborative workflows consistently outperform the original individual methods, thereby opening up a new effective avenue for tackling complex real-world queries. The codes are available at https://github.com/Satissss/Squrve.

Authors:Moongyu Jeon, Sangwoo Shin, Dongjae Jeon, Albert No
Title: Information-Theoretic Discrete Diffusion
Abstract:
We present an information-theoretic framework for discrete diffusion models that yields principled estimators of log-likelihood using score-matching losses. Inspired by the I-MMSE identity for the Gaussian setup, we derive analogous results for the discrete setting. Specifically, we introduce the Information-Minimum Denoising Score Entropy (I-MDSE) relation, which links mutual information between data and its diffused version to the minimum denoising score entropy (DSE) loss. We extend this theory to masked diffusion and establish the Information-Minimum Denoising Cross-Entropy (I-MDCE) relation, connecting cross-entropy losses to mutual information in discrete masked processes. These results provide a time-integral decomposition of the log-likelihood of the data in terms of optimal score-based losses, showing that commonly used losses such as DSE and DCE are not merely variational bounds but tight and principled estimators of log-likelihood. The I-MDCE decomposition further enables practical extensions, including time-free formula, conditional likelihood estimation in prompt-response tasks, and coupled Monte Carlo estimation of likelihood ratios. Experiments on synthetic and real-world data confirm the accuracy, variance stability, and utility of our estimators. The code is publicly available at https://github.com/Dongjae0324/infodis.

Authors:Kanghyun Choi, Hyeyoon Lee, SunJong Park, Dain Kwon, Jinho Lee
Title: FALQON: Accelerating LoRA Fine-tuning with Low-Bit Floating-Point Arithmetic
Abstract:
Low-bit floating-point (FP) formats, such as FP8, provide significant acceleration and memory savings in model training thanks to native hardware support on modern GPUs and NPUs. However, we analyze that FP8 quantization offers speedup primarily for large-dimensional matrix multiplications, while inherent quantization overheads diminish speedup when applied to low-rank adaptation (LoRA), which uses small-dimensional matrices for efficient fine-tuning of large language models (LLMs). To address this limitation, we propose FALQON, a novel framework that eliminates the quantization overhead from separate LoRA computational paths by directly merging LoRA adapters into an FP8-quantized backbone during fine-tuning. Furthermore, we reformulate the forward and backward computations for merged adapters to significantly reduce quantization overhead, and introduce a row-wise proxy update mechanism that efficiently integrates substantial updates into the quantized backbone. Experimental evaluations demonstrate that FALQON achieves approximately a 3$\times$ training speedup over existing quantized LoRA methods with a similar level of accuracy, providing a practical solution for efficient large-scale model fine-tuning. Moreover, FALQON's end-to-end FP8 workflow removes the need for post-training quantization, facilitating efficient deployment. Code is available at https://github.com/iamkanghyunchoi/falqon.

Authors:Jacob B. Roberts, Catherine R. Ji, Isaac Donnell, Thomas D. Young, Allison N. Pearson, Graham A. Hudson, Leah S. Keiser, Mia Wesselkamper, Peter H. Winegar, Janik Ludwig, Sarah H. Klass, Isha V. Sheth, Ezechinyere C. Ukabiala, Maria C. T. Astolfi, Benjamin Eysenbach, Jay D. Keasling
Title: Low-N Protein Activity Optimization with FolDE
Abstract:
Proteins are traditionally optimized through the costly construction and measurement of many mutants. Active Learning-assisted Directed Evolution (ALDE) alleviates that cost by predicting the best improvements and iteratively testing mutants to inform predictions. However, existing ALDE methods face a critical limitation: selecting the highest-predicted mutants in each round yields homogeneous training data insufficient for accurate prediction models in subsequent rounds. Here we present FolDE, an ALDE method designed to maximize end-of-campaign success. In simulations across 20 protein targets, FolDE discovers 23% more top 10% mutants than the best baseline ALDE method (p=0.005) and is 55% more likely to find top 1% mutants. FolDE achieves this primarily through naturalness-based warm-starting, which augments limited activity measurements with protein language model outputs to improve activity prediction. We also introduce a constant-liar batch selector, which improves batch diversity; this is important in multi-mutation campaigns but had limited effect in our benchmarks. The complete workflow is freely available as open-source software, making efficient protein optimization accessible to any laboratory.

Authors:In Gim, Zhiyao Ma, Seung-seob Lee, Lin Zhong
Title: Pie: A Programmable Serving System for Emerging LLM Applications
Abstract:
Emerging large language model (LLM) applications involve diverse reasoning strategies and agentic workflows, straining the capabilities of existing serving systems built on a monolithic token generation loop. This paper introduces Pie, a programmable LLM serving system designed for flexibility and efficiency. Pie decomposes the traditional generation loop into fine-grained service handlers exposed via an API and delegates control of the generation process to user-provided programs, called inferlets. This enables applications to implement new KV cache strategies, bespoke generation logic, and seamlessly integrate computation and I/O-entirely within the application, without requiring modifications to the serving system. Pie executes inferlets using WebAssembly, benefiting from its lightweight sandboxing. Our evaluation shows Pie matches state-of-the-art performance on standard tasks (3-12% latency overhead) while significantly improving latency and throughput (1.3x-3.4x higher) on agentic workflows by enabling application-specific optimizations.

Authors:Shufan Shen, Junshu Sun, Shuhui Wang, Qingming Huang
Title: Kernelized Sparse Fine-Tuning with Bi-level Parameter Competition for Vision Models
Abstract:
Parameter-efficient fine-tuning (PEFT) aims to adapt pre-trained vision models to downstream tasks. Among PEFT paradigms, sparse tuning achieves remarkable performance by adjusting only the weights most relevant to downstream tasks, rather than densely tuning the entire weight matrix. Current methods follow a two-stage paradigm. First, it locates task-relevant weights by gradient information, which overlooks the parameter adjustments during fine-tuning and limits the performance. Second, it updates only the located weights by applying a sparse mask to the gradient of the weight matrix, which results in high memory usage due to the storage of all weight matrices in the optimizer. In this paper, we propose a one-stage method named SNELLA to overcome the above limitations. For memory usage, SNELLA selectively updates the weight matrix by adding it to another sparse matrix that is merged by two low-rank learnable matrices. We extend the low-rank decomposition by introducing nonlinear kernel functions, thereby increasing the rank of the resulting merged matrix to prevent the interdependency among weight updates, enabling better adaptation to downstream tasks. For locating task-relevant weights, we propose an adaptive bi-level sparsity allocation mechanism that encourages weights to compete across and inside layers based on their importance scores in an end-to-end manner. Extensive experiments are conducted on classification, segmentation, and generation tasks using different pre-trained vision models. The results show that SNELLA achieves SOTA performance with low memory usage. Notably, SNELLA obtains 1.8% (91.9% v.s. 90.1%) higher Top-1 accuracy on the FGVC benchmark compared to SPT-LoRA. Compared to previous methods, SNELLA achieves a memory reduction of 31.1%-39.9% across models with parameter scales from 86M to 632M. Our source codes are available at https://github.com/ssfgunner/SNELL.

Authors:Xinqi Li, Yiqun Liu, Shan Jiang, Enrong Zheng, Huaijin Zheng, Wenhao Dai, Haodong Deng, Dianhai Yu, Yanjun Ma
Title: GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
Abstract:
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .

Authors:Yizhu Jiao, Sha Li, Sizhe Zhou, Heng Ji, Jiawei Han
Title: TEXT2DB: Integration-Aware Information Extraction with Large Language Model Agents
Abstract:
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE TEXT2DB that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-PlanAnalyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation. Source code: https://github.com/yzjiao/Text2DB

Authors:Byeonghu Na, Mina Kang, Jiseok Kwak, Minsang Park, Jiwoo Shin, SeJoon Jun, Gayoung Lee, Jin-Hwa Kim, Il-Chul Moon
Title: Training-Free Safe Text Embedding Guidance for Text-to-Image Diffusion Models
Abstract:
Text-to-image models have recently made significant advances in generating realistic and semantically coherent images, driven by advanced diffusion models and large-scale web-crawled datasets. However, these datasets often contain inappropriate or biased content, raising concerns about the generation of harmful outputs when provided with malicious text prompts. We propose Safe Text embedding Guidance (STG), a training-free approach to improve the safety of diffusion models by guiding the text embeddings during sampling. STG adjusts the text embeddings based on a safety function evaluated on the expected final denoised image, allowing the model to generate safer outputs without additional training. Theoretically, we show that STG aligns the underlying model distribution with safety constraints, thereby achieving safer outputs while minimally affecting generation quality. Experiments on various safety scenarios, including nudity, violence, and artist-style removal, show that STG consistently outperforms both training-based and training-free baselines in removing unsafe content while preserving the core semantic intent of input prompts. Our code is available at https://github.com/aailab-kaist/STG.

Authors:Mirali Purohit, Bimal Gajera, Vatsal Malaviya, Irish Mehta, Kunal Kasodekar, Jacob Adler, Steven Lu, Umaa Rebbapragada, Hannah Kerner
Title: Mars-Bench: A Benchmark for Evaluating Foundation Models for Mars Science Tasks
Abstract:
Foundation models have enabled rapid progress across many specialized domains by leveraging large-scale pre-training on unlabeled data, demonstrating strong generalization to a variety of downstream tasks. While such models have gained significant attention in fields like Earth Observation, their application to Mars science remains limited. A key enabler of progress in other domains has been the availability of standardized benchmarks that support systematic evaluation. In contrast, Mars science lacks such benchmarks and standardized evaluation frameworks, which have limited progress toward developing foundation models for Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark designed to systematically evaluate models across a broad range of Mars-related tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets spanning classification, segmentation, and object detection, focused on key geologic features such as craters, cones, boulders, and frost. We provide standardized, ready-to-use datasets and baseline evaluations using models pre-trained on natural images, Earth satellite data, and state-of-the-art vision-language models. Results from all analyses suggest that Mars-specific foundation models may offer advantages over general-domain counterparts, motivating further exploration of domain-adapted pre-training. Mars-Bench aims to establish a standardized foundation for developing and comparing machine learning models for Mars science. Our data, models, and code are available at: https://mars-bench.github.io/.

Authors:Byeonghu Na, Minsang Park, Gyuwon Sim, Donghyeok Shin, HeeSun Bae, Mina Kang, Se Jung Kwon, Wanmo Kang, Il-Chul Moon
Title: Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models
Abstract:
Text-to-image diffusion models rely on text embeddings from a pre-trained text encoder, but these embeddings remain fixed across all diffusion timesteps, limiting their adaptability to the generative process. We propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion timestep based on intermediate perturbed data. We formulate an optimization problem and derive an update rule that refines the text embeddings at each sampling step to improve alignment and preference between the mean predicted image and the text. This allows DATE to dynamically adapts the text conditions to the reverse-diffused images throughout diffusion sampling without requiring additional model training. Through theoretical analysis and empirical results, we show that DATE maintains the generative capability of the model while providing superior text-image alignment over fixed text embeddings across various tasks, including multi-concept generation and text-guided image editing. Our code is available at https://github.com/aailab-kaist/DATE.

Authors:Ningfeng Yang, Tor M. Aamodt
Title: Improving the Straight-Through Estimator with Zeroth-Order Information
Abstract:
We study the problem of training neural networks with quantized parameters. Learning low-precision quantized parameters by enabling computation of gradients via the Straight-Through Estimator (STE) can be challenging. While the STE enables back-propagation, which is a first-order method, recent works have explored the use of zeroth-order (ZO) gradient descent for fine-tuning. We note that the STE provides high-quality biased gradients, and ZO gradients are unbiased but can be expensive. We thus propose First-Order-Guided Zeroth-Order Gradient Descent (FOGZO) that reduces STE bias while reducing computations relative to ZO methods. Empirically, we show FOGZO improves the tradeoff between quality and training time in Quantization-Aware Pre-Training. Specifically, versus STE at the same number of iterations, we show a 1-8\% accuracy improvement for DeiT Tiny/Small, 1-2\% accuracy improvement on ResNet 18/50, and 1-22 perplexity point improvement for LLaMA models with up to 0.3 billion parameters. For the same loss, FOGZO yields a 796$\times$ reduction in computation versus n-SPSA for a 2-layer MLP on MNIST. Code is available at https://github.com/1733116199/fogzo.

Authors:Segev Shlomov, Alon Oved, Sami Marreed, Ido Levy, Offer Akrabi, Avi Yaeli, Łukasz Strąk, Elizabeth Koumpan, Yinon Goldshtein, Eilam Shapira, Nir Mashkif, Asaf Adi
Title: From Benchmarks to Business Impact: Deploying IBM Generalist Agent in Enterprise Production
Abstract:
Agents are rapidly advancing in automating digital work, but enterprises face a harder challenge: moving beyond prototypes to deployed systems that deliver measurable business value. This path is complicated by fragmented frameworks, slow development, and the absence of standardized evaluation practices. Generalist agents have emerged as a promising direction, excelling on academic benchmarks and offering flexibility across task types, applications, and modalities. Yet, evidence of their use in production enterprise settings remains limited. This paper reports IBM's experience developing and piloting the Computer Using Generalist Agent (CUGA), which has been open-sourced for the community (https://github.com/cuga-project/cuga-agent). CUGA adopts a hierarchical planner--executor architecture with strong analytical foundations, achieving state-of-the-art performance on AppWorld and WebArena. Beyond benchmarks, it was evaluated in a pilot within the Business-Process-Outsourcing talent acquisition domain, addressing enterprise requirements for scalability, auditability, safety, and governance. To support assessment, we introduce BPO-TA, a 26-task benchmark spanning 13 analytics endpoints. In preliminary evaluations, CUGA approached the accuracy of specialized agents while indicating potential for reducing development time and cost. Our contribution is twofold: presenting early evidence of generalist agents operating at enterprise scale, and distilling technical and organizational lessons from this initial pilot. We outline requirements and next steps for advancing research-grade architectures like CUGA into robust, enterprise-ready systems.

Authors:Siddharth Chaini, Federica B. Bianco, Ashish Mahabal
Title: In Search of the Unknown Unknowns: A Multi-Metric Distance Ensemble for Out of Distribution Anomaly Detection in Astronomical Surveys
Abstract:
Distance-based methods involve the computation of distance values between features and are a well-established paradigm in machine learning. In anomaly detection, anomalies are identified by their large distance from normal data points. However, the performance of these methods often hinges on a single, user-selected distance metric (e.g., Euclidean), which may not be optimal for the complex, high-dimensional feature spaces common in astronomy. Here, we introduce a novel anomaly detection method, Distance Multi-Metric Anomaly Detection (DiMMAD), which uses an ensemble of distance metrics to find novelties. Using multiple distance metrics is effectively equivalent to using different geometries in the feature space. By using a robust ensemble of diverse distance metrics, we overcome the metric-selection problem, creating an anomaly score that is not reliant on any single definition of distance. We demonstrate this multi-metric approach as a tool for simple, interpretable scientific discovery on astronomical time series -- (1) with simulated data for the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time, and (2) real data from the Zwicky Transient Facility. We find that DiMMAD excels at out-of-distribution anomaly detection -- anomalies in the data that might be new classes -- and beats other state-of-the-art methods in the goal of maximizing the diversity of new classes discovered. For rare in-distribution anomaly detection, DiMMAD performs similarly to other methods, but may allow for improved interpretability. All our code is open source: DiMMAD is implemented within DistClassiPy: https://github.com/sidchaini/distclassipy/, while all code to reproduce the results of this paper is available here: https://github.com/sidchaini/dimmad/.

Authors:Amin Heyrani Nobari, Lyle Regenwetter, Cyril Picard, Ligong Han, Faez Ahmed
Title: Optimize Any Topology: A Foundation Model for Shape- and Resolution-Free Structural Topology Optimization
Abstract:
Structural topology optimization (TO) is central to engineering design but remains computationally intensive due to complex physics and hard constraints. Existing deep-learning methods are limited to fixed square grids, a few hand-coded boundary conditions, and post-hoc optimization, preventing general deployment. We introduce Optimize Any Topology (OAT), a foundation-model framework that directly predicts minimum-compliance layouts for arbitrary aspect ratios, resolutions, volume fractions, loads, and fixtures. OAT combines a resolution- and shape-agnostic autoencoder with an implicit neural-field decoder and a conditional latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized structures covering 2 million unique boundary-condition configurations. On four public benchmarks and two challenging unseen tests, OAT lowers mean compliance up to 90% relative to the best prior models and delivers sub-1 second inference on a single GPU across resolutions from 64 x 64 to 256 x 256 and aspect ratios as high as 10:1. These results establish OAT as a general, fast, and resolution-free framework for physics-aware topology optimization and provide a large-scale dataset to spur further research in generative modeling for inverse design. Code & data can be found at https://github.com/ahnobari/OptimizeAnyTopology.

Authors:Tenghui Li, Guoxu Zhou, Xuyang Zhao, Yuning Qiu, Qibin Zhao
Title: Efficient Low Rank Attention for Long-Context Inference in Large Language Models
Abstract:
As the length of input text grows, the key-value (KV) cache in LLMs imposes prohibitive GPU memory costs and limits long-context inference on resource constrained devices. Existing approaches, such as KV quantization and pruning, reduce memory usage but suffer from numerical precision loss or suboptimal retention of key-value pairs. We introduce Low Rank Query and Key attention (LRQK), a two-stage framework that jointly decomposes the full-precision query and key matrices into compact rank-\(r\) factors during the prefill stage, and then uses these low-dimensional projections to compute proxy attention scores in \(\mathcal{O}(lr)\) time at each decode step. By selecting only the top-\(k\) tokens and a small fixed set of recent tokens, LRQK employs a mixed GPU-CPU cache with a hit-and-miss mechanism that transfers only missing full-precision KV pairs, thereby preserving exact attention outputs while reducing CPU-GPU data movement. Extensive experiments on the RULER and LongBench benchmarks with LLaMA-3-8B and Qwen2.5-7B demonstrate that LRQK matches or surpasses leading sparse-attention methods in long context settings, while delivering significant memory savings with minimal loss in accuracy. Our code is available at https://github.com/tenghuilee/LRQK.

Authors:Aaron Wang, Zihan Zhao, Subash Katel, Vivekanand Gyanchand Sahu, Elham E Khoda, Abhijith Gandrakota, Jennifer Ngadiuba, Richard Cavanaugh, Javier Duarte
Title: Spatially Aware Linear Transformer (SAL-T) for Particle Jet Tagging
Abstract:
Transformers are very effective in capturing both global and local correlations within high-energy particle collisions, but they present deployment challenges in high-data-throughput environments, such as the CERN LHC. The quadratic complexity of transformer models demands substantial resources and increases latency during inference. In order to address these issues, we introduce the Spatially Aware Linear Transformer (SAL-T), a physics-inspired enhancement of the linformer architecture that maintains linear attention. Our method incorporates spatially aware partitioning of particles based on kinematic features, thereby computing attention between regions of physical significance. Additionally, we employ convolutional layers to capture local correlations, informed by insights from jet physics. In addition to outperforming the standard linformer in jet classification tasks, SAL-T also achieves classification results comparable to full-attention transformers, while using considerably fewer resources with lower latency during inference. Experiments on a generic point cloud classification dataset (ModelNet10) further confirm this trend. Our code is available at https://github.com/aaronw5/SAL-T4HEP.

Authors:Soutrik Sarangi, Yonatan Sverdlov, Nadav Dym, Abir De
Title: Monotone and Separable Set Functions: Characterizations and Neural Models
Abstract:
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.

Authors:Tiago Mendonça dos Santos, Rafael Izbicki, Luís Gustavo Esteves
Title: DiNo and RanBu: Lightweight Predictions from Shallow Random Forests
Abstract:
Random Forest ensembles are a strong baseline for tabular prediction tasks, but their reliance on hundreds of deep trees often results in high inference latency and memory demands, limiting deployment in latency-sensitive or resource-constrained environments. We introduce DiNo (Distance with Nodes) and RanBu (Random Bushes), two shallow-forest methods that convert a small set of depth-limited trees into efficient, distance-weighted predictors. DiNo measures cophenetic distances via the most recent common ancestor of observation pairs, while RanBu applies kernel smoothing to Breiman's classical proximity measure. Both approaches operate entirely after forest training: no additional trees are grown, and tuning of the single bandwidth parameter $h$ requires only lightweight matrix-vector operations. Across three synthetic benchmarks and 25 public datasets, RanBu matches or exceeds the accuracy of full-depth random forests-particularly in high-noise settings-while reducing training plus inference time by up to 95\%. DiNo achieves the best bias-variance trade-off in low-noise regimes at a modest computational cost. Both methods extend directly to quantile regression, maintaining accuracy with substantial speed gains. The implementation is available as an open-source R/C++ package at https://github.com/tiagomendonca/dirf. We focus on structured tabular random samples (i.i.d.), leaving extensions to other modalities for future work.

Authors:Yujia Zhang, Xiaoyang Wu, Yixing Lao, Chengyao Wang, Zhuotao Tian, Naiyan Wang, Hengshuang Zhao
Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations
Abstract:
Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.

Authors:Yichi Zhang, Alex Schwing, Zhizhen Zhao
Title: Variational Masked Diffusion Models
Abstract:
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.

Authors:Shuhong Zheng, Ashkan Mirzaei, Igor Gilitschenski
Title: Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling
Abstract:
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.

Authors:Yizhang Zhu, Liangwei Wang, Chenyu Yang, Xiaotian Lin, Boyan Li, Wei Zhou, Xinyu Liu, Zhangyang Peng, Tianqi Luo, Yu Li, Chengliang Chai, Chong Chen, Shimin Di, Ju Fan, Ji Sun, Nan Tang, Fugee Tsung, Jiannan Wang, Chenglin Wu, Yanwei Xu, Shaolei Zhang, Yong Zhang, Xuanhe Zhou, Guoliang Li, Yuyu Luo
Title: A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
Abstract:
The rapid advancement of large language models (LLMs) has spurred the emergence of data agents--autonomous systems designed to orchestrate Data + AI ecosystems for tackling complex data-related tasks. However, the term "data agent" currently suffers from terminological ambiguity and inconsistent adoption, conflating simple query responders with sophisticated autonomous architectures. This terminological ambiguity fosters mismatched user expectations, accountability challenges, and barriers to industry growth. Inspired by the SAE J3016 standard for driving automation, this survey introduces the first systematic hierarchical taxonomy for data agents, comprising six levels that delineate and trace progressive shifts in autonomy, from manual operations (L0) to a vision of generative, fully autonomous data agents (L5), thereby clarifying capability boundaries and responsibility allocation. Through this lens, we offer a structured review of existing research arranged by increasing autonomy, encompassing specialized data agents for data management, preparation, and analysis, alongside emerging efforts toward versatile, comprehensive systems with enhanced autonomy. We further analyze critical evolutionary leaps and technical gaps for advancing data agents, especially the ongoing L2-to-L3 transition, where data agents evolve from procedural execution to autonomous orchestration. Finally, we conclude with a forward-looking roadmap, envisioning the advent of proactive, generative data agents.

Authors:Zhongyi Yu, Jianqiu Wu, Zhenghao Wu, Shuhan Zhong, Weifeng Su, Chul-Ho Lee, Weipeng Zhuo
Title: TAMI: Taming Heterogeneity in Temporal Interactions for Temporal Graph Link Prediction
Abstract:
Temporal graph link prediction aims to predict future interactions between nodes in a graph based on their historical interactions, which are encoded in node embeddings. We observe that heterogeneity naturally appears in temporal interactions, e.g., a few node pairs can make most interaction events, and interaction events happen at varying intervals. This leads to the problems of ineffective temporal information encoding and forgetting of past interactions for a pair of nodes that interact intermittently for their link prediction. Existing methods, however, do not consider such heterogeneity in their learning process, and thus their learned temporal node embeddings are less effective, especially when predicting the links for infrequently interacting node pairs. To cope with the heterogeneity, we propose a novel framework called TAMI, which contains two effective components, namely log time encoding function (LTE) and link history aggregation (LHA). LTE better encodes the temporal information through transforming interaction intervals into more balanced ones, and LHA prevents the historical interactions for each target node pair from being forgotten. State-of-the-art temporal graph neural networks can be seamlessly and readily integrated into TAMI to improve their effectiveness. Experiment results on 13 classic datasets and three newest temporal graph benchmark (TGB) datasets show that TAMI consistently improves the link prediction performance of the underlying models in both transductive and inductive settings. Our code is available at https://github.com/Alleinx/TAMI_temporal_graph.

Authors:Hongkai Lin, Dingkang Liang, Mingyang Du, Xin Zhou, Xiang Bai
Title: More Than Generation: Unifying Generation and Depth Estimation via Text-to-Image Diffusion Models
Abstract:
Generative depth estimation methods leverage the rich visual priors stored in pre-trained text-to-image diffusion models, demonstrating astonishing zero-shot capability. However, parameter updates during training lead to catastrophic degradation in the image generation capability of the pre-trained model. We introduce MERGE, a unified model for image generation and depth estimation, starting from a fixed pre-trained text-to-image model. MERGE demonstrates that the pre-trained text-to-image model can do more than image generation, but also expand to depth estimation effortlessly. Specifically, MERGE introduces a play-and-plug framework that enables seamless switching between image generation and depth estimation modes through simple and pluggable converters. Meanwhile, we propose a Group Reuse Mechanism to encourage parameter reuse and improve the utilization of the additional learnable parameters. MERGE unleashes the powerful depth estimation capability of the pre-trained text-to-image model while preserving its original image generation ability. Compared to other unified models for image generation and depth estimation, MERGE achieves state-of-the-art performance across multiple depth estimation benchmarks. The code will be made available at https://github.com/H-EmbodVis/MERGE

Authors:Baoqi Pei, Yifei Huang, Jilan Xu, Yuping He, Guo Chen, Fei Wu, Yu Qiao, Jiangmiao Pang
Title: EgoThinker: Unveiling Egocentric Reasoning with Spatio-Temporal CoT
Abstract:
Egocentric video reasoning centers on an unobservable agent behind the camera who dynamically shapes the environment, requiring inference of hidden intentions and recognition of fine-grained interactions. This core challenge limits current multimodal large language models MLLMs, which excel at visible event reasoning but lack embodied, first-person understanding. To bridge this gap, we introduce EgoThinker, a novel framework that endows MLLMs with robust egocentric reasoning capabilities through spatio-temporal chain-of-thought supervision and a two-stage learning curriculum. First, we introduce EgoRe-5M, a large-scale egocentric QA dataset constructed from 13M diverse egocentric video clips. This dataset features multi-minute segments annotated with detailed CoT rationales and dense hand-object grounding. Second, we employ SFT on EgoRe-5M to instill reasoning skills, followed by reinforcement fine-tuning RFT to further enhance spatio-temporal localization. Experimental results show that EgoThinker outperforms existing methods across multiple egocentric benchmarks, while achieving substantial improvements in fine-grained spatio-temporal localization tasks. Full code and data are released at https://github.com/InternRobotics/EgoThinker.

Authors:Zhaoyang Yu, Jiayi Zhang, Huixue Su, Yufan Zhao, Yifan Wu, Mingyi Deng, Jinyu Xiang, Yizhang Lin, Lingxiao Tang, Yingchao Li, Yuyu Luo, Bang Liu, Chenglin Wu
Title: ReCode: Unify Plan and Action for Universal Granularity Control
Abstract:
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.

Authors:Qiushi Sun, Jingyang Gong, Yang Liu, Qiaosheng Chen, Lei Li, Kai Chen, Qipeng Guo, Ben Kao, Fei Yuan
Title: JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
Abstract:
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.

Authors:Chen Lu, Ke Xue, Lei Yuan, Yao Wang, Yaoyuan Wang, Sheng Fu, Chao Qian
Title: Sequential Multi-Agent Dynamic Algorithm Configuration
Abstract:
Dynamic algorithm configuration (DAC) is a recent trend in automated machine learning, which can dynamically adjust the algorithm's configuration during the execution process and relieve users from tedious trial-and-error tuning tasks. Recently, multi-agent reinforcement learning (MARL) approaches have improved the configuration of multiple heterogeneous hyperparameters, making various parameter configurations for complex algorithms possible. However, many complex algorithms have inherent inter-dependencies among multiple parameters (e.g., determining the operator type first and then the operator's parameter), which are, however, not considered in previous approaches, thus leading to sub-optimal results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC) framework to address this issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we propose a sequential advantage decomposition network, which can leverage action-order information through sequential advantage decomposition. Experiments from synthetic functions to the configuration of multi-objective optimization algorithms demonstrate Seq-MADAC's superior performance over state-of-the-art MARL methods and show strong generalization across problem classes. Seq-MADAC establishes a new paradigm for the widespread dependency-aware automated algorithm configuration. Our code is available at https://github.com/lamda-bbo/seq-madac.

Authors:Yaoli Liu, Yao-Xiang Ding, Kun Zhou
Title: FreeFuse: Multi-Subject LoRA Fusion via Auto Masking at Test Time
Abstract:
This paper proposes FreeFuse, a novel training-free approach for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to existing methods that either focus on pre-inference LoRA weight merging or rely on segmentation models and complex techniques like noise blending to isolate LoRA outputs, our key insight is that context-aware dynamic subject masks can be automatically derived from cross-attention layer weights. Mathematical analysis shows that directly applying these masks to LoRA outputs during inference well approximates the case where the subject LoRA is integrated into the diffusion model and used individually for the masked region. FreeFuse demonstrates superior practicality and efficiency as it requires no additional training, no modification to LoRAs, no auxiliary models, and no user-defined prompt templates or region specifications. Alternatively, it only requires users to provide the LoRA activation words for seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both generation quality and usability under the multi-subject generation tasks. The project page is at https://future-item.github.io/FreeFuse/

Authors:Bin Xie, Erjin Zhou, Fan Jia, Hao Shi, Haoqiang Fan, Haowei Zhang, Hebei Li, Jianjian Sun, Jie Bin, Junwen Huang, Kai Liu, Kaixin Liu, Kefan Gu, Lin Sun, Meng Zhang, Peilong Han, Ruitao Hao, Ruitao Zhang, Saike Huang, Songhan Xie, Tiancai Wang, Tianle Liu, Wenbin Tang, Wenqi Zhu, Yang Chen, Yingfei Liu, Yizhuang Zhou, Yu Liu, Yucheng Zhao, Yunchao Ma, Yunfei Wei, Yuxiang Chen, Ze Chen, Zeming Li, Zhao Wu, Ziheng Zhang, Ziming Liu, Ziwei Yan, Ziyu Zhang
Title: Dexbotic: Open-Source Vision-Language-Action Toolbox
Abstract:
In this paper, we present Dexbotic, an open-source Vision-Language-Action (VLA) model toolbox based on PyTorch. It aims to provide a one-stop VLA research service for professionals in the field of embodied intelligence. It offers a codebase that supports multiple mainstream VLA policies simultaneously, allowing users to reproduce various VLA methods with just a single environment setup. The toolbox is experiment-centric, where the users can quickly develop new VLA experiments by simply modifying the Exp script. Moreover, we provide much stronger pretrained models to achieve great performance improvements for state-of-the-art VLA policies. Dexbotic will continuously update to include more of the latest pre-trained foundation models and cutting-edge VLA models in the industry.

Authors:Jiahui Geng, Jonathan Tonglet, Iryna Gurevych
Title: M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Abstract:
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.

Authors:Siamak Ghodsi, Amjad Seyedi, Tai Le Quy, Fariba Karimi, Eirini Ntoutsi
Title: A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Abstract:
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $λ$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.

Authors:Elena Celledoni, Brynjulf Owren, Lars Ruthotto, Tianjiao Nicole Yang
Title: Mixed Precision Training of Neural ODEs
Abstract:
Exploiting low-precision computations has become a standard strategy in deep learning to address the growing computational costs imposed by ever larger models and datasets. However, naively performing all computations in low precision can lead to roundoff errors and instabilities. Therefore, mixed precision training schemes usually store the weights in high precision and use low-precision computations only for whitelisted operations. Despite their success, these principles are currently not reliable for training continuous-time architectures such as neural ordinary differential equations (Neural ODEs). This paper presents a mixed precision training framework for neural ODEs, combining explicit ODE solvers with a custom backpropagation scheme, and demonstrates its effectiveness across a range of learning tasks. Our scheme uses low-precision computations for evaluating the velocity, parameterized by the neural network, and for storing intermediate states, while stability is provided by a custom dynamic adjoint scaling and by accumulating the solution and gradients in higher precision. These contributions address two key challenges in training neural ODE: the computational cost of repeated network evaluations and the growth of memory requirements with the number of time steps or layers. Along with the paper, we publish our extendable, open-source PyTorch package rampde, whose syntax resembles that of leading packages to provide a drop-in replacement in existing codes. We demonstrate the reliability and effectiveness of our scheme using challenging test cases and on neural ODE applications in image classification and generative models, achieving approximately 50% memory reduction and up to 2x speedup while maintaining accuracy comparable to single-precision training.

Authors:Chenyang Ma, Kai Lu, Ruta Desai, Xavier Puig, Andrew Markham, Niki Trigoni
Title: COOPERA: Continual Open-Ended Human-Robot Assistance
Abstract:
To understand and collaborate with humans, robots must account for individual human traits, habits, and activities over time. However, most robotic assistants lack these abilities, as they primarily focus on predefined tasks in structured environments and lack a human model to learn from. This work introduces COOPERA, a novel framework for COntinual, OPen-Ended human-Robot Assistance, where simulated humans, driven by psychological traits and long-term intentions, interact with robots in complex environments. By integrating continuous human feedback, our framework, for the first time, enables the study of long-term, open-ended human-robot collaboration (HRC) in different collaborative tasks across various time-scales. Within COOPERA, we introduce a benchmark and an approach to personalize the robot's collaborative actions by learning human traits and context-dependent intents. Experiments validate the extent to which our simulated humans reflect realistic human behaviors and demonstrate the value of inferring and personalizing to human intents for open-ended and long-term HRC. Project Page: https://dannymcy.github.io/coopera/

Authors:Hemish Ahuja, Samradh Bhardwaj, Kirti Dhir, Roman Bagdasarian, Ziwoong Jang
Title: Quantum Phase Classification of Rydberg Atom Systems Using Resource-Efficient Variational Quantum Circuits and Classical Shadows
Abstract:
Quantum phase transitions in Rydberg atom arrays present significant opportunities for studying many-body physics, yet distinguishing between different ordered phases without explicit order parameters remains challenging. We present a resource-efficient quantum machine learning approach combining classical shadow tomography with variational quantum circuits (VQCs) for binary phase classification of Z2 and Z3 ordered phases. Our pipeline processes 500 randomized measurements per 51-atom chain state, reconstructs shadow operators, performs PCA dimensionality reduction (514 features), and encodes features using angle embedding onto a 2-qubit parameterized circuit. The circuit employs RY-RZ angle encoding, strong entanglement via all-to-all CZ gates, and a minimal 2-parameter ansatz achieving depth 7. Training via simultaneous perturbation stochastic approximation (SPSA) with hinge loss converged in 120 iterations. The model achieved 100% test accuracy with perfect precision, recall, and F1 scores, demonstrating that minimal quantum resources suffice for high-accuracy phase classification. This work establishes pathways for quantum-enhanced condensed matter physics on near-term quantum devices.

Authors:Zujing Liu, Junwen Pan, Qi She, Yuan Gao, Guisong Xia
Title: On the Faithfulness of Visual Thinking: Measurement and Enhancement
Abstract:
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.

Authors:Xin Jin, Siyuan Li, Siyong Jian, Kai Yu, Huan Wang
Title: MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Abstract:
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.

Authors:Karthikeyan Chandra Sekaran, Markus Geisler, Dominik Rößle, Adithya Mohan, Daniel Cremers, Wolfgang Utschick, Michael Botsch, Werner Huber, Torsten Schön
Title: UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception
Abstract:
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.

Authors:Ke Xue, Ruo-Tong Chen, Rong-Xi Tan, Xi Lin, Yunqi Shi, Siyuan Xu, Mingxuan Yuan, Chao Qian
Title: BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
Abstract:
Chip placement is a vital stage in modern chip design as it has a substantial impact on the subsequent processes and the overall quality of the final chip. The use of black-box optimization (BBO) for chip placement has a history of several decades. However, early efforts were limited by immature problem formulations and inefficient algorithm designs. Recent progress has shown the effectiveness and efficiency of BBO for chip placement, proving its potential to achieve state-of-the-art results. Despite these advancements, the field lacks a unified, BBO-specific benchmark for thoroughly assessing various problem formulations and BBO algorithms. To fill this gap, we propose BBOPlace-Bench, the first benchmark designed specifically for evaluating and developing BBO algorithms for chip placement tasks. It integrates three problem formulations of BBO for chip placement, and offers a modular, decoupled, and flexible framework that enables users to seamlessly implement, test, and compare their own algorithms. BBOPlace-Bench integrates a wide variety of existing BBO algorithms, including simulated annealing (SA), evolutionary algorithms (EAs), and Bayesian optimization (BO). Experimental results show that the problem formulations of mask-guided optimization and hyperparameter optimization exhibit superior performance than the sequence pair problem formulation, while EAs demonstrate better overall performance than SA and BO, especially in high-dimensional search spaces, and also achieve state-of-the-art performance compared to the mainstream chip placement methods. BBOPlace-Bench not only facilitates the development of efficient BBO-driven solutions for chip placement but also broadens the practical application scenarios (which are urgently needed) for the BBO community. The code of BBOPlace-Bench is available at https://github.com/lamda-bbo/BBOPlace-Bench.

Authors:Marco Grossi
Title: What are the odds? Risk and uncertainty about AI existential risk
Abstract:
This work is a commentary of the article \href{https://doi.org/10.18716/ojs/phai/2025.2801}{AI Survival Stories: a Taxonomic Analysis of AI Existential Risk} by Cappelen, Goldstein, and Hawthorne. It is not just a commentary though, but a useful reminder of the philosophical limitations of \say{linear} models of risk. The article will focus on the model employed by the authors: first, I discuss some differences between standard Swiss Cheese models and this one. I then argue that in a situation of epistemic indifference the probability of P(D) is higher than what one might first suggest, given the structural relationships between layers. I then distinguish between risk and uncertainty, and argue that any estimation of P(D) is structurally affected by two kinds of uncertainty: option uncertainty and state-space uncertainty. Incorporating these dimensions of uncertainty into our qualitative discussion on AI existential risk can provide a better understanding of the likeliness of P(D).

Authors:Fangtong Sun, Congyu Li, Ke Yang, Yuchen Pan, Hanwen Yu, Xichuan Zhang, Yiying Li
Title: FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Abstract:
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.

Authors:Luca Melis, Matthew Grange, Iden Kalemaj, Karan Chadha, Shengyuan Hu, Elena Kashtelyan, Will Bullock
Title: PrivacyGuard: A Modular Framework for Privacy Auditing in Machine Learning
Abstract:
The increasing deployment of Machine Learning (ML) models in sensitive domains motivates the need for robust, practical privacy assessment tools. PrivacyGuard is a comprehensive tool for empirical differential privacy (DP) analysis, designed to evaluate privacy risks in ML models through state-of-the-art inference attacks and advanced privacy measurement techniques. To this end, PrivacyGuard implements a diverse suite of privacy attack -- including membership inference , extraction, and reconstruction attacks -- enabling both off-the-shelf and highly configurable privacy analyses. Its modular architecture allows for the seamless integration of new attacks, and privacy metrics, supporting rapid adaptation to emerging research advances. We make PrivacyGuard available at https://github.com/facebookresearch/PrivacyGuard.

Authors:Yi Lu, Xiaoming Xue, Kai Zhang, Liming Zhang, Guodong Chen, Chenming Cao, Piyang Liu, Kay Chen Tan
Title: Multi-Task Surrogate-Assisted Search with Bayesian Competitive Knowledge Transfer for Expensive Optimization
Abstract:
Expensive optimization problems (EOPs) present significant challenges for traditional evolutionary optimization due to their limited evaluation calls. Although surrogate-assisted search (SAS) has become a popular paradigm for addressing EOPs, it still suffers from the cold-start issue. In response to this challenge, knowledge transfer has been gaining popularity for its ability to leverage search experience from potentially related instances, ultimately facilitating head-start optimization for more efficient decision-making. However, the curse of negative transfer persists when applying knowledge transfer to EOPs, primarily due to the inherent limitations of existing methods in assessing knowledge transferability. On the one hand, a priori transferability assessment criteria are intrinsically inaccurate due to their imprecise understandings. On the other hand, a posteriori methods often necessitate sufficient observations to make correct inferences, rendering them inefficient when applied to EOPs. Considering the above, this paper introduces a Bayesian competitive knowledge transfer (BCKT) method developed to improve multi-task SAS (MSAS) when addressing multiple EOPs simultaneously. Specifically, the transferability of knowledge is estimated from a Bayesian perspective that accommodates both prior beliefs and empirical evidence, enabling accurate competition between inner-task and inter-task solutions, ultimately leading to the adaptive use of promising solutions while effectively suppressing inferior ones. The effectiveness of our method in boosting various SAS algorithms for both multi-task and many-task problems is empirically validated, complemented by comparative studies that demonstrate its superiority over peer algorithms and its applicability to real-world scenarios. The source code of our method is available at https://github.com/XmingHsueh/MSAS-BCKT.

Authors:Lu Dong, Haiyu Zhang, Han Lin, Ziang Yan, Xiangyu Zeng, Hongjie Zhang, Yifei Huang, Yi Wang, Zhen-Hua Ling, Limin Wang, Yali Wang
Title: VideoTG-R1: Boosting Video Temporal Grounding via Curriculum Reinforcement Learning on Reflected Boundary Annotations
Abstract:
Video temporal grounding (VTG) aims to locate precise segments in videos based on language queries, which is a fundamental challenge in video understanding. While recent Multimodal Large Language Models (MLLMs) have shown promise in tackling VTG through reinforcement learning (RL), they overlook the challenges arising from both the quality and difficulty of training samples. (1) Partially annotated samples. Many samples contain relevant segments beyond the annotated interval, introducing ambiguous supervision. (2) Hard-to-ground samples. Samples with poor zero-shot performance produce consistently low and indistinguishable rewards during RL training, exhibiting no clear preference among multiple outputs and thus hindering learning efficiency. To address these challenges, we propose VideoTG-R1, a novel curriculum RL framework with reflected boundary annotations, enabling data-efficient training. Specifically, we propose a Boundary Reflection Agent that utilizes MLLMs to predict query-relevant timestamps outside the annotated intervals, allowing us to identify and filter out partially annotated samples, thereby reducing ambiguity. Furthermore, we introduce a Difficulty Estimation Agent to assess the training difficulty of each sample and design a curriculum RL strategy that dynamically masks the videos of hard-to-ground samples according to the training steps, easing the training difficulty and providing clearer preference. Experiments on the VTG and grounded VideoQA tasks demonstrate the effectiveness of our method. Remarkably, with only 10% of the training samples and 21% of the computational budget, VideoTG-R1 outperforms full-data counterparts under both group relative policy optimization (GRPO) and supervised fine-tuning (SFT). The code is available at https://github.com/ldong1111/VideoTG-R1.

Authors:Yifan Jiao, Xinran Liu, Xiaoqiong Liu, Xiaohui Yuan, Heng Fan, Libo Zhang
Title: PlanarTrack: A high-quality and challenging benchmark for large-scale planar object tracking
Abstract:
Planar tracking has drawn increasing interest owing to its key roles in robotics and augmented reality. Despite recent great advancement, further development of planar tracking, particularly in the deep learning era, is largely limited compared to generic tracking due to the lack of large-scale platforms. To mitigate this, we propose PlanarTrack, a large-scale high-quality and challenging benchmark for planar tracking. Specifically, PlanarTrack consists of 1,150 sequences with over 733K frames, including 1,000 short-term and 150 new long-term videos, which enables comprehensive evaluation of short- and long-term tracking performance. All videos in PlanarTrack are recorded in unconstrained conditions from the wild, which makes PlanarTrack challenging but more realistic for real-world applications. To ensure high-quality annotations, each video frame is manually annotated by four corner points with multi-round meticulous inspection and refinement. To enhance target diversity of PlanarTrack, we only capture a unique target in one sequence, which is different from existing benchmarks. To our best knowledge, PlanarTrack is by far the largest and most diverse and challenging dataset dedicated to planar tracking. To understand performance of existing methods on PlanarTrack and to provide a comparison for future research, we evaluate 10 representative planar trackers with extensive comparison and in-depth analysis. Our evaluation reveals that, unsurprisingly, the top planar trackers heavily degrade on the challenging PlanarTrack, which indicates more efforts are required for improving planar tracking. Our data and results will be released at https://github.com/HengLan/PlanarTrack

Authors:Jiahao Chang, Chongjie Ye, Yushuang Wu, Yuantao Chen, Yidan Zhang, Zhongjin Luo, Chenghong Li, Yihao Zhi, Xiaoguang Han
Title: ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Abstract:
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.

Authors:Yingying Feng, Jie Li, Jie Hu, Yukang Zhang, Lei Tan, Jiayi Ji
Title: MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification
Abstract:
Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8\%, 3.0\%, and 11.5\% in general modality-matched scenarios, and average gains of 3.4\%, 11.8\%, and 10.9\% in modality-mismatched scenarios, respectively. The code is available at: \textcolor{magenta}{https://github.com/stone96123/MDReID}.

Authors:Ruoyu Wang, Beier Zhu, Junzhi Li, Liangyu Yuan, Chi Zhang
Title: Adaptive Stochastic Coefficients for Accelerating Diffusion Sampling
Abstract:
Diffusion-based generative processes, formulated as differential equation solving, frequently balance computational speed with sample quality. Our theoretical investigation of ODE- and SDE-based solvers reveals complementary weaknesses: ODE solvers accumulate irreducible gradient error along deterministic trajectories, while SDE methods suffer from amplified discretization errors when the step budget is limited. Building upon this insight, we introduce AdaSDE, a novel single-step SDE solver that aims to unify the efficiency of ODEs with the error resilience of SDEs. Specifically, we introduce a single per-step learnable coefficient, estimated via lightweight distillation, which dynamically regulates the error correction strength to accelerate diffusion sampling. Notably, our framework can be integrated with existing solvers to enhance their capabilities. Extensive experiments demonstrate state-of-the-art performance: at 5 NFE, AdaSDE achieves FID scores of 4.18 on CIFAR-10, 8.05 on FFHQ and 6.96 on LSUN Bedroom. Codes are available in https://github.com/WLU-wry02/AdaSDE.

Authors:Veska Tsenkova, Peter Stanchev, Daniel Petrov, Deyan Lazarov
Title: hYOLO Model: Enhancing Object Classification with Hierarchical Context in YOLOv8
Abstract:
Current convolution neural network (CNN) classification methods are predominantly focused on flat classification which aims solely to identify a specified object within an image. However, real-world objects often possess a natural hierarchical organization that can significantly help classification tasks. Capturing the presence of relations between objects enables better contextual understanding as well as control over the severity of mistakes. Considering these aspects, this paper proposes an end-to-end hierarchical model for image detection and classification built upon the YOLO model family. A novel hierarchical architecture, a modified loss function, and a performance metric tailored to the hierarchical nature of the model are introduced. The proposed model is trained and evaluated on two different hierarchical categorizations of the same dataset: a systematic categorization that disregards visual similarities between objects and a categorization accounting for common visual characteristics across classes. The results illustrate how the suggested methodology addresses the inherent hierarchical structure present in real-world objects, which conventional flat classification algorithms often overlook.

Authors:Xinhai Wang, Shu Yang, Liangyu Wang, Lin Zhang, Huanyi Xie, Lijie Hu, Di Wang
Title: PAHQ: Accelerating Automated Circuit Discovery through Mixed-Precision Inference Optimization
Abstract:
Circuit discovery, which involves identifying sparse and task-relevant subnetworks in pre-trained language models, is a cornerstone of mechanistic interpretability. Automated Circuit Discovery (ACDC) has emerged as a pivotal methodology in circuit discovery, but its application to large language models is severely limited by computational inefficiency and prohibitively high memory requirements. Although several accelerated approaches have been proposed, they primarily rely on linear approximations to ACDC, which significantly compromises analytical faithfulness. Our proposed method for accelerating automated circuit discovery, Per Attention Head Quantization (PAHQ), takes a fundamentally different approach by optimizing the efficiency of each individual patching operation. PAHQ leverages a fundamental alignment between activation patching and mixed-precision quantization (MPQ): interpretability analysis through patching essentially performs targeted ablation studies. Therefore, we can maintain high precision exclusively for investigated components while safely reducing precision elsewhere in the network. PAHQ-accelerated ACDC reduces runtime by up to 80\% and memory consumption by up to 30\% compared to unaccelerated ACDC while maintaining faithfulness. Importantly, our method readily integrates with existing edge-based circuit discovery techniques by modifying the attention computation mechanism. This training-free approach provides a practical and novel pathway for accelerating mechanistic interpretability methods. Our code is available at https://github.com/626619403/PAHQ.

Authors:Sam Pollard, Michael Wray
Title: A Video Is Not Worth a Thousand Words
Abstract:
As we become increasingly dependent on vision language models (VLMs) to answer questions about the world around us, there is a significant amount of research devoted to increasing both the difficulty of video question answering (VQA) datasets, and the context lengths of the models that they evaluate. The reliance on large language models as backbones has lead to concerns about potential text dominance, and the exploration of interactions between modalities is underdeveloped. How do we measure whether we're heading in the right direction, with the complexity that multi-modal models introduce? We propose a joint method of computing both feature attributions and modality scores based on Shapley values, where both the features and modalities are arbitrarily definable. Using these metrics, we compare $6$ VLM models of varying context lengths on $4$ representative datasets, focusing on multiple-choice VQA. In particular, we consider video frames and whole textual elements as equal features in the hierarchy, and the multiple-choice VQA task as an interaction between three modalities: video, question and answer. Our results demonstrate a dependence on text and show that the multiple-choice VQA task devolves into a model's ability to ignore distractors. Code available at https://github.com/sjpollard/a-video-is-not-worth-a-thousand-words.

Authors:Lukas Bierling, Davide Pasero, Fleur Dolmans, Helia Ghasemi, Angelo Broere
Title: DecoDINO: 3D Human-Scene Contact Prediction with Semantic Classification
Abstract:
Accurate vertex-level contact prediction between humans and surrounding objects is a prerequisite for high fidelity human object interaction models used in robotics, AR/VR, and behavioral simulation. DECO was the first in the wild estimator for this task but is limited to binary contact maps and struggles with soft surfaces, occlusions, children, and false-positive foot contacts. We address these issues and introduce DecoDINO, a three-branch network based on DECO's framework. It uses two DINOv2 ViT-g/14 encoders, class-balanced loss weighting to reduce bias, and patch-level cross-attention for improved local reasoning. Vertex features are finally passed through a lightweight MLP with a softmax to assign semantic contact labels. We also tested a vision-language model (VLM) to integrate text features, but the simpler architecture performed better and was used instead. On the DAMON benchmark, DecoDINO (i) raises the binary-contact F1 score by 7$\%$, (ii) halves the geodesic error, and (iii) augments predictions with object-level semantic labels. Ablation studies show that LoRA fine-tuning and the dual encoders are key to these improvements. DecoDINO outperformed the challenge baseline in both tasks of the DAMON Challenge. Our code is available at https://github.com/DavidePasero/deco/tree/main.

Authors:Pascal Benschop, Cristian Meo, Justin Dauwels, Jelte P. Mense
Title: Evaluation of Vision-LLMs in Surveillance Video
Abstract:
The widespread use of cameras in our society has created an overwhelming amount of video data, far exceeding the capacity for human monitoring. This presents a critical challenge for public safety and security, as the timely detection of anomalous or criminal events is crucial for effective response and prevention. The ability for an embodied agent to recognize unexpected events is fundamentally tied to its capacity for spatial reasoning. This paper investigates the spatial reasoning of vision-language models (VLMs) by framing anomalous action recognition as a zero-shot, language-grounded task, addressing the embodied perception challenge of interpreting dynamic 3D scenes from sparse 2D video. Specifically, we investigate whether small, pre-trained vision--LLMs can act as spatially-grounded, zero-shot anomaly detectors by converting video into text descriptions and scoring labels via textual entailment. We evaluate four open models on UCF-Crime and RWF-2000 under prompting and privacy-preserving conditions. Few-shot exemplars can improve accuracy for some models, but may increase false positives, and privacy filters -- especially full-body GAN transforms -- introduce inconsistencies that degrade accuracy. These results chart where current vision--LLMs succeed (simple, spatially salient events) and where they falter (noisy spatial cues, identity obfuscation). Looking forward, we outline concrete paths to strengthen spatial grounding without task-specific training: structure-aware prompts, lightweight spatial memory across clips, scene-graph or 3D-pose priors during description, and privacy methods that preserve action-relevant geometry. This positions zero-shot, language-grounded pipelines as adaptable building blocks for embodied, real-world video understanding. Our implementation for evaluating VLMs is publicly available at: https://github.com/pascalbenschopTU/VLLM_AnomalyRecognition

Authors:Shuai Huang, Wenxuan Zhao, Jun Gao
Title: SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
Abstract:
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.

Authors:Shiwei Li, Xiandi Luo, Haozhao Wang, Xing Tang, Ziqiang Cui, Dugang Liu, Yuhua Li, Xiuqiang He, Ruixuan Li
Title: Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation
Abstract:
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $BΣ_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $Σ_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.

Authors:Yi-Lin Wei, Zhexi Luo, Yuhao Lin, Mu Lin, Zhizhao Liang, Shuoyu Chen, Wei-Shi Zheng
Title: OmniDexGrasp: Generalizable Dexterous Grasping via Foundation Model and Force Feedback
Abstract:
Enabling robots to dexterously grasp and manipulate objects based on human commands is a promising direction in robotics. However, existing approaches are challenging to generalize across diverse objects or tasks due to the limited scale of semantic dexterous grasp datasets. Foundation models offer a new way to enhance generalization, yet directly leveraging them to generate feasible robotic actions remains challenging due to the gap between abstract model knowledge and physical robot execution. To address these challenges, we propose OmniDexGrasp, a generalizable framework that achieves omni-capabilities in user prompting, dexterous embodiment, and grasping tasks by combining foundation models with the transfer and control strategies. OmniDexGrasp integrates three key modules: (i) foundation models are used to enhance generalization by generating human grasp images supporting omni-capability of user prompt and task; (ii) a human-image-to-robot-action transfer strategy converts human demonstrations into executable robot actions, enabling omni dexterous embodiment; (iii) force-aware adaptive grasp strategy ensures robust and stable grasp execution. Experiments in simulation and on real robots validate the effectiveness of OmniDexGrasp on diverse user prompts, grasp task and dexterous hands, and further results show its extensibility to dexterous manipulation tasks.

Authors:Omer Jauhar Khan, Sudais Khan, Hafeez Anwar
Title: Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Abstract:
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.

Authors:Hebaixu Wang, Jing Zhang, Haoyang Chen, Haonan Guo, Di Wang, Jiayi Ma, Bo Du
Title: Residual Diffusion Bridge Model for Image Restoration
Abstract:
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.

Authors:Tomáš Sourada, Jana Straková
Title: Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
Abstract:
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.

Authors:Felix Koehler, Nils Thuerey
Title: Neural Emulator Superiority: When Machine Learning for PDEs Surpasses its Training Data
Abstract:
Neural operators or emulators for PDEs trained on data from numerical solvers are conventionally assumed to be limited by their training data's fidelity. We challenge this assumption by identifying "emulator superiority," where neural networks trained purely on low-fidelity solver data can achieve higher accuracy than those solvers when evaluated against a higher-fidelity reference. Our theoretical analysis reveals how the interplay between emulator inductive biases, training objectives, and numerical error characteristics enables superior performance during multi-step rollouts. We empirically validate this finding across different PDEs using standard neural architectures, demonstrating that emulators can implicitly learn dynamics that are more regularized or exhibit more favorable error accumulation properties than their training data, potentially surpassing training data limitations and mitigating numerical artifacts. This work prompts a re-evaluation of emulator benchmarking, suggesting neural emulators might achieve greater physical fidelity than their training source within specific operational regimes. Project Page: https://tum-pbs.github.io/emulator-superiority

Authors:Jiyoung Hong, Yoonseo Chung, Seungyeon Oh, Juntae Kim, Jiyoung Lee, Sookyung Kim, Hyunsoo Cho
Title: TwinShift: Benchmarking Audio Deepfake Detection across Synthesizer and Speaker Shifts
Abstract:
Audio deepfakes pose a growing threat, already exploited in fraud and misinformation. A key challenge is ensuring detectors remain robust to unseen synthesis methods and diverse speakers, since generation techniques evolve quickly. Despite strong benchmark results, current systems struggle to generalize to new conditions limiting real-world reliability. To address this, we introduce TWINSHIFT, a benchmark explicitly designed to evaluate detection robustness under strictly unseen conditions. Our benchmark is constructed from six different synthesis systems, each paired with disjoint sets of speakers, allowing for a rigorous assessment of how well detectors generalize when both the generative model and the speaker identity change. Through extensive experiments, we show that TWINSHIFT reveals important robustness gaps, uncover overlooked limitations, and provide principled guidance for developing ADD systems. The TWINSHIFT benchmark can be accessed at https://github.com/intheMeantime/TWINSHIFT.

Authors:Jie Huang, Xuejing Liu, Sibo Song, Ruibing Hou, Hong Chang, Junyang Lin, Shuai Bai
Title: Revisiting Multimodal Positional Encoding in Vision-Language Models
Abstract:
Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors-ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding. Code will be avaliable at https://github.com/JJJYmmm/Multimodal-RoPEs.

Authors:Hiromu Takahashi, Shotaro Ishihara
Title: Fast-MIA: Efficient and Scalable Membership Inference for LLMs
Abstract:
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.

Authors:Ella Dodor, Cristina V. Lopes
Title: Checkstyle+: Reducing Technical Debt Through The Use of Linters with LLMs
Abstract:
Good code style improves program readability, maintainability, and collaboration, and is an integral component of software quality. Developers, however, often cut corners when following style rules, leading to the wide adoption of tools such as linters in professional software development projects. Traditional linters like Checkstyle operate using rigid, rule-based mechanisms that effectively detect many surface-level violations. However, in most programming languages, there is a subset of style rules that require a more nuanced understanding of code, and fall outside the scope of such static analysis. In this paper, we propose Checkstyle+, a hybrid approach that augments Checkstyle with large language model (LLM) capabilities, to identify style violations that elude the conventional rule-based analysis. Checkstyle+ is evaluated on a sample of 380 Java code files, drawn from a broader dataset of 30,800 real-world Java programs sourced from accepted Codeforces submissions. The results show that Checkstyle+ achieves superior performance over standard Checkstyle in detecting violations of the semantically nuanced rules.

Authors:Oskar Natan, Jun Miura
Title: Seq-DeepIPC: Sequential Sensing for End-to-End Control in Legged Robot Navigation
Abstract:
We present Seq-DeepIPC, a sequential end-to-end perception-to-control model for legged robot navigation in realworld environments. Seq-DeepIPC advances intelligent sensing for autonomous legged navigation by tightly integrating multi-modal perception (RGB-D + GNSS) with temporal fusion and control. The model jointly predicts semantic segmentation and depth estimation, giving richer spatial features for planning and control. For efficient deployment on edge devices, we use EfficientNet-B0 as the encoder, reducing computation while maintaining accuracy. Heading estimation is simplified by removing the noisy IMU and instead computing the bearing angle directly from consecutive GNSS positions. We collected a larger and more diverse dataset that includes both road and grass terrains, and validated Seq-DeepIPC on a robot dog. Comparative and ablation studies show that sequential inputs improve perception and control in our models, while other baselines do not benefit. Seq-DeepIPC achieves competitive or better results with reasonable model size; although GNSS-only heading is less reliable near tall buildings, it is robust in open areas. Overall, Seq-DeepIPC extends end-to-end navigation beyond wheeled robots to more versatile and temporally-aware systems. To support future research, we will release the codes to our GitHub repository at https://github.com/oskarnatan/Seq-DeepIPC.

Authors:Subhojyoti Khastagir, Kishalay Das, Pawan Goyal, Seung-Cheol Lee, Satadeep Bhattacharjee, Niloy Ganguly
Title: LLM Meets Diffusion: A Hybrid Framework for Crystal Material Generation
Abstract:
Recent advances in generative modeling have shown significant promise in designing novel periodic crystal structures. Existing approaches typically rely on either large language models (LLMs) or equivariant denoising models, each with complementary strengths: LLMs excel at handling discrete atomic types but often struggle with continuous features such as atomic positions and lattice parameters, while denoising models are effective at modeling continuous variables but encounter difficulties in generating accurate atomic compositions. To bridge this gap, we propose CrysLLMGen, a hybrid framework that integrates an LLM with a diffusion model to leverage their complementary strengths for crystal material generation. During sampling, CrysLLMGen first employs a fine-tuned LLM to produce an intermediate representation of atom types, atomic coordinates, and lattice structure. While retaining the predicted atom types, it passes the atomic coordinates and lattice structure to a pre-trained equivariant diffusion model for refinement. Our framework outperforms state-of-the-art generative models across several benchmark tasks and datasets. Specifically, CrysLLMGen not only achieves a balanced performance in terms of structural and compositional validity but also generates more stable and novel materials compared to LLM-based and denoisingbased models Furthermore, CrysLLMGen exhibits strong conditional generation capabilities, effectively producing materials that satisfy user-defined constraints. Code is available at https://github.com/kdmsit/crysllmgen

Authors:Youcan Xu, Zhen Wang, Jiaxin Shi, Kexin Li, Feifei Shao, Jun Xiao, Yi Yang, Jun Yu, Long Chen
Title: CoMo: Compositional Motion Customization for Text-to-Video Generation
Abstract:
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.

Authors:Md Mostafijur Rahman, Radu Marculescu
Title: LoMix: Learnable Weighted Multi-Scale Logits Mixing for Medical Image Segmentation
Abstract:
U-shaped networks output logits at multiple spatial scales, each capturing a different blend of coarse context and fine detail. Yet, training still treats these logits in isolation - either supervising only the final, highest-resolution logits or applying deep supervision with identical loss weights at every scale - without exploring mixed-scale combinations. Consequently, the decoder output misses the complementary cues that arise only when coarse and fine predictions are fused. To address this issue, we introduce LoMix (Logits Mixing), a NAS-inspired, differentiable plug-and-play module that generates new mixed-scale outputs and learns how exactly each of them should guide the training process. More precisely, LoMix mixes the multi-scale decoder logits with four lightweight fusion operators: addition, multiplication, concatenation, and attention-based weighted fusion, yielding a rich set of synthetic mutant maps. Every original or mutant map is given a softplus loss weight that is co-optimized with network parameters, mimicking a one-step architecture search that automatically discovers the most useful scales, mixtures, and operators. Plugging LoMix into recent U-shaped architectures (i.e., PVT-V2-B2 backbone with EMCAD decoder) on Synapse 8-organ dataset improves DICE by +4.2% over single-output supervision, +2.2% over deep supervision, and +1.5% over equally weighted additive fusion, all with zero inference overhead. When training data are scarce (e.g., one or two labeled scans), the advantage grows to +9.23%, underscoring LoMix's data efficiency. Across four benchmarks and diverse U-shaped networks, LoMiX improves DICE by up to +13.5% over single-output supervision, confirming that learnable weighted mixed-scale fusion generalizes broadly while remaining data efficient, fully interpretable, and overhead-free at inference. Our code is available at https://github.com/SLDGroup/LoMix.

Authors:Quanjian Song, Donghao Zhou, Jingyu Lin, Fei Shen, Jiaze Wang, Xiaowei Hu, Cunjian Chen, Pheng-Ann Heng
Title: SceneDecorator: Towards Scene-Oriented Story Generation with Scene Planning and Scene Consistency
Abstract:
Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces scene-oriented story generation, addressing two key challenges: (i) scene planning, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) scene consistency, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose SceneDecorator, a training-free framework that employs VLM-Guided Scene Planning to ensure narrative coherence across different scenes in a ``global-to-local'' manner, and Long-Term Scene-Sharing Attention to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.

Authors:Bohan Li, Xin Jin, Hu Zhu, Hongsi Liu, Ruikai Li, Jiazhe Guo, Kaiwen Cai, Chao Ma, Yueming Jin, Hao Zhao, Xiaokang Yang, Wenjun Zeng
Title: Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method
Abstract:
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2

Authors:Matthew So, Judah Goldfeder, Mark Lis, Hod Lipson
Title: Bi-Encoder Contrastive Learning for Fingerprint and Iris Biometrics
Abstract:
There has been a historic assumption that the biometrics of an individual are statistically uncorrelated. We test this assumption by training Bi-Encoder networks on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects with $\sim$100k fingerprints and 7k iris images. We trained ResNet-50 and Vision Transformer backbones in Bi-Encoder architectures such that the contrastive loss between images sampled from the same individual is minimized. The iris ResNet architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear evidence that the left and right irises of an individual are correlated. Fingerprint models reproduce the positive intra-subject suggested by prior work in this space. This is the first work attempting to use Vision Transformers for this matching. Cross-modal matching rises only slightly above chance, which suggests that more data and a more sophisticated pipeline is needed to obtain compelling results. These findings continue challenge independence assumptions of biometrics and we plan to extend this work to other biometrics in the future. Code available: https://github.com/MatthewSo/bio_fingerprints_iris.

Authors:Daniel Sin, Milad Toutounchian
Title: Towards Personalized Treatment Plan: Geometrical Model-Agnostic Approach to Counterfactual Explanations
Abstract:
In our article, we describe a method for generating counterfactual explanations in high-dimensional spaces using four steps that involve fitting our dataset to a model, finding the decision boundary, determining constraints on the problem, and computing the closest point (counterfactual explanation) from that boundary. We propose a discretized approach where we find many discrete points on the boundary and then identify the closest feasible counterfactual explanation. This method, which we later call $\textit{Segmented Sampling for Boundary Approximation}$ (SSBA), applies binary search to find decision boundary points and then searches for the closest boundary point. Across four datasets of varying dimensionality, we show that our method can outperform current methods for counterfactual generation with reductions in distance between $5\%$ to $50\%$ in terms of the $L_2$ norm. Our method can also handle real-world constraints by restricting changes to immutable and categorical features, such as age, gender, sex, height, and other related characteristics such as the case for a health-based dataset. In terms of runtime, the SSBA algorithm generates decision boundary points on multiple orders of magnitude in the same given time when we compare to a grid-based approach. In general, our method provides a simple and effective model-agnostic method that can compute nearest feasible (i.e. realistic with constraints) counterfactual explanations. All of our results and code are available at: https://github.com/dsin85691/SSBA_For_Counterfactuals

Authors:Yifan Zhang, Lanser Contributors
Title: Language Server CLI Empowers Language Agents with Process Rewards
Abstract:
Large language models routinely hallucinate APIs and mislocalize edits, while language servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding agents and CI, exposing deterministic, replayable workflows. Our position is that language servers provide not only structural information (definitions, references, types, diagnostics) but also an actionable process reward: machine-checked, step-wise signals that align an agent's planning loop with program reality. In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle "file:line:col" via a Selector DSL (symbolic, AST-path, and content-anchored selectors) with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Language Server responses and capture environment/capability metadata with stable content hashes; (iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that is computable online and replayable offline. We formalize determinism under frozen snapshots and establish a monotonicity property for the process reward, making it suitable for process supervision and counterfactual analysis. Project Page: https://github.com/yifanzhang-pro/lanser-cli

Authors:Duong M. Nguyen, Trong Nghia Hoang, Thanh Trung Huynh, Quoc Viet Hung Nguyen, Phi Le Nguyen
Title: Learning Reconfigurable Representations for Multimodal Federated Learning with Missing Data
Abstract:
Multimodal federated learning in real-world settings often encounters incomplete and heterogeneous data across clients. This results in misaligned local feature representations that limit the effectiveness of model aggregation. Unlike prior work that assumes either differing modality sets without missing input features or a shared modality set with missing features across clients, we consider a more general and realistic setting where each client observes a different subset of modalities and might also have missing input features within each modality. To address the resulting misalignment in learned representations, we propose a new federated learning framework featuring locally adaptive representations based on learnable client-side embedding controls that encode each client's data-missing patterns. These embeddings serve as reconfiguration signals that align the globally aggregated representation with each client's local context, enabling more effective use of shared information. Furthermore, the embedding controls can be algorithmically aggregated across clients with similar data-missing patterns to enhance the robustness of reconfiguration signals in adapting the global representation. Empirical results on multiple federated multimodal benchmarks with diverse data-missing patterns across clients demonstrate the efficacy of the proposed method, achieving up to 36.45\% performance improvement under severe data incompleteness. The method is also supported by a theoretical analysis with an explicit performance bound that matches our empirical observations. Our source codes are provided at https://github.com/nmduonggg/PEPSY

Authors:Ranran Haoran Zhang, Soumik Dey, Ashirbad Mishra, Hansi Wu, Binbin Li, Rui Zhang
Title: Batch Speculative Decoding Done Right
Abstract:
Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3$\times$ throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.

Authors:Marianne Arriola, Yair Schiff, Hao Phung, Aaron Gokaslan, Volodymyr Kuleshov
Title: Encoder-Decoder Diffusion Language Models for Efficient Training and Inference
Abstract:
Discrete diffusion models enable parallel token sampling for faster inference than autoregressive approaches. However, prior diffusion models use a decoder-only architecture, which requires sampling algorithms that invoke the full network at every denoising step and incur high computational cost. Our key insight is that discrete diffusion models perform two types of computation: 1) representing clean tokens and 2) denoising corrupted tokens, which enables us to use separate modules for each task. We propose an encoder-decoder architecture to accelerate discrete diffusion inference, which relies on an encoder to represent clean tokens and a lightweight decoder to iteratively refine a noised sequence. We also show that this architecture enables faster training of block diffusion models, which partition sequences into blocks for better quality and are commonly used in diffusion language model inference. We introduce a framework for Efficient Encoder-Decoder Diffusion (E2D2), consisting of an architecture with specialized training and sampling algorithms, and we show that E2D2 achieves superior trade-offs between generation quality and inference throughput on summarization, translation, and mathematical reasoning tasks. We provide the code, model weights, and blog post on the project page: https://m-arriola.com/e2d2

Authors:Lexiang Xiong, Chengyu Liu, Jingwen Ye, Yan Liu, Yuecong Xu
Title: Semantic Surgery: Zero-Shot Concept Erasure in Diffusion Models
Abstract:
Concept erasure in text-to-image diffusion models is crucial for mitigating harmful content, yet existing methods often compromise generative quality. We introduce Semantic Surgery, a novel training-free, zero-shot framework for concept erasure that operates directly on text embeddings before the diffusion process. It dynamically estimates the presence of target concepts in a prompt and performs a calibrated vector subtraction to neutralize their influence at the source, enhancing both erasure completeness and locality. The framework includes a Co-Occurrence Encoding module for robust multi-concept erasure and a visual feedback loop to address latent concept persistence. As a training-free method, Semantic Surgery adapts dynamically to each prompt, ensuring precise interventions. Extensive experiments on object, explicit content, artistic style, and multi-celebrity erasure tasks show our method significantly outperforms state-of-the-art approaches. We achieve superior completeness and robustness while preserving locality and image quality (e.g., 93.58 H-score in object erasure, reducing explicit content to just 1 instance, and 8.09 H_a in style erasure with no quality degradation). This robustness also allows our framework to function as a built-in threat detection system, offering a practical solution for safer text-to-image generation.

Authors:Omri Hirsch, Ron Shapira Weber, Shira Ifergane, Oren Freifeld
Title: FastJAM: a Fast Joint Alignment Model for Images
Abstract:
Joint Alignment (JA) of images aims to align a collection of images into a unified coordinate frame, such that semantically-similar features appear at corresponding spatial locations. Most existing approaches often require long training times, large-capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a rapid, graph-based method that drastically reduces the computational complexity of joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-shelf image matcher, together with a rapid nonparametric clustering, to construct a graph representing intra- and inter-image keypoint relations. A graph neural network propagates and aggregates these correspondences, efficiently predicting per-image homography parameters via image-level pooling. Utilizing an inverse-compositional loss, that eliminates the need for a regularization term over the predicted transformations (and thus also obviates the hyperparameter tuning associated with such terms), FastJAM performs image JA quickly and effectively. Experimental results on several benchmarks demonstrate that FastJAM achieves results better than existing modern JA methods in terms of alignment quality, while reducing computation time from hours or minutes to mere seconds. Our code is available at our project webpage, https://bgu-cs-vil.github.io/FastJAM/

Authors:Guanyu Yao, Qiucheng Wu, Yang Zhang, Zhaowen Wang, Handong Zhao, Shiyu Chang
Title: Rethinking the Text-Vision Reasoning Imbalance in MLLMs through the Lens of Training Recipes
Abstract:
Multimodal large language models (MLLMs) have demonstrated strong capabilities on vision-and-language tasks. However, recent findings reveal an imbalance in their reasoning capabilities across visual and textual modalities. Specifically, current MLLMs often over-rely on textual cues while under-attending to visual content, resulting in suboptimal performance on tasks that require genuine visual reasoning. We refer to this phenomenon as the \textit{modality gap}, defined as the performance disparity between text-centric and vision-centric inputs. In this paper, we analyze the modality gap through the lens of training recipes. We first show that existing training recipes tend to amplify this gap. Then, we systematically explore strategies to bridge it from two complementary perspectives: data and loss design. Our findings provide insights into developing training recipes that mitigate the modality gap and promote more balanced multimodal reasoning. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Bridging-Modality-Gap.

Authors:Aleksandar Pramov
Title: LLM-based Fusion of Multi-modal Features for Commercial Memorability Prediction
Abstract:
This paper addresses the prediction of commercial (brand) memorability as part of "Subtask 2: Commercial/Ad Memorability" within the "Memorability: Predicting movie and commercial memorability" task at the MediaEval 2025 workshop competition. We propose a multimodal fusion system with a Gemma-3 LLM backbone that integrates pre-computed visual (ViT) and textual (E5) features by multi-modal projections. The model is adapted using Low-Rank Adaptation (LoRA). A heavily-tuned ensemble of gradient boosted trees serves as a baseline. A key contribution is the use of LLM-generated rationale prompts, grounded in expert-derived aspects of memorability, to guide the fusion model. The results demonstrate that the LLM-based system exhibits greater robustness and generalization performance on the final test set, compared to the baseline. The paper's codebase can be found at https://github.com/dsgt-arc/mediaeval-2025-memorability

Authors:Yizhuo Wu, Francesco Fioranelli, Chang Gao
Title: Neural-HAR: A Dimension-Gated CNN Accelerator for Real-Time Radar Human Activity Recognition
Abstract:
Radar-based human activity recognition (HAR) is attractive for unobtrusive and privacy-preserving monitoring, yet many CNN/RNN solutions remain too heavy for edge deployment, and even lightweight ViT/SSM variants often exceed practical compute and memory budgets. We introduce Neural-HAR, a dimension-gated CNN accelerator tailored for real-time radar HAR on resource-constrained platforms. At its core is GateCNN, a parameter-efficient Doppler-temporal network that (i) embeds Doppler vectors to emphasize frequency evolution over time and (ii) applies dual-path gated convolutions that modulate Doppler-aware content features with temporal gates, complemented by a residual path for stable training. On the University of Glasgow UoG2020 continuous radar dataset, GateCNN attains 86.4% accuracy with only 2.7k parameters and 0.28M FLOPs per inference, comparable to CNN-BiGRU at a fraction of the complexity. Our FPGA prototype on Xilinx Zynq-7000 Z-7007S reaches 107.5 $μ$s latency and 15 mW dynamic power using LUT-based ROM and distributed RAM only (zero DSP/BRAM), demonstrating real-time, energy-efficient edge inference. Code and HLS conversion scripts are available at https://github.com/lab-emi/AIRHAR.

Authors:Sai Krishna Ghanta, Ramviyas Parasuraman
Title: Policies over Poses: Reinforcement Learning based Distributed Pose-Graph Optimization for Multi-Robot SLAM
Abstract:
We consider the distributed pose-graph optimization (PGO) problem, which is fundamental in accurate trajectory estimation in multi-robot simultaneous localization and mapping (SLAM). Conventional iterative approaches linearize a highly non-convex optimization objective, requiring repeated solving of normal equations, which often converge to local minima and thus produce suboptimal estimates. We propose a scalable, outlier-robust distributed planar PGO framework using Multi-Agent Reinforcement Learning (MARL). We cast distributed PGO as a partially observable Markov game defined on local pose-graphs, where each action refines a single edge's pose estimate. A graph partitioner decomposes the global pose graph, and each robot runs a recurrent edge-conditioned Graph Neural Network (GNN) encoder with adaptive edge-gating to denoise noisy edges. Robots sequentially refine poses through a hybrid policy that utilizes prior action memory and graph embeddings. After local graph correction, a consensus scheme reconciles inter-robot disagreements to produce a globally consistent estimate. Our extensive evaluations on a comprehensive suite of synthetic and real-world datasets demonstrate that our learned MARL-based actors reduce the global objective by an average of 37.5% more than the state-of-the-art distributed PGO framework, while enhancing inference efficiency by at least 6X. We also demonstrate that actor replication allows a single learned policy to scale effortlessly to substantially larger robot teams without any retraining. Code is publicly available at https://github.com/herolab-uga/policies-over-poses.

Authors:Ningli Xu, Rongjun Qin
Title: Cross-view Localization and Synthesis -- Datasets, Challenges and Opportunities
Abstract:
Cross-view localization and synthesis are two fundamental tasks in cross-view visual understanding, which deals with cross-view datasets: overhead (satellite or aerial) and ground-level imagery. These tasks have gained increasing attention due to their broad applications in autonomous navigation, urban planning, and augmented reality. Cross-view localization aims to estimate the geographic position of ground-level images based on information provided by overhead imagery while cross-view synthesis seeks to generate ground-level images based on information from the overhead imagery. Both tasks remain challenging due to significant differences in viewing perspective, resolution, and occlusion, which are widely embedded in cross-view datasets. Recent years have witnessed rapid progress driven by the availability of large-scale datasets and novel approaches. Typically, cross-view localization is formulated as an image retrieval problem where ground-level features are matched with tiled overhead images feature, extracted by convolutional neural networks (CNNs) or vision transformers (ViTs) for cross-view feature embedding. Cross-view synthesis, on the other hand, seeks to generate ground-level views based on information from overhead imagery, generally using generative adversarial networks (GANs) or diffusion models. This paper presents a comprehensive survey of advances in cross-view localization and synthesis, reviewing widely used datasets, highlighting key challenges, and providing an organized overview of state-of-the-art techniques. Furthermore, it discusses current limitations, offers comparative analyses, and outlines promising directions for future research. We also include the project page via https://github.com/GDAOSU/Awesome-Cross-View-Methods.

Authors:Qi Liu, Yanzhao Zhang, Mingxin Li, Dingkun Long, Pengjun Xie, Jiaxin Mao
Title: $\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Abstract:
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Authors:Hao Li, Zhengyu Zou, Fangfu Liu, Xuanyang Zhang, Fangzhou Hong, Yukang Cao, Yushi Lan, Manyuan Zhang, Gang Yu, Dingwen Zhang, Ziwei Liu
Title: IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction
Abstract:
Humans naturally perceive the geometric structure and semantic content of a 3D world as intertwined dimensions, enabling coherent and accurate understanding of complex scenes. However, most prior approaches prioritize training large geometry models for low-level 3D reconstruction and treat high-level spatial understanding in isolation, overlooking the crucial interplay between these two fundamental aspects of 3D-scene analysis, thereby limiting generalization and leading to poor performance in downstream 3D understanding tasks. Recent attempts have mitigated this issue by simply aligning 3D models with specific language models, thus restricting perception to the aligned model's capacity and limiting adaptability to downstream tasks. In this paper, we propose InstanceGrounded Geometry Transformer (IGGT), an end-to-end large unified transformer to unify the knowledge for both spatial reconstruction and instance-level contextual understanding. Specifically, we design a 3D-Consistent Contrastive Learning strategy that guides IGGT to encode a unified representation with geometric structures and instance-grounded clustering through only 2D visual inputs. This representation supports consistent lifting of 2D visual inputs into a coherent 3D scene with explicitly distinct object instances. To facilitate this task, we further construct InsScene-15K, a large-scale dataset with high-quality RGB images, poses, depth maps, and 3D-consistent instance-level mask annotations with a novel data curation pipeline.

Authors:Wenlong Li, Yifei Xu, Yuan Rao, Zhenhua Wang, Shuiguang Deng
Title: VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree
Abstract:
Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.

Authors:Jinpeng Dong, Chen Li, Yutong Lin, Jingwen Fu, Sanping Zhou, Nanning Zheng
Title: DAMap: Distance-aware MapNet for High Quality HD Map Construction
Abstract:
Predicting High-definition (HD) map elements with high quality (high classification and localization scores) is crucial to the safety of autonomous driving vehicles. However, current methods perform poorly in high quality predictions due to inherent task misalignment. Two main factors are responsible for misalignment: 1) inappropriate task labels due to one-to-many matching queries sharing the same labels, and 2) sub-optimal task features due to task-shared sampling mechanism. In this paper, we reveal two inherent defects in current methods and develop a novel HD map construction method named DAMap to address these problems. Specifically, DAMap consists of three components: Distance-aware Focal Loss (DAFL), Hybrid Loss Scheme (HLS), and Task Modulated Deformable Attention (TMDA). The DAFL is introduced to assign appropriate classification labels for one-to-many matching samples. The TMDA is proposed to obtain discriminative task-specific features. Furthermore, the HLS is proposed to better utilize the advantages of the DAFL. We perform extensive experiments and consistently achieve performance improvement on the NuScenes and Argoverse2 benchmarks under different metrics, baselines, splits, backbones, and schedules. Code will be available at https://github.com/jpdong-xjtu/DAMap.

Authors:Hagay Michaeli, Daniel Soudry
Title: Alias-Free ViT: Fractional Shift Invariance via Linear Attention
Abstract:
Transformers have emerged as a competitive alternative to convnets in vision tasks, yet they lack the architectural inductive bias of convnets, which may hinder their potential performance. Specifically, Vision Transformers (ViTs) are not translation-invariant and are more sensitive to minor image translations than standard convnets. Previous studies have shown, however, that convnets are also not perfectly shift-invariant, due to aliasing in downsampling and nonlinear layers. Consequently, anti-aliasing approaches have been proposed to certify convnets' translation robustness. Building on this line of work, we propose an Alias-Free ViT, which combines two main components. First, it uses alias-free downsampling and nonlinearities. Second, it uses linear cross-covariance attention that is shift-equivariant to both integer and fractional translations, enabling a shift-invariant global representation. Our model maintains competitive performance in image classification and outperforms similar-sized models in terms of robustness to adversarial translations.

Authors:Berken Utku Demirel, Christian Holz
Title: Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections
Abstract:
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data. Most SSL approaches rely on strong, well-established, handcrafted data augmentations to generate diverse views for representation learning. However, designing such augmentations requires domain-specific knowledge and implicitly imposes representational invariances on the model, which can limit generalization. In this work, we propose an unsupervised representation learning method that replaces augmentations by generating views using orthonormal bases and overcomplete frames. We show that embeddings learned from orthonormal and overcomplete spaces reside on distinct manifolds, shaped by the geometric biases introduced by representing samples in different spaces. By jointly leveraging the complementary geometry of these distinct manifolds, our approach achieves superior performance without artificially increasing data diversity through strong augmentations. We demonstrate the effectiveness of our method on nine datasets across five temporal sequence tasks, where signal-specific characteristics make data augmentations particularly challenging. Without relying on augmentation-induced diversity, our method achieves performance gains of up to 15--20\% over existing self-supervised approaches. Source code: https://github.com/eth-siplab/Learning-with-FrameProjections

Authors:Lu Xu, Tsai Hor Chan, Kwok Fai Lam, Lequan Yu, Guosheng Yin
Title: Variational Polya Tree
Abstract:
Density estimation is essential for generative modeling, particularly with the rise of modern neural networks. While existing methods capture complex data distributions, they often lack interpretability and uncertainty quantification. Bayesian nonparametric methods, especially the \polya tree, offer a robust framework that addresses these issues by accurately capturing function behavior over small intervals. Traditional techniques like Markov chain Monte Carlo (MCMC) face high computational complexity and scalability limitations, hindering the use of Bayesian nonparametric methods in deep learning. To tackle this, we introduce the variational \polya tree (VPT) model, which employs stochastic variational inference to compute posterior distributions. This model provides a flexible, nonparametric Bayesian prior that captures latent densities and works well with stochastic gradient optimization. We also leverage the joint distribution likelihood for a more precise variational posterior approximation than traditional mean-field methods. We evaluate the model performance on both real data and images, and demonstrate its competitiveness with other state-of-the-art deep density estimation methods. We also explore its ability in enhancing interpretability and uncertainty quantification. Code is available at https://github.com/howardchanth/var-polya-tree.

Authors:He Huang, Qi Yang, Yiling Xu, Zhu Li, Jenq-Neng Hwang
Title: TVMC: Time-Varying Mesh Compression via Multi-Stage Anchor Mesh Generation
Abstract:
Time-varying meshes, characterized by dynamic connectivity and varying vertex counts, hold significant promise for applications such as augmented reality. However, their practical utilization remains challenging due to the substantial data volume required for high-fidelity representation. While various compression methods attempt to leverage temporal redundancy between consecutive mesh frames, most struggle with topological inconsistency and motion-induced artifacts. To address these issues, we propose Time-Varying Mesh Compression (TVMC), a novel framework built on multi-stage coarse-to-fine anchor mesh generation for inter-frame prediction. Specifically, the anchor mesh is progressively constructed in three stages: initial, coarse, and fine. The initial anchor mesh is obtained through fast topology alignment to exploit temporal coherence. A Kalman filter-based motion estimation module then generates a coarse anchor mesh by accurately compensating inter-frame motions. Subsequently, a Quadric Error Metric-based refinement step optimizes vertex positions to form a fine anchor mesh with improved geometric fidelity. Based on the refined anchor mesh, the inter-frame motions relative to the reference base mesh are encoded, while the residual displacements between the subdivided fine anchor mesh and the input mesh are adaptively quantized and compressed. This hierarchical strategy preserves consistent connectivity and high-quality surface approximation, while achieving an efficient and compact representation of dynamic geometry. Extensive experiments on standard MPEG dynamic mesh sequences demonstrate that TVMC achieves state-of-the-art compression performance. Compared to the latest V-DMC standard, it delivers a significant BD-rate gain of 10.2% ~ 16.9%, while preserving high reconstruction quality. The code is available at https://github.com/H-Huang774/TVMC.

Authors:Sofiane Ennadir, Oleg Smirnov, Yassine Abbahaddou, Lele Cao, Johannes F. Lutzeyer
Title: Enhancing Graph Classification Robustness with Singular Pooling
Abstract:
Graph Neural Networks (GNNs) have achieved strong performance across a range of graph representation learning tasks, yet their adversarial robustness in graph classification remains underexplored compared to node classification. While most existing defenses focus on the message-passing component, this work investigates the overlooked role of pooling operations in shaping robustness. We present a theoretical analysis of standard flat pooling methods (sum, average and max), deriving upper bounds on their adversarial risk and identifying their vulnerabilities under different attack scenarios and graph structures. Motivated by these insights, we propose \textit{Robust Singular Pooling (RS-Pool)}, a novel pooling strategy that leverages the dominant singular vector of the node embedding matrix to construct a robust graph-level representation. We theoretically investigate the robustness of RS-Pool and interpret the resulting bound leading to improved understanding of our proposed pooling operator. While our analysis centers on Graph Convolutional Networks (GCNs), RS-Pool is model-agnostic and can be implemented efficiently via power iteration. Empirical results on real-world benchmarks show that RS-Pool provides better robustness than the considered pooling methods when subject to state-of-the-art adversarial attacks while maintaining competitive clean accuracy. Our code is publicly available at:\href{https://github.com/king/rs-pool}{https://github.com/king/rs-pool}.

Authors:Jose Luis Ponton, Sheldon Andrews, Carlos Andujar, Nuria Pelechano
Title: Environment-aware Motion Matching
Abstract:
Interactive applications demand believable characters that respond naturally to dynamic environments. Traditional character animation techniques often struggle to handle arbitrary situations, leading to a growing trend of dynamically selecting motion-captured animations based on predefined features. While Motion Matching has proven effective for locomotion by aligning to target trajectories, animating environment interactions and crowd behaviors remains challenging due to the need to consider surrounding elements. Existing approaches often involve manual setup or lack the naturalism of motion capture. Furthermore, in crowd animation, body animation is frequently treated as a separate process from trajectory planning, leading to inconsistencies between body pose and root motion. To address these limitations, we present Environment-aware Motion Matching, a novel real-time system for full-body character animation that dynamically adapts to obstacles and other agents, emphasizing the bidirectional relationship between pose and trajectory. In a preprocessing step, we extract shape, pose, and trajectory features from a motion capture database. At runtime, we perform an efficient search that matches user input and current pose while penalizing collisions with a dynamic environment. Our method allows characters to naturally adjust their pose and trajectory to navigate crowded scenes.

Authors:Anand, Umberto Cappellazzo, Stavros Petridis, Maja Pantic
Title: Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMS
Abstract:
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.

Authors:Boyi Zheng, Yalin Zheng, Hrvoje Bogunović, Qing Liu
Title: PSScreen V2: Partially Supervised Multiple Retinal Disease Screening
Abstract:
In this work, we propose PSScreen V2, a partially supervised self-training framework for multiple retinal disease screening. Unlike previous methods that rely on fully labelled or single-domain datasets, PSScreen V2 is designed to learn from multiple partially labelled datasets with different distributions, addressing both label absence and domain shift challenges. To this end, PSScreen V2 adopts a three-branch architecture with one teacher and two student networks. The teacher branch generates pseudo labels from weakly augmented images to address missing labels, while the two student branches introduce novel feature augmentation strategies: Low-Frequency Dropout (LF-Dropout), which enhances domain robustness by randomly discarding domain-related low-frequency components, and Low-Frequency Uncertainty (LF-Uncert), which estimates uncertain domain variability via adversarially learned Gaussian perturbations of low-frequency statistics. Extensive experiments on multiple in-domain and out-of-domain fundus datasets demonstrate that PSScreen V2 achieves state-of-the-art performance and superior domain generalization ability. Furthermore, compatibility tests with diverse backbones, including the vision foundation model DINOv2, as well as evaluations on chest X-ray datasets, highlight the universality and adaptability of the proposed framework. The codes are available at https://github.com/boyiZheng99/PSScreen_V2.

Authors:Wenming Tu, Guanrou Yang, Ruiqi Yan, Wenxi Chen, Ziyang Ma, Yipeng Kang, Kai Yu, Xie Chen, Zilong Zheng
Title: UltraVoice: Scaling Fine-Grained Style-Controlled Speech Conversations for Spoken Dialogue Models
Abstract:
Spoken dialogue models currently lack the ability for fine-grained speech style control, a critical capability for human-like interaction that is often overlooked in favor of purely functional capabilities like reasoning and question answering. To address this limitation, we introduce UltraVoice, the first large-scale speech dialogue dataset engineered for multiple fine-grained speech style control. Encompassing over 830 hours of speech dialogues, UltraVoice provides instructions across six key speech stylistic dimensions: emotion, speed, volume, accent, language, and composite styles. Fine-tuning leading models such as SLAM-Omni and VocalNet on UltraVoice significantly enhances their fine-grained speech stylistic controllability without degrading core conversational abilities. Specifically, our fine-tuned models achieve improvements of 29.12-42.33% in Mean Opinion Score (MOS) and 14.61-40.09 percentage points in Instruction Following Rate (IFR) on multi-dimensional control tasks designed in the UltraVoice. Moreover, on the URO-Bench benchmark, our fine-tuned models demonstrate substantial gains in core understanding, reasoning, and conversational abilities, with average improvements of +10.84% on the Basic setting and +7.87% on the Pro setting. Furthermore, the dataset's utility extends to training controllable Text-to-Speech (TTS) models, underscoring its high quality and broad applicability for expressive speech synthesis. The complete dataset and model checkpoints are available at: https://github.com/bigai-nlco/UltraVoice.

Authors:Jian Sun, Kangdao Liu, Chi Zhang, Chuangquan Chen, Junge Shen, Chi-Man Vong
Title: Cross-View UAV Geo-Localization with Precision-Focused Efficient Design: A Hierarchical Distillation Approach with Multi-view Refinement
Abstract:
Cross-view geo-localization (CVGL) enables UAV localization by matching aerial images to geo-tagged satellite databases, which is critical for autonomous navigation in GNSS-denied environments. However, existing methods rely on resource-intensive fine-grained feature extraction and alignment, where multiple branches and modules significantly increase inference costs, limiting their deployment on edge devices. We propose Precision-Focused Efficient Design (PFED), a resource-efficient framework combining hierarchical knowledge transfer and multi-view representation refinement. This innovative method comprises two key components: 1) During training, Hierarchical Distillation paradigm for fast and accurate CVGL (HD-CVGL), coupled with Uncertainty-Aware Prediction Alignment (UAPA) to distill essential information and mitigate the data imbalance without incurring additional inference overhead. 2) During inference, an efficient Multi-view Refinement Module (MRM) leverages mutual information to filter redundant samples and effectively utilize the multi-view data. Extensive experiments show that PFED achieves state-of-the-art performance in both accuracy and efficiency, reaching 97.15\% Recall@1 on University-1652 while being over $5 \times$ more efficient in FLOPs and $3 \times$ faster than previous top methods. Furthermore, PFED runs at 251.5 FPS on the AGX Orin edge device, demonstrating its practical viability for real-time UAV applications. The project is available at https://github.com/SkyEyeLoc/PFED

Authors:Ashwin Ramachandran, Vaibhav Raj, Indrayumna Roy, Soumen Chakrabarti, Abir De
Title: Iteratively Refined Early Interaction Alignment for Subgraph Matching based Graph Retrieval
Abstract:
Graph retrieval based on subgraph isomorphism has several real-world applications such as scene graph retrieval, molecular fingerprint detection and circuit design. Roy et al. [35] proposed IsoNet, a late interaction model for subgraph matching, which first computes the node and edge embeddings of each graph independently of paired graph and then computes a trainable alignment map. Here, we present IsoNet++, an early interaction graph neural network (GNN), based on several technical innovations. First, we compute embeddings of all nodes by passing messages within and across the two input graphs, guided by an injective alignment between their nodes. Second, we update this alignment in a lazy fashion over multiple rounds. Within each round, we run a layerwise GNN from scratch, based on the current state of the alignment. After the completion of one round of GNN, we use the last-layer embeddings to update the alignments, and proceed to the next round. Third, IsoNet++ incorporates a novel notion of node-pair partner interaction. Traditional early interaction computes attention between a node and its potential partners in the other graph, the attention then controlling messages passed across graphs. In contrast, we consider node pairs (not single nodes) as potential partners. Existence of an edge between the nodes in one graph and non-existence in the other provide vital signals for refining the alignment. Our experiments on several datasets show that the alignments get progressively refined with successive rounds, resulting in significantly better retrieval performance than existing methods. We demonstrate that all three innovations contribute to the enhanced accuracy. Our code and datasets are publicly available at https://github.com/structlearning/isonetpp.

Authors:Hao Zheng, Zirui Pang, Ling li, Zhijie Deng, Yuhan Pu, Zhaowei Zhu, Xiaobo Xia, Jiaheng Wei
Title: OFFSIDE: Benchmarking Unlearning Misinformation in Multimodal Large Language Models
Abstract:
Advances in Multimodal Large Language Models (MLLMs) intensify concerns about data privacy, making Machine Unlearning (MU), the selective removal of learned information, a critical necessity. However, existing MU benchmarks for MLLMs are limited by a lack of image diversity, potential inaccuracies, and insufficient evaluation scenarios, which fail to capture the complexity of real-world applications. To facilitate the development of MLLMs unlearning and alleviate the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for evaluating misinformation unlearning in MLLMs based on football transfer rumors. This manually curated dataset contains 15.68K records for 80 players, providing a comprehensive framework with four test sets to assess forgetting efficacy, generalization, utility, and robustness. OFFSIDE supports advanced settings like selective unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting only text data). Our extensive evaluation of multiple baselines reveals key findings: (1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors; (2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods struggle with "visual rumors" (rumors appear in the image); (4) The unlearned rumors can be easily recovered and (5) All methods are vulnerable to prompt attacks. These results expose significant vulnerabilities in current approaches, highlighting the need for more robust multimodal unlearning solutions. The code is available at \href{https://github.com/zh121800/OFFSIDE}{https://github.com/zh121800/OFFSIDE}.

Authors:Noshitha Padma Pratyusha Juttu, Sahithi Singireddy, Sravani Gona, Sujal Timilsina
Title: Text to Trust: Evaluating Fine-Tuning and LoRA Trade-offs in Language Models for Unfair Terms of Service Detection
Abstract:
Large Language Models (LLMs) have transformed text understanding, yet their adaptation to specialized legal domains remains constrained by the cost of full fine-tuning. This study provides a systematic evaluation of fine tuning, parameter efficient adaptation (LoRA, QLoRA), and zero-shot prompting strategies for unfair clause detection in Terms of Service (ToS) documents, a key application in legal NLP. We finetune BERT and DistilBERT, apply 4-bit Low-Rank Adaptation (LoRA) to models such as TinyLlama, LLaMA 3B/7B, and SaulLM, and evaluate GPT-4o and O-versions in zero-shot settings. Experiments on the CLAUDETTE-ToS benchmark and the Multilingual Scraper Corpus show that full fine-tuning achieves the strongest precision recall balance, while LoRA-based models provide competitive recall with up to 3x lower memory cost. These findings highlight practical design trade-offs for efficient and domain-adapted LLMs, contributing open baselines for fine-tuning research in legal text processing.

Authors:Patrick Pynadath, Jiaxin Shi, Ruqi Zhang
Title: CANDI: Hybrid Discrete-Continuous Diffusion Models
Abstract:
While continuous diffusion has shown remarkable success in continuous domains such as image generation, its direct application to discrete data has underperformed compared to purely discrete formulations. This gap is counterintuitive, given that continuous diffusion learns score functions that enable joint evolution across multiple positions. To understand this gap, we introduce token identifiability as an analytical framework for understanding how Gaussian noise corrupts discrete data through two mechanisms: discrete identity corruption and continuous rank degradation. We reveal that these mechanisms scale differently with vocabulary size, creating a temporal dissonance: at noise levels where discrete corruption preserves enough structure for conditional learning, continuous denoising is trivial; at noise levels where continuous denoising is meaningful, discrete corruption destroys nearly all conditional structure. To solve this, we propose CANDI (Continuous ANd DIscrete diffusion), a hybrid framework that decouples discrete and continuous corruption, enabling simultaneous learning of both conditional structure and continuous geometry. We empirically validate the temporal dissonance phenomenon and demonstrate that CANDI successfully avoids it. This unlocks the benefits of continuous diffusion for discrete spaces: on controlled generation, CANDI enables classifier-based guidance with off-the-shelf classifiers through simple gradient addition; on text generation, CANDI outperforms masked diffusion at low NFE, demonstrating the value of learning continuous gradients for discrete spaces. We include the code on the project page available here: https://patrickpynadath1.github.io/candi-lander

Authors:Rui Jin, Chen Chen, Yin Liu, Hongfu Sun, Min Zeng, Min Li, Yang Gao
Title: GateFuseNet: An Adaptive 3D Multimodal Neuroimaging Fusion Network for Parkinson's Disease Diagnosis
Abstract:
Accurate diagnosis of Parkinson's disease (PD) from MRI remains challenging due to symptom variability and pathological heterogeneity. Most existing methods rely on conventional magnitude-based MRI modalities, such as T1-weighted images (T1w), which are less sensitive to PD pathology than Quantitative Susceptibility Mapping (QSM), a phase-based MRI technique that quantifies iron deposition in deep gray matter nuclei. In this study, we propose GateFuseNet, an adaptive 3D multimodal fusion network that integrates QSM and T1w images for PD diagnosis. The core innovation lies in a gated fusion module that learns modality-specific attention weights and channel-wise gating vectors for selective feature modulation. This hierarchical gating mechanism enhances ROI-aware features while suppressing irrelevant signals. Experimental results show that our method outperforms three existing state-of-the-art approaches, achieving 85.00% accuracy and 92.06% AUC. Ablation studies further validate the contributions of ROI guidance, multimodal integration, and fusion positioning. Grad-CAM visualizations confirm the model's focus on clinically relevant pathological regions. The source codes and pretrained models can be found at https://github.com/YangGaoUQ/GateFuseNet

Authors:Nikhil Abhyankar, Sanchit Kabra, Saaketh Desai, Chandan K. Reddy
Title: Accelerating Materials Design via LLM-Guided Evolutionary Search
Abstract:
Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA

Authors:Ren Yin, Takashi Ishida, Masashi Sugiyama
Title: Scalable Oversight via Partitioned Human Supervision
Abstract:
As artificial intelligence (AI) systems approach and surpass expert human performance across a broad range of tasks, obtaining high-quality human supervision for evaluation and training becomes increasingly challenging. Our focus is on tasks that require deep knowledge and skills of multiple domains. Unfortunately, even the best human experts are knowledgeable only in a single narrow area, and will not be able to evaluate the correctness of advanced AI systems on such superhuman tasks. However, based on their narrow expertise, humans may provide a weak signal, i.e., a complementary label indicating an option that is incorrect. For example, a cardiologist could state that "this is not related to cardiology,'' even if they cannot identify the true disease. Based on this weak signal, we propose a scalable oversight framework that enables us to evaluate frontier AI systems without the need to prepare the ground truth. We derive an unbiased estimator of top-1 accuracy from complementary labels and quantify how many complementary labels are needed to match the variance of ordinary labels. We further introduce two estimators to combine scarce ordinary labels with abundant complementary labels. We provide finite-sample deviation guarantees for both complementary-only and the mixed estimators. Empirically, we show that we can evaluate the output of large language models without the ground truth, if we have complementary labels. We further show that we can train an AI system with such weak signals: we show how we can design an agentic AI system automatically that can perform better with this partitioned human supervision. Our code is available at https://github.com/R-Yin-217/Scalable-Oversight-via-Human-Partitioned-Supervision.

Authors:Xingbo Fu, Zhenyu Lei, Zihan Chen, Binchi Zhang, Chuxu Zhang, Jundong Li
Title: GraphTOP: Graph Topology-Oriented Prompting for Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) have revolutionized the field of graph learning by learning expressive graph representations from massive graph data. As a common pattern to train powerful GNNs, the "pre-training, adaptation" scheme first pre-trains GNNs over unlabeled graph data and subsequently adapts them to specific downstream tasks. In the adaptation phase, graph prompting is an effective strategy that modifies input graph data with learnable prompts while keeping pre-trained GNN models frozen. Typically, existing graph prompting studies mainly focus on *feature-oriented* methods that apply graph prompts to node features or hidden representations. However, these studies often achieve suboptimal performance, as they consistently overlook the potential of *topology-oriented* prompting, which adapts pre-trained GNNs by modifying the graph topology. In this study, we conduct a pioneering investigation of graph prompting in terms of graph topology. We propose the first **Graph** **T**opology-**O**riented **P**rompting (GraphTOP) framework to effectively adapt pre-trained GNN models for downstream tasks. More specifically, we reformulate topology-oriented prompting as an edge rewiring problem within multi-hop local subgraphs and relax it into the continuous probability space through reparameterization while ensuring tight relaxation and preserving graph sparsity. Extensive experiments on five graph datasets under four pre-training strategies demonstrate that our proposed GraphTOP outshines six baselines on multiple node classification datasets. Our code is available at https://github.com/xbfu/GraphTOP.

Authors:Yupeng Xie, Zhiyang Zhang, Yifan Wu, Sirong Lu, Jiayi Zhang, Zhaoyang Yu, Jinlin Wang, Sirui Hong, Bang Liu, Chenglin Wu, Yuyu Luo
Title: VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Abstract:
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.

Authors:Seyed Ahmad Hosseini Miangoleh, Amin Jalal Aghdasian, Farzaneh Abdollahi
Title: BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles
Abstract:
In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.

Authors:Jindong Yang, Han Fang, Weiming Zhang, Nenghai Yu, Kejiang Chen
Title: T2SMark: Balancing Robustness and Diversity in Noise-as-Watermark for Diffusion Models
Abstract:
Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.

Authors:Jan Simson, Alessandro Fabris, Cosima Fröhner, Frauke Kreuter, Christoph Kern
Title: Bias Begins with Data: The FairGround Corpus for Robust and Reproducible Research on Algorithmic Fairness
Abstract:
As machine learning (ML) systems are increasingly adopted in high-stakes decision-making domains, ensuring fairness in their outputs has become a central challenge. At the core of fair ML research are the datasets used to investigate bias and develop mitigation strategies. Yet, much of the existing work relies on a narrow selection of datasets--often arbitrarily chosen, inconsistently processed, and lacking in diversity--undermining the generalizability and reproducibility of results. To address these limitations, we present FairGround: a unified framework, data corpus, and Python package aimed at advancing reproducible research and critical data studies in fair ML classification. FairGround currently comprises 44 tabular datasets, each annotated with rich fairness-relevant metadata. Our accompanying Python package standardizes dataset loading, preprocessing, transformation, and splitting, streamlining experimental workflows. By providing a diverse and well-documented dataset corpus along with robust tooling, FairGround enables the development of fairer, more reliable, and more reproducible ML models. All resources are publicly available to support open and collaborative research.

Authors:Changhao Zhang, Matthew J. Clarkson, Mobarak I. Hoque
Title: EndoSfM3D: Learning to 3D Reconstruct Any Endoscopic Surgery Scene using Self-supervised Foundation Model
Abstract:
3D reconstruction of endoscopic surgery scenes plays a vital role in enhancing scene perception, enabling AR visualization, and supporting context-aware decision-making in image-guided surgery. A critical yet challenging step in this process is the accurate estimation of the endoscope's intrinsic parameters. In real surgical settings, intrinsic calibration is hindered by sterility constraints and the use of specialized endoscopes with continuous zoom and telescope rotation. Most existing methods for endoscopic 3D reconstruction do not estimate intrinsic parameters, limiting their effectiveness for accurate and reliable reconstruction. In this paper, we integrate intrinsic parameter estimation into a self-supervised monocular depth estimation framework by adapting the Depth Anything V2 (DA2) model for joint depth, pose, and intrinsics prediction. We introduce an attention-based pose network and a Weight-Decomposed Low-Rank Adaptation (DoRA) strategy for efficient fine-tuning of DA2. Our method is validated on the SCARED and C3VD public datasets, demonstrating superior performance compared to recent state-of-the-art approaches in self-supervised monocular depth estimation and 3D reconstruction. Code and model weights can be found in project repository: https://github.com/MOYF-beta/EndoSfM3D.

Authors:Changti Wu, Shijie Lian, Zihao Liu, Lei Zhang, Laurence Tianruo Yang, Kai Chen
Title: DynaSolidGeo: A Dynamic Benchmark for Genuine Spatial Mathematical Reasoning of VLMs in Solid Geometry
Abstract:
Solid geometry problem solving demands spatial mathematical reasoning that integrates spatial intelligence and symbolic reasoning. However, most existing multimodal mathematical reasoning benchmarks focus primarily on 2D plane geometry, rely on static datasets prone to data contamination and memorization, and evaluate models solely by final answers, overlooking the reasoning process. To address these limitations, we introduce DynaSolidGeo, the first dynamic benchmark for evaluating genuine spatial reasoning in Vision-Language Models (VLMs). Constructed through a semi-automatic annotation pipeline, DynaSolidGeo contains 503 expert-curated seed questions that can, in principle, dynamically generate an unbounded number of diverse multimodal text-visual instances. Beyond answer accuracy, we incorporate process evaluation based on expert-annotated reasoning chains to measure logical validity and causal coherence. Experiments across representative open-source and closed-source VLMs reveal large performance gaps, severe degradation in dynamic settings, and poor performance on tasks requiring high-level spatial intelligence, such as mental rotation and visualization. The code and dataset are available at \href{https://zgca-ai4edu.github.io/DynaSolidGeo/}{DynaSolidGeo}.

Authors:Ali Javidani, Babak Nadjar Araabi, Mohammad Amin Sadeghi
Title: Beyond Augmentation: Leveraging Inter-Instance Relation in Self-Supervised Representation Learning
Abstract:
This paper introduces a novel approach that integrates graph theory into self-supervised representation learning. Traditional methods focus on intra-instance variations generated by applying augmentations. However, they often overlook important inter-instance relationships. While our method retains the intra-instance property, it further captures inter-instance relationships by constructing k-nearest neighbor (KNN) graphs for both teacher and student streams during pretraining. In these graphs, nodes represent samples along with their latent representations. Edges encode the similarity between instances. Following pretraining, a representation refinement phase is performed. In this phase, Graph Neural Networks (GNNs) propagate messages not only among immediate neighbors but also across multiple hops, thereby enabling broader contextual integration. Experimental results on CIFAR-10, ImageNet-100, and ImageNet-1K demonstrate accuracy improvements of 7.3%, 3.2%, and 1.0%, respectively, over state-of-the-art methods. These results highlight the effectiveness of the proposed graph based mechanism. The code is publicly available at https://github.com/alijavidani/SSL-GraphNNCLR.

Authors:Chen Zhiqiang, Le Gentil Cedric, Lin Fuling, Lu Minghao, Qiao Qiyuan, Xu Bowen, Qi Yuhua, Lu Peng
Title: Breaking the Static Assumption: A Dynamic-Aware LIO Framework Via Spatio-Temporal Normal Analysis
Abstract:
This paper addresses the challenge of Lidar-Inertial Odometry (LIO) in dynamic environments, where conventional methods often fail due to their static-world assumptions. Traditional LIO algorithms perform poorly when dynamic objects dominate the scenes, particularly in geometrically sparse environments. Current approaches to dynamic LIO face a fundamental challenge: accurate localization requires a reliable identification of static features, yet distinguishing dynamic objects necessitates precise pose estimation. Our solution breaks this circular dependency by integrating dynamic awareness directly into the point cloud registration process. We introduce a novel dynamic-aware iterative closest point algorithm that leverages spatio-temporal normal analysis, complemented by an efficient spatial consistency verification method to enhance static map construction. Experimental evaluations demonstrate significant performance improvements over state-of-the-art LIO systems in challenging dynamic environments with limited geometric structure. The code and dataset are available at https://github.com/thisparticle/btsa.

Authors:Chenyu Zhang, Tairen Zhang, Lanjun Wang, Ruidong Chen, Wenhui Li, Anan Liu
Title: T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model
Abstract:
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.

Authors:Yan Jiang, Ruihong Qiu, Zi Huang
Title: Does Homophily Help in Robust Test-time Node Classification?
Abstract:
Homophily, the tendency of nodes from the same class to connect, is a fundamental property of real-world graphs, underpinning structural and semantic patterns in domains such as citation networks and social networks. Existing methods exploit homophily through designing homophily-aware GNN architectures or graph structure learning strategies, yet they primarily focus on GNN learning with training graphs. However, in real-world scenarios, test graphs often suffer from data quality issues and distribution shifts, such as domain shifts across users from different regions in social networks and temporal evolution shifts in citation network graphs collected over varying time periods. These factors significantly compromise the pre-trained model's robustness, resulting in degraded test-time performance. With empirical observations and theoretical analysis, we reveal that transforming the test graph structure by increasing homophily in homophilic graphs or decreasing it in heterophilic graphs can significantly improve the robustness and performance of pre-trained GNNs on node classifications, without requiring model training or update. Motivated by these insights, a novel test-time graph structural transformation method grounded in homophily, named GrapHoST, is proposed. Specifically, a homophily predictor is developed to discriminate test edges, facilitating adaptive test-time graph structural transformation by the confidence of predicted homophily scores. Extensive experiments on nine benchmark datasets under a range of test-time data quality issues demonstrate that GrapHoST consistently achieves state-of-the-art performance, with improvements of up to 10.92%. Our code has been released at https://github.com/YanJiangJerry/GrapHoST.

Authors:Issa Sugiura, Shuhei Kurita, Yusuke Oda, Daisuke Kawahara, Yasuo Okabe, Naoaki Okazaki
Title: WAON: Large-Scale and High-Quality Japanese Image-Text Pair Dataset for Vision-Language Models
Abstract:
Large-scale and high-quality image-text pair datasets play an important role in developing high-performing Vision-Language Models (VLMs). In this work, we introduce WAON, a large-scale and high-quality Japanese image-text pair dataset containing approximately 155 million examples, collected from Common Crawl. Our dataset construction pipeline employs various techniques, including filtering and deduplication, which have been shown to be effective in previous studies. To evaluate its effectiveness, we also construct WAON-Bench, a manually curated benchmark for Japanese cultural image classification, consisting of 374 classes. To assess the effectiveness of our dataset, we conduct experiments using both WAON and the Japanese subset of ReLAION, one of the most widely used vision-language datasets. We fine-tune SigLIP2, a strong multilingual model, on both datasets. The results demonstrate that WAON enhances model performance on WAON-Bench more efficiently than ReLAION and achieves higher accuracy across all evaluated benchmarks. Furthermore, the model fine-tuned on WAON achieves state-of-the-art performance on several Japanese cultural benchmarks. We release our dataset, model, and code at https://speed1313.github.io/WAON.

Authors:Qiao Li, Jie Li, Yukang Zhang, Lei Tan, Jing Chen, Jiayi Ji
Title: GSAlign: Geometric and Semantic Alignment Network for Aerial-Ground Person Re-Identification
Abstract:
Aerial-Ground person re-identification (AG-ReID) is an emerging yet challenging task that aims to match pedestrian images captured from drastically different viewpoints, typically from unmanned aerial vehicles (UAVs) and ground-based surveillance cameras. The task poses significant challenges due to extreme viewpoint discrepancies, occlusions, and domain gaps between aerial and ground imagery. While prior works have made progress by learning cross-view representations, they remain limited in handling severe pose variations and spatial misalignment. To address these issues, we propose a Geometric and Semantic Alignment Network (GSAlign) tailored for AG-ReID. GSAlign introduces two key components to jointly tackle geometric distortion and semantic misalignment in aerial-ground matching: a Learnable Thin Plate Spline (LTPS) Module and a Dynamic Alignment Module (DAM). The LTPS module adaptively warps pedestrian features based on a set of learned keypoints, effectively compensating for geometric variations caused by extreme viewpoint changes. In parallel, the DAM estimates visibility-aware representation masks that highlight visible body regions at the semantic level, thereby alleviating the negative impact of occlusions and partial observations in cross-view correspondence. A comprehensive evaluation on CARGO with four matching protocols demonstrates the effectiveness of GSAlign, achieving significant improvements of +18.8\% in mAP and +16.8\% in Rank-1 accuracy over previous state-of-the-art methods on the aerial-ground setting. The code is available at: \textcolor{magenta}{https://github.com/stone96123/GSAlign}.

Authors:Iliass Ayaou, Denis Cavallucci
Title: PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding
Abstract:
Patent text embeddings enable prior art search, technology landscaping, and patent analysis, yet existing benchmarks inadequately capture patent-specific challenges. We introduce PatenTEB, a comprehensive benchmark comprising 15 tasks across retrieval, classification, paraphrase, and clustering, with 2.06 million examples. PatenTEB employs domain-stratified splits, domain specific hard negative mining, and systematic coverage of asymmetric fragment-to-document matching scenarios absent from general embedding benchmarks. We develop the patembed model family through multi-task training, spanning 67M to 344M parameters with context lengths up to 4096 tokens. External validation shows strong generalization: patembed-base achieves state-of-the-art on MTEB BigPatentClustering.v2 (0.494 V-measure vs. 0.445 previous best), while patembed-large achieves 0.377 NDCG@100 on DAPFAM. Systematic ablations reveal that multi-task training improves external generalization despite minor benchmark costs, and that domain-pretrained initialization provides consistent advantages across task families. All resources will be made available at https://github.com/iliass-y/patenteb. Keywords: patent retrieval, sentence embeddings, multi-task learning, asymmetric retrieval, benchmark evaluation, contrastive learning.

Authors:Berkay Döner, Thorir Mar Ingolfsson, Luca Benini, Yawei Li
Title: LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis
Abstract:
Electroencephalography (EEG) offers a non-invasive lens into human brain activity, but building large-scale models is hampered by topological heterogeneity: each public EEG data defines its own electrode layout, limiting generalization. We introduce LUNA (Latent Unified Network Architecture), a self-supervised foundation model that reconciles disparate electrode geometries while scaling linearly -- not quadratically -- with channel count. LUNA compresses multi-channel EEG into a fixed-size, topology-agnostic latent space via learned queries and cross-attention. Downstream transformer blocks then operate exclusively on this latent representation using patch-wise temporal self-attention, decoupling computation from electrode count. Pre-trained on TUEG and Siena (over 21,000 hours of raw EEG across diverse montages) using a masked-patch reconstruction objective, LUNA transfers effectively to four downstream tasks: abnormality detection, artifact rejection, slowing classification, and emotion recognition. It demonstrates highly competitive performance across several benchmarks, achieving state-of-the-art results on TUAR and TUSL, e.g., 0.921 AUROC on TUAR, while reducing FLOPs by 300x and trimming GPU memory use by up to 10x. Critically, these gains are consistent across all evaluated electrode configurations. Code is available at https://github.com/pulp-bio/BioFoundation

Authors:Imran Khan
Title: You Don't Need Prompt Engineering Anymore: The Prompting Inversion
Abstract:
Prompt engineering, particularly Chain-of-Thought (CoT) prompting, significantly enhances LLM reasoning capabilities. We introduce "Sculpting," a constrained, rule-based prompting method designed to improve upon standard CoT by reducing errors from semantic ambiguity and flawed common sense. We evaluate three prompting strategies (Zero Shot, standard CoT, and Sculpting) across three OpenAI model generations (gpt-4o-mini, gpt-4o, gpt-5) using the GSM8K mathematical reasoning benchmark (1,317 problems). Our findings reveal a "Prompting Inversion": Sculpting provides advantages on gpt-4o (97% vs. 93% for standard CoT), but becomes detrimental on gpt-5 (94.00% vs. 96.36% for CoT on full benchmark). We trace this to a "Guardrail-to-Handcuff" transition where constraints preventing common-sense errors in mid-tier models induce hyper-literalism in advanced models. Our detailed error analysis demonstrates that optimal prompting strategies must co-evolve with model capabilities, suggesting simpler prompts for more capable models.

Authors:Amir Mohammad Khadem Hosseini, Sattar Mirzakuchaki
Title: Real-Time Semantic Segmentation on FPGA for Autonomous Vehicles Using LMIINet with the CGRA4ML Framework
Abstract:
Semantic segmentation has emerged as a fundamental problem in computer vision, gaining particular importance in real-time applications such as autonomous driving. The main challenge is achieving high accuracy while operating under computational and hardware constraints. In this research, we present an FPGA-based implementation of real-time semantic segmentation leveraging the lightweight LMIINet architecture and the Coarse-Grained Reconfigurable Array for Machine Learning (CGRA4ML) hardware framework. The model was trained using Quantization-Aware Training (QAT) with 8-bit precision on the Cityscapes dataset, reducing memory footprint by a factor of four while enabling efficient fixed-point computations. Necessary modifications were applied to adapt the model to CGRA4ML constraints, including simplifying skip connections, employing hardware-friendly operations such as depthwise-separable and 1A-1 convolutions, and redesigning parts of the Flatten Transformer. Our implementation achieves approximately 90% pixel accuracy and 45% mean Intersection-over-Union (mIoU), operating in real-time at 20 frames per second (FPS) with 50.1 ms latency on the ZCU104 FPGA board. The results demonstrate the potential of CGRA4ML, with its flexibility in mapping modern layers and off-chip memory utilization for skip connections, provides a path for implementing advanced semantic segmentation networks on FPGA for real-time applications to outperform traditional GPU solutions in terms of power efficiency while maintaining competitive accuracy. The code for this project is publicly available at https://github.com/STAmirr/ cgra4ml_semantic_segmentation

Authors:Kunyang Zhou, Yeqin Shao
Title: DiffusionLane: Diffusion Model for Lane Detection
Abstract:
In this paper, we present a novel diffusion-based model for lane detection, called DiffusionLane, which treats the lane detection task as a denoising diffusion process in the parameter space of the lane. Firstly, we add the Gaussian noise to the parameters (the starting point and the angle) of ground truth lanes to obtain noisy lane anchors, and the model learns to refine the noisy lane anchors in a progressive way to obtain the target lanes. Secondly, we propose a hybrid decoding strategy to address the poor feature representation of the encoder, resulting from the noisy lane anchors. Specifically, we design a hybrid diffusion decoder to combine global-level and local-level decoders for high-quality lane anchors. Then, to improve the feature representation of the encoder, we employ an auxiliary head in the training stage to adopt the learnable lane anchors for enriching the supervision on the encoder. Experimental results on four benchmarks, Carlane, Tusimple, CULane, and LLAMAS, show that DiffusionLane possesses a strong generalization ability and promising detection performance compared to the previous state-of-the-art methods. For example, DiffusionLane with ResNet18 surpasses the existing methods by at least 1\% accuracy on the domain adaptation dataset Carlane. Besides, DiffusionLane with MobileNetV4 gets 81.32\% F1 score on CULane, 96.89\% accuracy on Tusimple with ResNet34, and 97.59\% F1 score on LLAMAS with ResNet101. Code will be available at https://github.com/zkyntu/UnLanedet.

Authors:Jeongin Kim, Wonho Bae, YouLee Han, Giyeong Oh, Youngjae Yu, Danica J. Sutherland, Junhyug Noh
Title: Diffusion-Driven Two-Stage Active Learning for Low-Budget Semantic Segmentation
Abstract:
Semantic segmentation demands dense pixel-level annotations, which can be prohibitively expensive - especially under extremely constrained labeling budgets. In this paper, we address the problem of low-budget active learning for semantic segmentation by proposing a novel two-stage selection pipeline. Our approach leverages a pre-trained diffusion model to extract rich multi-scale features that capture both global structure and fine details. In the first stage, we perform a hierarchical, representation-based candidate selection by first choosing a small subset of representative pixels per image using MaxHerding, and then refining these into a diverse global pool. In the second stage, we compute an entropy-augmented disagreement score (eDALD) over noisy multi-scale diffusion features to capture both epistemic uncertainty and prediction confidence, selecting the most informative pixels for annotation. This decoupling of diversity and uncertainty lets us achieve high segmentation accuracy with only a tiny fraction of labeled pixels. Extensive experiments on four benchmarks (CamVid, ADE-Bed, Cityscapes, and Pascal-Context) demonstrate that our method significantly outperforms existing baselines under extreme pixel-budget regimes. Our code is available at https://github.com/jn-kim/two-stage-edald.

Authors:Keyu Wang, Tian Lyu, Guinan Su, Jonas Geiping, Lu Yin, Marco Canini, Shiwei Liu
Title: When Fewer Layers Break More Chains: Layer Pruning Harms Test-Time Scaling in LLMs
Abstract:
Layer pruning has emerged as a widely adopted technique for improving the efficiency of large language models (LLMs). Although existing methods demonstrate strong performance retention on general knowledge tasks, their effect on long-chain reasoning, a more brittle yet crucial capability, remains largely unexplored. In this work, we study the impact of layer pruning on long-chain reasoning through the lens of test-time scaling, a key mechanism in modern LLMs that enables strong reasoning capacity by allocating more computation at inference time. With extensive experiments, we demonstrate that pruning even one or two layers can severely impair test-time scaling, with performance collapsing drastically on long reasoning benchmarks even when performance on knowledge-intensive and shallow reasoning tasks remains stable. Furthermore, we find that standard supervised fine-tuning remedies fail to recover test-time scaling once it has deteriorated. Through in-depth analyses, we identify the mechanisms underlying this fragility of test-time scaling and highlight the fundamental risks of applying layer pruning to reasoning-intensive LLMs. These findings call for a rethinking of layer pruning strategies and provide insights for developing methods that preserve the robustness of reasoning. We open-source the codebase in \href{https://github.com/keyu-wang-2002/Layer-Pruning-Harms-Inference-Scaling}{https://github.com/keyu-wang-2002/Layer-Pruning-Harms-Inference-Scaling}.

Authors:Yongchuan Cui, Peng Liu, Hui Zhang
Title: Enpowering Your Pansharpening Models with Generalizability: Unified Distribution is All You Need
Abstract:
Existing deep learning-based models for remote sensing pansharpening exhibit exceptional performance on training datasets. However, due to sensor-specific characteristics and varying imaging conditions, these models suffer from substantial performance degradation when applied to unseen satellite data, lacking generalizability and thus limiting their applicability. We argue that the performance drops stem primarily from distributional discrepancies from different sources and the key to addressing this challenge lies in bridging the gap between training and testing distributions. To validate the idea and further achieve a "train once, deploy forever" capability, this paper introduces a novel and intuitive approach to enpower any pansharpening models with generalizability by employing a unified distribution strategy (UniPAN). Specifically, we construct a distribution transformation function that normalizes the pixels sampled from different sources to conform to an identical distribution. The deep models are trained on the transformed domain, and during testing on new datasets, the new data are also transformed to match the training distribution. UniPAN aims to train and test the model on a unified and consistent distribution, thereby enhancing its generalizability. Extensive experiments validate the efficacy of UniPAN, demonstrating its potential to significantly enhance the performance of deep pansharpening models across diverse satellite sensors. Codes: https://github.com/yc-cui/UniPAN.

Authors:Juyeon Kim, Geon Lee, Dongwon Choi, Taeuk Kim, Kijung Shin
Title: Hybrid-Vector Retrieval for Visually Rich Documents: Combining Single-Vector Efficiency and Multi-Vector Accuracy
Abstract:
Retrieval over visually rich documents is essential for tasks such as legal discovery, scientific search, and enterprise knowledge management. Existing approaches fall into two paradigms: single-vector retrieval, which is efficient but coarse, and multi-vector retrieval, which is accurate but computationally expensive. To address this trade-off, we propose HEAVEN, a two-stage hybrid-vector framework. In the first stage, HEAVEN efficiently retrieves candidate pages using a single-vector method over Visually-Summarized Pages (VS-Pages), which assemble representative visual layouts from multiple pages. In the second stage, it reranks candidates with a multi-vector method while filtering query tokens by linguistic importance to reduce redundant computations. To evaluate retrieval systems under realistic conditions, we also introduce ViMDOC, the first benchmark for visually rich, multi-document, and long-document retrieval. Across four benchmarks, HEAVEN attains 99.87% of the Recall@1 performance of multi-vector models on average while reducing per-query computation by 99.82%, achieving efficiency and accuracy. Our code and datasets are available at: https://github.com/juyeonnn/HEAVEN

Authors:Yaokun Li, Lihe Ding, Xiao Chen, Guang Tan, Tianfan Xue
Title: DynamicTree: Interactive Real Tree Animation via Sparse Voxel Spectrum
Abstract:
Generating dynamic and interactive 3D objects, such as trees, has wide applications in virtual reality, games, and world simulation. Nevertheless, existing methods still face various challenges in generating realistic 4D motion for complex real trees. In this paper, we propose DynamicTree, the first framework that can generate long-term, interactive animation of 3D Gaussian Splatting trees. Unlike prior optimization-based methods, our approach generates dynamics in a fast feed-forward manner. The key success of our approach is the use of a compact sparse voxel spectrum to represent the tree movement. Given a 3D tree from Gaussian Splatting reconstruction, our pipeline first generates mesh motion using the sparse voxel spectrum and then binds Gaussians to deform the mesh. Additionally, the proposed sparse voxel spectrum can also serve as a basis for fast modal analysis under external forces, allowing real-time interactive responses. To train our model, we also introduce 4DTree, the first large-scale synthetic 4D tree dataset containing 8,786 animated tree meshes with semantic labels and 100-frame motion sequences. Extensive experiments demonstrate that our method achieves realistic and responsive tree animations, significantly outperforming existing approaches in both visual quality and computational efficiency.

Authors:Minho Park, Kinam Kim, Junha Hyung, Hyojin Jang, Hoiyeong Jin, Jooyeol Yun, Hojoon Lee, Jaegul Choo
Title: ACG: Action Coherence Guidance for Flow-based VLA models
Abstract:
Diffusion and flow matching models have emerged as powerful robot policies, enabling Vision-Language-Action (VLA) models to generalize across diverse scenes and instructions. Yet, when trained via imitation learning, their high generative capacity makes them sensitive to noise in human demonstrations: jerks, pauses, and jitter which reduce action coherence. Reduced action coherence causes instability and trajectory drift during deployment, failures that are catastrophic in fine-grained manipulation where precision is crucial. In this paper, we present Action Coherence Guidance (ACG) for VLA models, a training-free test-time guidance algorithm that improves action coherence and thereby yields performance gains. Evaluated on RoboCasa, DexMimicGen, and real-world SO-101 tasks, ACG consistently improves action coherence and boosts success rates across diverse manipulation tasks. Code and project page are available at https://github.com/DAVIAN-Robotics/ACG and https://DAVIAN-Robotics.github.io/ACG , respectively.

Authors:Qingzhu Zhang, Jiani Zhong, Zongsheng Li, Xinke Shen, Quanying Liu
Title: Multi-dataset Joint Pre-training of Emotional EEG Enables Generalizable Affective Computing
Abstract:
Task-specific pre-training is essential when task representations diverge from generic pre-training features. Existing task-general pre-training EEG models struggle with complex tasks like emotion recognition due to mismatches between task-specific features and broad pre-training approaches. This work aims to develop a task-specific multi-dataset joint pre-training framework for cross-dataset emotion recognition, tackling problems of large inter-dataset distribution shifts, inconsistent emotion category definitions, and substantial inter-subject variability. We introduce a cross-dataset covariance alignment loss to align second-order statistical properties across datasets, enabling robust generalization without the need for extensive labels or per-subject calibration. To capture the long-term dependency and complex dynamics of EEG, we propose a hybrid encoder combining a Mamba-like linear attention channel encoder and a spatiotemporal dynamics model. Our method outperforms state-of-the-art large-scale EEG models by an average of 4.57% in AUROC for few-shot emotion recognition and 11.92% in accuracy for zero-shot generalization to a new dataset. Performance scales with the increase of datasets used in pre-training. Multi-dataset joint pre-training achieves a performance gain of 8.55% over single-dataset training. This work provides a scalable framework for task-specific pre-training and highlights its benefit in generalizable affective computing. Our code is available at https://github.com/ncclab-sustech/mdJPT_nips2025.

Authors:Haoyang Liu, Jie Wang, Yuyang Cai, Xiongwei Han, Yufei Kuang, Jianye Hao
Title: OptiTree: Hierarchical Thoughts Generation with Tree Search for LLM Optimization Modeling
Abstract:
Optimization modeling is one of the most crucial but technical parts of operations research (OR). To automate the modeling process, existing works have leveraged large language models (LLMs), prompting them to break down tasks into steps for generating variables, constraints, and objectives. However, due to the highly complex mathematical structures inherent in OR problems, standard fixed-step decomposition often fails to achieve high performance. To address this challenge, we introduce OptiTree, a novel tree search approach designed to enhance modeling capabilities for complex problems through adaptive problem decomposition into simpler subproblems. Specifically, we develop a modeling tree that organizes a wide range of OR problems based on their hierarchical problem taxonomy and complexity, with each node representing a problem category and containing relevant high-level modeling thoughts. Given a problem to model, we recurrently search the tree to identify a series of simpler subproblems and synthesize the global modeling thoughts by adaptively integrating the hierarchical thoughts. Experiments show that OptiTree significantly improves the modeling accuracy compared to the state-of-the-art, achieving over 10\% improvements on the challenging benchmarks. The code is released at https://github.com/MIRALab-USTC/OptiTree/tree/main.

Authors:Guangan Jiang, Tianzi Zhang, Dong Li, Zhenjun Zhao, Haoang Li, Mingrui Li, Hongyu Wang
Title: STG-Avatar: Animatable Human Avatars via Spacetime Gaussian
Abstract:
Realistic animatable human avatars from monocular videos are crucial for advancing human-robot interaction and enhancing immersive virtual experiences. While recent research on 3DGS-based human avatars has made progress, it still struggles with accurately representing detailed features of non-rigid objects (e.g., clothing deformations) and dynamic regions (e.g., rapidly moving limbs). To address these challenges, we present STG-Avatar, a 3DGS-based framework for high-fidelity animatable human avatar reconstruction. Specifically, our framework introduces a rigid-nonrigid coupled deformation framework that synergistically integrates Spacetime Gaussians (STG) with linear blend skinning (LBS). In this hybrid design, LBS enables real-time skeletal control by driving global pose transformations, while STG complements it through spacetime adaptive optimization of 3D Gaussians. Furthermore, we employ optical flow to identify high-dynamic regions and guide the adaptive densification of 3D Gaussians in these regions. Experimental results demonstrate that our method consistently outperforms state-of-the-art baselines in both reconstruction quality and operational efficiency, achieving superior quantitative metrics while retaining real-time rendering capabilities. Our code is available at https://github.com/jiangguangan/STG-Avatar

Authors:Wenxuan Bao, Ruxi Deng, Jingrui He
Title: Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions
Abstract:
Pretrained vision-language models such as CLIP achieve strong zero-shot generalization but remain vulnerable to distribution shifts caused by input corruptions. In this work, we investigate how corruptions affect CLIP's image embeddings and uncover a consistent phenomenon we term as embedding variance collapse, where both intra-class and inter-class variances shrink as corruption severity increases. We find that this collapse is closely tied to performance degradation, with inter-class variance strongly correlated with classification accuracy. To explain this phenomenon, we analyze how corruptions alter the structure of the embedding space. Our theoretical results suggest that the visual encoder tends to encode corruption-related signals, which dilute class-discriminative features and compress the representation geometry. We further show that maximizing inter-class variance, even when estimated from pseudo-labels, can provably enhance embedding quality. Based on this insight, we propose Mint, a simple test-time adaptation method that maximizes pseudo-label-based inter-class variance on the fly using a mean accumulator and a gradient accumulator. Mint operates effectively with small batch sizes and consistently improves performance across multiple corruption benchmarks and CLIP architectures. Our code is available at https://github.com/baowenxuan/Mint .

Authors:Guanwen Xie, Jingzehua Xu, Jiwei Tang, Yubo Huang, Shuai Zhang, Xiaofan Li
Title: EasyUUV: An LLM-Enhanced Universal and Lightweight Sim-to-Real Reinforcement Learning Framework for UUV Attitude Control
Abstract:
Despite recent advances in Unmanned Underwater Vehicle (UUV) attitude control, existing methods still struggle with generalizability, robustness to real-world disturbances, and efficient deployment. To address the above challenges, this paper presents EasyUUV, a Large Language Model (LLM)-enhanced, universal, and lightweight simulation-to-reality reinforcement learning (RL) framework for robust attitude control of UUVs. EasyUUV combines parallelized RL training with a hybrid control architecture, where a learned policy outputs high-level attitude corrections executed by an adaptive S-Surface controller. A multimodal LLM is further integrated to adaptively tune controller parameters at runtime using visual and textual feedback, enabling training-free adaptation to unmodeled dynamics. Also, we have developed a low-cost 6-DoF UUV platform and applied an RL policy trained through efficient parallelized simulation. Extensive simulation and real-world experiments validate the effectiveness and outstanding performance of EasyUUV in achieving robust and adaptive UUV attitude control across diverse underwater conditions. The source code is available from the following website: https://360zmem.github.io/easyuuv/

Authors:Shiji Zhou, Tianbai Yu, Zhi Zhang, Heng Chang, Xiao Zhou, Dong Wu, Han Zhao
Title: Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Abstract:
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.

Authors:Xixian Liu, Rui Jiao, Zhiyuan Liu, Yurou Liu, Yang Liu, Ziheng Lu, Wenbing Huang, Yang Zhang, Yixin Cao
Title: Learning 3D Anisotropic Noise Distributions Improves Molecular Force Field Modeling
Abstract:
Coordinate denoising has emerged as a promising method for 3D molecular pretraining due to its theoretical connection to learning molecular force field. However, existing denoising methods rely on oversimplied molecular dynamics that assume atomic motions to be isotropic and homoscedastic. To address these limitations, we propose a novel denoising framework AniDS: Anisotropic Variational Autoencoder for 3D Molecular Denoising. AniDS introduces a structure-aware anisotropic noise generator that can produce atom-specific, full covariance matrices for Gaussian noise distributions to better reflect directional and structural variability in molecular systems. These covariances are derived from pairwise atomic interactions as anisotropic corrections to an isotropic base. Our design ensures that the resulting covariance matrices are symmetric, positive semi-definite, and SO(3)-equivariant, while providing greater capacity to model complex molecular dynamics. Extensive experiments show that AniDS outperforms prior isotropic and homoscedastic denoising models and other leading methods on the MD17 and OC22 benchmarks, achieving average relative improvements of 8.9% and 6.2% in force prediction accuracy. Our case study on a crystal and molecule structure shows that AniDS adaptively suppresses noise along the bonding direction, consistent with physicochemical principles. Our code is available at https://github.com/ZeroKnighting/AniDS.

Authors:Karim Elmaaroufi, Liheng Lai, Justin Svegliato, Yutong Bai, Sanjit A. Seshia, Matei Zaharia
Title: GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation
Abstract:
Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoning$\unicode{x2014}$a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracy$\unicode{x2014}$compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found $\href{this https URL}{here}$.

Authors:James Thiering, Tarun Sethupat Radha Krishna, Dylan Zelkin, Ashis Kumer Biswas
Title: Automatic Assessment of Students' Classroom Engagement with Bias Mitigated Multi-task Model
Abstract:
With the rise of online and virtual learning, monitoring and enhancing student engagement have become an important aspect of effective education. Traditional methods of assessing a student's involvement might not be applicable directly to virtual environments. In this study, we focused on this problem and addressed the need to develop an automated system to detect student engagement levels during online learning. We proposed a novel training method which can discourage a model from leveraging sensitive features like gender for its predictions. The proposed method offers benefits not only in the enforcement of ethical standards, but also to enhance interpretability of the model predictions. We applied an attribute-orthogonal regularization technique to a split-model classifier, which uses multiple transfer learning strategies to achieve effective results in reducing disparity in the distribution of prediction for sensitivity groups from a Pearson correlation coefficient of 0.897 for the unmitigated model, to 0.999 for the mitigated model. The source code for this project is available on https://github.com/ashiskb/elearning-engagement-study .

Authors:V Venktesh, Deepali Prabhu, Avishek Anand
Title: A Benchmark for Open-Domain Numerical Fact-Checking Enhanced by Claim Decomposition
Abstract:
Fact-checking numerical claims is critical as the presence of numbers provide mirage of veracity despite being fake potentially causing catastrophic impacts on society. The prior works in automatic fact verification do not primarily focus on natural numerical claims. A typical human fact-checker first retrieves relevant evidence addressing the different numerical aspects of the claim and then reasons about them to predict the veracity of the claim. Hence, the search process of a human fact-checker is a crucial skill that forms the foundation of the verification process. Emulating a real-world setting is essential to aid in the development of automated methods that encompass such skills. However, existing benchmarks employ heuristic claim decomposition approaches augmented with weakly supervised web search to collect evidences for verifying claims. This sometimes results in less relevant evidences and noisy sources with temporal leakage rendering a less realistic retrieval setting for claim verification. Hence, we introduce QuanTemp++: a dataset consisting of natural numerical claims, an open domain corpus, with the corresponding relevant evidence for each claim. The evidences are collected through a claim decomposition process approximately emulating the approach of human fact-checker and veracity labels ensuring there is no temporal leakage. Given this dataset, we also characterize the retrieval performance of key claim decomposition paradigms. Finally, we observe their effect on the outcome of the verification pipeline and draw insights. The code for data pipeline along with link to data can be found at https://github.com/VenkteshV/QuanTemp_Plus

Authors:Ana K. Rivera, Anvita Bhagavathula, Alvaro Carbonero, Priya Donti
Title: PF$Δ$: A Benchmark Dataset for Power Flow under Load, Generation, and Topology Variations
Abstract:
Power flow (PF) calculations are the backbone of real-time grid operations, across workflows such as contingency analysis (where repeated PF evaluations assess grid security under outages) and topology optimization (which involves PF-based searches over combinatorially large action spaces). Running these calculations at operational timescales or across large evaluation spaces remains a major computational bottleneck. Additionally, growing uncertainty in power system operations from the integration of renewables and climate-induced extreme weather also calls for tools that can accurately and efficiently simulate a wide range of scenarios and operating conditions. Machine learning methods offer a potential speedup over traditional solvers, but their performance has not been systematically assessed on benchmarks that capture real-world variability. This paper introduces PF$Δ$, a benchmark dataset for power flow that captures diverse variations in load, generation, and topology. PF$Δ$ contains 859,800 solved power flow instances spanning six different bus system sizes, capturing three types of contingency scenarios (N , N -1, and N -2), and including close-to-infeasible cases near steady-state voltage stability limits. We evaluate traditional solvers and GNN-based methods, highlighting key areas where existing approaches struggle, and identifying open problems for future research. Our dataset is available at https://huggingface.co/datasets/pfdelta/pfdelta/tree/main and our code with data generation scripts and model implementations is at https://github.com/MOSSLab-MIT/pfdelta.

Authors:Patrick Koller, Amil V. Dravid, Guido M. Schuster, Aggelos K. Katsaggelos
Title: Caption-Driven Explainability: Probing CNNs for Bias via CLIP
Abstract:
Robustness has become one of the most critical problems in machine learning (ML). The science of interpreting ML models to understand their behavior and improve their robustness is referred to as explainable artificial intelligence (XAI). One of the state-of-the-art XAI methods for computer vision problems is to generate saliency maps. A saliency map highlights the pixel space of an image that excites the ML model the most. However, this property could be misleading if spurious and salient features are present in overlapping pixel spaces. In this paper, we propose a caption-based XAI method, which integrates a standalone model to be explained into the contrastive language-image pre-training (CLIP) model using a novel network surgery approach. The resulting caption-based XAI model identifies the dominant concept that contributes the most to the models prediction. This explanation minimizes the risk of the standalone model falling for a covariate shift and contributes significantly towards developing robust ML models. Our code is available at https://github.com/patch0816/caption-driven-xai

Authors:Yassine Chemingui, Aryan Deshwal, Alan Fern, Thanh Nguyen-Tang, Janardhan Rao Doppa
Title: Online Optimization for Offline Safe Reinforcement Learning
Abstract:
We study the problem of Offline Safe Reinforcement Learning (OSRL), where the goal is to learn a reward-maximizing policy from fixed data under a cumulative cost constraint. We propose a novel OSRL approach that frames the problem as a minimax objective and solves it by combining offline RL with online optimization algorithms. We prove the approximate optimality of this approach when integrated with an approximate offline RL oracle and no-regret online optimization. We also present a practical approximation that can be combined with any offline RL algorithm, eliminating the need for offline policy evaluation. Empirical results on the DSRL benchmark demonstrate that our method reliably enforces safety constraints under stringent cost budgets, while achieving high rewards. The code is available at https://github.com/yassineCh/O3SRL.

Authors:Or Ronai, Vladimir Kulikov, Tomer Michaeli
Title: FlowOpt: Fast Optimization Through Whole Flow Processes for Training-Free Editing
Abstract:
The remarkable success of diffusion and flow-matching models has ignited a surge of works on adapting them at test time for controlled generation tasks. Examples range from image editing to restoration, compression and personalization. However, due to the iterative nature of the sampling process in those models, it is computationally impractical to use gradient-based optimization to directly control the image generated at the end of the process. As a result, existing methods typically resort to manipulating each timestep separately. Here we introduce FlowOpt - a zero-order (gradient-free) optimization framework that treats the entire flow process as a black box, enabling optimization through the whole sampling path without backpropagation through the model. Our method is both highly efficient and allows users to monitor the intermediate optimization results and perform early stopping if desired. We prove a sufficient condition on FlowOpt's step-size, under which convergence to the global optimum is guaranteed. We further show how to empirically estimate this upper bound so as to choose an appropriate step-size. We demonstrate how FlowOpt can be used for image editing, showcasing two options: (i) inversion (determining the initial noise that generates a given image), and (ii) directly steering the edited image to be similar to the source image while conforming to a target text prompt. In both cases, FlowOpt achieves state-of-the-art results while using roughly the same number of neural function evaluations (NFEs) as existing methods. Code and examples are available on the project's webpage.

Authors:Zhenya Huang, Jiayu Liu, Xin Lin, Zhiyuan Ma, Shangzi Xue, Tong Xiao, Qi Liu, Yee Whye Teh, Enhong Chen
Title: Foundation of Intelligence: Review of Math Word Problems from Human Cognition Perspective
Abstract:
Math word problem (MWP) serves as a fundamental research topic in artificial intelligence (AI) dating back to 1960s. This research aims to advance the reasoning abilities of AI by mirroring the human-like cognitive intelligence. The mainstream technological paradigm has evolved from the early rule-based methods, to deep learning models, and is rapidly advancing towards large language models. However, the field still lacks a systematic taxonomy for the MWP survey along with a discussion of current development trends. Therefore, in this paper, we aim to comprehensively review related research in MWP solving through the lens of human cognition, to demonstrate how recent AI models are advancing in simulating human cognitive abilities. Specifically, we summarize 5 crucial cognitive abilities for MWP solving, including Problem Understanding, Logical Organization, Associative Memory, Critical Thinking, and Knowledge Learning. Focused on these abilities, we review two mainstream MWP models in recent 10 years: neural network solvers, and LLM based solvers, and discuss the core human-like abilities they demonstrated in their intricate problem-solving process. Moreover, we rerun all the representative MWP solvers and supplement their performance on 5 mainstream benchmarks for a unified comparison. To the best of our knowledge, this survey first comprehensively analyzes the influential MWP research of the past decade from the perspective of human reasoning cognition and provides an integrative overall comparison across existing approaches. We hope it can inspire further research in AI reasoning. Our repository is released on https://github.com/Ljyustc/FoI-MWP.

Authors:Michał Bortkiewicz, Władysław Pałucki, Mateusz Ostaszewski, Benjamin Eysenbach
Title: Is Temporal Difference Learning the Gold Standard for Stitching in RL?
Abstract:
Reinforcement learning (RL) promises to solve long-horizon tasks even when training data contains only short fragments of the behaviors. This experience stitching capability is often viewed as the purview of temporal difference (TD) methods. However, outside of small tabular settings, trajectories never intersect, calling into question this conventional wisdom. Moreover, the common belief is that Monte Carlo (MC) methods should not be able to recombine experience, yet it remains unclear whether function approximation could result in a form of implicit stitching. The goal of this paper is to empirically study whether the conventional wisdom about stitching actually holds in settings where function approximation is used. We empirically demonstrate that Monte Carlo (MC) methods can also achieve experience stitching. While TD methods do achieve slightly stronger capabilities than MC methods (in line with conventional wisdom), that gap is significantly smaller than the gap between small and large neural networks (even on quite simple tasks). We find that increasing critic capacity effectively reduces the generalization gap for both the MC and TD methods. These results suggest that the traditional TD inductive bias for stitching may be less necessary in the era of large models for RL and, in some cases, may offer diminishing returns. Additionally, our results suggest that stitching, a form of generalization unique to the RL setting, might be achieved not through specialized algorithms (temporal difference learning) but rather through the same recipe that has provided generalization in other machine learning settings (via scale). Project website: https://michalbortkiewicz.github.io/golden-standard/

Authors:Musengamana Jean de Dieu, Ruiyin Li, Peng Liang, Mojtaba Shahin, Muhammad Waseem, Arif Ali Khan, Bangchao Wang, Mst Shamima Aktar
Title: ArchISMiner: A Framework for Automatic Mining of Architectural Issue-Solution Pairs from Online Developer Communities
Abstract:
Stack Overflow (SO), a leading online community forum, is a rich source of software development knowledge. However, locating architectural knowledge, such as architectural solutions remains challenging due to the overwhelming volume of unstructured content and fragmented discussions. Developers must manually sift through posts to find relevant architectural insights, which is time-consuming and error-prone. This study introduces ArchISMiner, a framework for mining architectural knowledge from SO. The framework comprises two complementary components: ArchPI and ArchISPE. ArchPI trains and evaluates multiple models, including conventional ML/DL models, Pre-trained Language Models (PLMs), and Large Language Models (LLMs), and selects the best-performing model to automatically identify Architecture-Related Posts (ARPs) among programming-related discussions. ArchISPE employs an indirect supervised approach that leverages diverse features, including BERT embeddings and local TextCNN features, to extract architectural issue-solution pairs. Our evaluation shows that the best model in ArchPI achieves an F1-score of 0.960 in ARP detection, and ArchISPE outperforms baselines in both SE and NLP fields, achieving F1-scores of 0.883 for architectural issues and 0.894 for solutions. A user study further validated the quality (e.g., relevance and usefulness) of the identified ARPs and the extracted issue-solution pairs. Moreover, we applied ArchISMiner to three additional forums, releasing a dataset of over 18K architectural issue-solution pairs. Overall, ArchISMiner can help architects and developers identify ARPs and extract succinct, relevant, and useful architectural knowledge from developer communities more accurately and efficiently. The replication package of this study has been provided at https://github.com/JeanMusenga/ArchISPE

Authors:Harrison F. Stropkay, Jiayi Chen, Mohammad J. Latifi, Daniel N. Rockmore, Jeremy R. Manning
Title: A Stylometric Application of Large Language Models
Abstract:
We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum.

Authors:Kieu Dang, Phung Lai, NhatHai Phan, Yelong Shen, Ruoming Jin, Abdallah Khreishah
Title: $δ$-STEAL: LLM Stealing Attack with Local Differential Privacy
Abstract:
Large language models (LLMs) demonstrate remarkable capabilities across various tasks. However, their deployment introduces significant risks related to intellectual property. In this context, we focus on model stealing attacks, where adversaries replicate the behaviors of these models to steal services. These attacks are highly relevant to proprietary LLMs and pose serious threats to revenue and financial stability. To mitigate these risks, the watermarking solution embeds imperceptible patterns in LLM outputs, enabling model traceability and intellectual property verification. In this paper, we study the vulnerability of LLM service providers by introducing $δ$-STEAL, a novel model stealing attack that bypasses the service provider's watermark detectors while preserving the adversary's model utility. $δ$-STEAL injects noise into the token embeddings of the adversary's model during fine-tuning in a way that satisfies local differential privacy (LDP) guarantees. The adversary queries the service provider's model to collect outputs and form input-output training pairs. By applying LDP-preserving noise to these pairs, $δ$-STEAL obfuscates watermark signals, making it difficult for the service provider to determine whether its outputs were used, thereby preventing claims of model theft. Our experiments show that $δ$-STEAL with lightweight modifications achieves attack success rates of up to $96.95\%$ without significantly compromising the adversary's model utility. The noise scale in LDP controls the trade-off between attack effectiveness and model utility. This poses a significant risk, as even robust watermarks can be bypassed, allowing adversaries to deceive watermark detectors and undermine current intellectual property protection methods.

Authors:Hongbo Zhang, Han Cui, Yidong Wang, Yijian Tian, Qi Guo, Cunxiang Wang, Jian Wu, Chiyu Song, Yue Zhang
Title: Deep Literature Survey Automation with an Iterative Workflow
Abstract:
Automatic literature survey generation has attracted increasing attention, yet most existing systems follow a one-shot paradigm, where a large set of papers is retrieved at once and a static outline is generated before drafting. This design often leads to noisy retrieval, fragmented structures, and context overload, ultimately limiting survey quality. Inspired by the iterative reading process of human researchers, we propose \ours, a framework based on recurrent outline generation, in which a planning agent incrementally retrieves, reads, and updates the outline to ensure both exploration and coherence. To provide faithful paper-level grounding, we design paper cards that distill each paper into its contributions, methods, and findings, and introduce a review-and-refine loop with visualization enhancement to improve textual flow and integrate multimodal elements such as figures and tables. Experiments on both established and emerging topics show that \ours\ substantially outperforms state-of-the-art baselines in content coverage, structural coherence, and citation quality, while producing more accessible and better-organized surveys. To provide a more reliable assessment of such improvements, we further introduce Survey-Arena, a pairwise benchmark that complements absolute scoring and more clearly positions machine-generated surveys relative to human-written ones. The code is available at https://github.com/HancCui/IterSurvey\_Autosurveyv2.

Authors:Xin Lu, Chuanqing Zhuang, Chenxi Jin, Zhengda Lu, Yiqun Wang, Wu Liu, Jun Xiao
Title: LSF-Animation: Label-Free Speech-Driven Facial Animation via Implicit Feature Representation
Abstract:
Speech-driven 3D facial animation has attracted increasing interest since its potential to generate expressive and temporally synchronized digital humans. While recent works have begun to explore emotion-aware animation, they still depend on explicit one-hot encodings to represent identity and emotion with given emotion and identity labels, which limits their ability to generalize to unseen speakers. Moreover, the emotional cues inherently present in speech are often neglected, limiting the naturalness and adaptability of generated animations. In this work, we propose LSF-Animation, a novel framework that eliminates the reliance on explicit emotion and identity feature representations. Specifically, LSF-Animation implicitly extracts emotion information from speech and captures the identity features from a neutral facial mesh, enabling improved generalization to unseen speakers and emotional states without requiring manual labels. Furthermore, we introduce a Hierarchical Interaction Fusion Block (HIFB), which employs a fusion token to integrate dual transformer features and more effectively integrate emotional, motion-related and identity-related cues. Extensive experiments conducted on the 3DMEAD dataset demonstrate that our method surpasses recent state-of-the-art approaches in terms of emotional expressiveness, identity generalization, and animation realism. The source code will be released at: https://github.com/Dogter521/LSF-Animation.

Authors:Bentley DeVilling
Title: The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Abstract:
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.

Authors:Ryan Zhang, Herbert Woisetscläger
Title: SIGN: Schema-Induced Games for Naming
Abstract:
Real-world AI systems are tackling increasingly complex problems, often through interactions among large language model (LLM) agents. When these agents develop inconsistent conventions, coordination can break down. Applications such as collaborative coding and distributed planning therefore require reliable, consistent communication, and scalability is a central concern as systems grow. We introduce Schema-Induced Games for Naming (SIGN), a naming game that examines how lightweight structure can steer convention formation. We compare schema-induced communication to unconstrained natural language and find faster convergence with up to 5.8x higher agreement. These results suggest that minimal structure can act as a simple control knob for efficient multi-agent coordination, pointing toward broader applications beyond the naming game.

Authors:Nayan Kumar Singh
Title: A Multimodal, Multitask System for Generating E Commerce Text Listings from Images
Abstract:
Manually generating catchy descriptions and names is labor intensive and a slow process for retailers. Although generative AI provides an automation solution in form of Vision to Language Models (VLM), the current VLMs are prone to factual "hallucinations". Siloed, single task models are not only inefficient but also fail to capture interdependent relationships between features. To address these challenges, we propose an end to end, multi task system that generates factually grounded textual listings from a single image. The contributions of this study are two proposals for the model architecture. First, application of multi task learning approach for fine tuning a vision encoder where a single vision backbone is jointly trained on attribute prediction such as color, hemline and neck style and price regression. Second, introduction of a hierarchical generation process where the model's own predicted attributes are embedded in a prompt and fed to the text decoder to improve factual consistency. The experiments demonstrate the superiority of this architecture. The multi tasking approach outperforms both the independent price regression, with a 3.6% better R2 Value and attribute classification, with a 6.6% improvement F1 score. Critically, the hierarchical generation process proves highly effective, slashing the factual hallucination rate from 12.7% to 7.1%, a 44.5% relative reduction, compared to a non hierarchical ablation. The hierarchical approach also reduces the latency of the autoregressive text generation process by a factor of 3.5 when compared to direct vision to language model of similar size. One minor caveat is that the model does perform 3.5% worse than direct vision-to-language model on ROUGE-L score.

Authors:Yichi Zhang, Zhuo Chen, Lingbing Guo, Lei Liang, Wen Zhang, Huajun Chen
Title: Structured and Abstractive Reasoning on Multi-modal Relational Knowledge Images
Abstract:
Understanding and reasoning with abstractive information from the visual modality presents significant challenges for current multi-modal large language models (MLLMs). Among the various forms of abstractive information, Multi-Modal Relational Knowledge (MMRK), which represents abstract relational structures between multi-modal entities using node-edge formats, remains largely under-explored. In particular, STructured and Abstractive Reasoning (STAR) on such data has received little attention from the research community. To bridge the dual gaps in large-scale high-quality data and capability enhancement methodologies, this paper makes the following key contributions: (i). An automatic STAR data engine capable of synthesizing images with MMRK to build multi-modal instruction data with reliable chain-of-thought thinking for various STAR tasks and (ii). A comprehsive two-stage capability enhancement training framework, accompanied by a suite of evaluation protocols tailored to different STAR tasks. Based upon these contributions, we introduce STAR-64K, a dataset comprising 64K high-quality multi-modal instruction samples, and conduct experiments across 5 open-source MLLMs. Experimental results show that our two-stage enhancement framework enables smaller 3B/7B models to significantly outperform GPT-4o in STAR. Additionally, we provide in-depth analysis regarding the effectiveness of various designs, data transferability, and scalability.

Authors:Xiaoyu Liu, Chaoyou Fu, Chi Yan, Chu Wu, Haihan Gao, Yi-Fan Zhang, Shaoqi Dong, Cheng Qian, Bin Luo, Xiuyong Yang, Guanwu Li, Yusheng Cai, Yunhang Shen, Deqiang Jiang, Haoyu Cao, Xing Sun, Caifeng Shan, Ran He
Title: VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting
Abstract:
Current Vision-Language-Action (VLA) models are often constrained by a rigid, static interaction paradigm, which lacks the ability to see, hear, speak, and act concurrently as well as handle real-time user interruptions dynamically. This hinders seamless embodied collaboration, resulting in an inflexible and unresponsive user experience. To address these limitations, we introduce VITA-E, a novel embodied interaction framework designed for both behavioral concurrency and nearly real-time interruption. The core of our approach is a dual-model architecture where two parallel VLA instances operate as an ``Active Model'' and a ``Standby Model'', allowing the embodied agent to observe its environment, listen to user speech, provide verbal responses, and execute actions, all concurrently and interruptibly, mimicking human-like multitasking capabilities. We further propose a ``model-as-controller'' paradigm, where we fine-tune the VLM to generate special tokens that serve as direct system-level commands, coupling the model's reasoning with the system's behavior. Experiments conducted on a physical humanoid platform demonstrate that VITA-E can reliably handle complex interactive scenarios. Our framework is compatible with various dual-system VLA models, achieving an extremely high success rate on emergency stops and speech interruptions while also successfully performing concurrent speech and action. This represents a significant step towards more natural and capable embodied assistants.

Authors:Zhao Liu, Yichen Zhu, Yiqing Yang, Guoping Tang, Rui Huang, Qiang Luo, Xiao Lv, Ruiming Tang, Kun Gai, Guorui Zhou
Title: DiffGRM: Diffusion-based Generative Recommendation Model
Abstract:
Generative recommendation (GR) is an emerging paradigm that represents each item via a tokenizer as an n-digit semantic ID (SID) and predicts the next item by autoregressively generating its SID conditioned on the user's history. However, two structural properties of SIDs make ARMs ill-suited. First, intra-item consistency: the n digits jointly specify one item, yet the left-to-right causality trains each digit only under its prefix and blocks bidirectional cross-digit evidence, collapsing supervision to a single causal path. Second, inter-digit heterogeneity: digits differ in semantic granularity and predictability, while the uniform next-token objective assigns equal weight to all digits, overtraining easy digits and undertraining hard digits. To address these two issues, we propose DiffGRM, a diffusion-based GR model that replaces the autoregressive decoder with a masked discrete diffusion model (MDM), thereby enabling bidirectional context and any-order parallel generation of SID digits for recommendation. Specifically, we tailor DiffGRM in three aspects: (1) tokenization with Parallel Semantic Encoding (PSE) to decouple digits and balance per-digit information; (2) training with On-policy Coherent Noising (OCN) that prioritizes uncertain digits via coherent masking to concentrate supervision on high-value signals; and (3) inference with Confidence-guided Parallel Denoising (CPD) that fills higher-confidence digits first and generates diverse Top-K candidates. Experiments show consistent gains over strong generative and discriminative recommendation baselines on multiple datasets, improving NDCG@10 by 6.9%-15.5%. Code is available at https://github.com/liuzhao09/DiffGRM.

Authors:Yifeng Liu, Angela Yuan, Quanquan Gu
Title: MARS-M: When Variance Reduction Meets Matrices
Abstract:
Matrix-based preconditioned optimizers, such as Muon, have recently been shown to be more efficient than scalar-based optimizers for training large-scale neural networks, including large language models (LLMs). On the other hand, recent benchmarks on optimizers for LLM pre-training have demonstrated that variance-reduction techniques such as MARS can achieve substantial speedups over standard optimizers that do not employ variance reduction. In this paper, to achieve the best of both worlds, we introduce MARS-M, a new optimizer that integrates the variance reduction technique in MARS with Muon. Under standard regularity conditions, we prove that Muon-M converges to a first-order stationary point at a rate of $\tilde{\mathcal{O}}(T^{-1/3})$, which improves upon $\tilde{\mathcal{O}}(T^{-1/4})$ rate attained by Muon. Our empirical results on language modeling and computer vision tasks demonstrate that MARS-M consistently yields lower losses and improved performance across various downstream benchmarks. The implementation of MARS-M is available at https://github.com/AGI-Arena/MARS/tree/main/MARS_M.

Authors:Usman Ali, Ali Zia, Abdul Rehman, Umer Ramzan, Zohaib Hassan, Talha Sattar, Jing Wang, Wei Xiang
Title: 2D_3D Feature Fusion via Cross-Modal Latent Synthesis and Attention Guided Restoration for Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR

Authors:Shifeng Xu, Yanzhu Liu, Adams Wai-Kin Kong
Title: Variance-Reduction Guidance: Sampling Trajectory Optimization for Diffusion Models
Abstract:
Diffusion models have become emerging generative models. Their sampling process involves multiple steps, and in each step the models predict the noise from a noisy sample. When the models make prediction, the output deviates from the ground truth, and we call such a deviation as \textit{prediction error}. The prediction error accumulates over the sampling process and deteriorates generation quality. This paper introduces a novel technique for statistically measuring the prediction error and proposes the Variance-Reduction Guidance (VRG) method to mitigate this error. VRG does not require model fine-tuning or modification. Given a predefined sampling trajectory, it searches for a new trajectory which has the same number of sampling steps but produces higher quality results. VRG is applicable to both conditional and unconditional generation. Experiments on various datasets and baselines demonstrate that VRG can significantly improve the generation quality of diffusion models. Source code is available at https://github.com/shifengxu/VRG.

Authors:Le Yang
Title: Mismatch reconstruction theory for unknown measurement matrix in imaging through multimode fiber bending
Abstract:
Multimode fiber imaging requires strict matching between measurement value and measurement matrix to achieve image reconstruction. However, in practical applications, the measurement matrix often cannot be obtained due to unknown system configuration or difficulty in real-time alignment after arbitrary fiber bending, resulting in the failure of traditional reconstruction algorithms. This paper presents a novel mismatch reconstruction theory for solving the problem of image reconstruction when measurement matrix is unknown. We first propose mismatch equation and design matched and calibration solution algorithms to construct a new measurement matrix. In addition, we also provide a detailed proof of these equations and algorithms in the appendix. The experimental results show that under low noise levels, constructed matrix can be used for matched pair in traditional reconstruction algorithms, and reconstruct the original image successfully. Then, we analyze the impact of noise, computational precision and orthogonality on reconstruction performance. The results show that proposed algorithms have a certain degree of robustness. Finally, we discuss the limitations and potential applications of this theory. The code is available: https://github.com/yanglebupt/mismatch-solution.

Authors:Emmanuel U. Ugwu, Zhang Xinming
Title: Promptable Fire Segmentation: Unleashing SAM2's Potential for Real-Time Mobile Deployment with Strategic Bounding Box Guidance
Abstract:
Fire segmentation remains a critical challenge in computer vision due to flames' irregular boundaries, translucent edges, and highly variable intensities. While the Segment Anything Models (SAM and SAM2) have demonstrated impressive cross-domain generalization capabilities, their effectiveness in fire segmentation -- particularly under mobile deployment constraints -- remains largely unexplored. This paper presents the first comprehensive evaluation of SAM2 variants for fire segmentation, focusing on bounding box prompting strategies to enhance deployment feasibility. We systematically evaluate four SAM2.1 variants (tiny, small, base_plus, large) alongside mobile-oriented variants (TinySAM, MobileSAM) across three fire datasets using multiple prompting strategies: automatic, single positive point (SP), single positive point + single negative point (SP+SN), multiple positive points (MP), bounding box (Box), and hybrid variants (Box+SP and Box+MP). Our experimental results demonstrate that bounding box prompts consistently outperform automatic and single point-based approaches, with Box+MP achieving the highest mean IoU (0.64) and Dice coefficient (0.75) on the Khan dataset. Lightweight variants such as TinySAM and MobileSAM further reduce memory and computational costs, making them more suitable for latency-tolerant edge scenarios. Overall, this work provides critical insights for deploying promptable segmentation models in fire monitoring systems and establishes benchmarks for future research in domain-specific SAM applications. Code is available at: https://github.com/UEmmanuel5/ProFSAM

Authors:Jesse Atuhurra, Hidetaka Kamigaito, Taro Watanabe, Koichiro Yoshino
Title: J-ORA: A Framework and Multimodal Dataset for Japanese Object Identification, Reference, Action Prediction in Robot Perception
Abstract:
We introduce J-ORA, a novel multimodal dataset that bridges the gap in robot perception by providing detailed object attribute annotations within Japanese human-robot dialogue scenarios. J-ORA is designed to support three critical perception tasks, object identification, reference resolution, and next-action prediction, by leveraging a comprehensive template of attributes (e.g., category, color, shape, size, material, and spatial relations). Extensive evaluations with both proprietary and open-source Vision Language Models (VLMs) reveal that incorporating detailed object attributes substantially improves multimodal perception performance compared to without object attributes. Despite the improvement, we find that there still exists a gap between proprietary and open-source VLMs. In addition, our analysis of object affordances demonstrates varying abilities in understanding object functionality and contextual relationships across different VLMs. These findings underscore the importance of rich, context-sensitive attribute annotations in advancing robot perception in dynamic environments. See project page at https://jatuhurrra.github.io/J-ORA/.

Authors:Harris Song, Long Le
Title: Avi: Action from Volumetric Inference
Abstract:
We propose Avi, a novel 3D Vision-Language-Action (VLA) architecture that reframes robotic action generation as a problem of 3D perception and spatial reasoning, rather than low-level policy learning. While existing VLA models primarily operate on 2D visual inputs and are trained end-to-end on task-specific action policies, Avi leverages 3D point clouds and language-grounded scene understanding to compute actions through classical geometric transformations. Most notably, Avi does not train on previous action tokens, rather, we build upon a 3D Multi-modal Large Language Model (MLLM) to generate the next point cloud and explicitly calculate the actions through classical transformations. This approach enables generalizable behaviors that are robust to occlusions, camera pose variations, and changes in viewpoint. By treating the robotic decision-making process as a structured reasoning task over 3D representations, Avi bridges the gap between high-level language instructions and low-level actuation without requiring opaque policy learning. Our preliminary results highlight the potential of 3D vision-language reasoning as a foundation for scalable, robust robotic systems. Check it out at https://avi-3drobot.github.io/.

Authors:Yanjia Huang, Shuo Liu, Sheng Liu, Qingxiao Xu, Mingyang Wu, Xiangbo Gao, Zhengzhong Tu
Title: FORGE-Tree: Diffusion-Forcing Tree Search for Long-Horizon Robot Manipulation
Abstract:
Long-horizon robot manipulation tasks remain challenging for Vision-Language-Action (VLA) policies due to drift and exposure bias, often denoise the entire trajectory with fixed hyperparameters, causing small geometric errors to compound across stages and offering no mechanism to allocate extra test-time compute where clearances are tight. To address these challenges, we introduce FORGE-Tree, a plug-in control layer that couples a stage-aligned Diffusion Forcing (DF) head with test-time Monte Carlo Tree Diffusion (MCTD). With a frozen VLA encoder, DF aligns timesteps to subtask stages; during inference we partially denoise only a target segment while keeping other tokens frozen, turning trajectory refinement into a sequence of local edits. We then apply Monte Carlo Tree Diffusion to select the next segment to refine. A scene graph supplies priors for expansion and geometry relation-aware scoring for rollouts, yielding tree-structured denoising whose performance scales with search budget while preserving the executed prefix. Evaluation on LIBERO, FORGE-Tree improves success rate by 13.4 to 17.2 pp over the native VLA baselines with both OpenVLA and Octo-Base. Gains remain consistent under comparable compute budgets, especially on long-horizon variants. Videos available at: https://taco-group.github.io/FORGE-Tree/

Authors:Tobias Schmidt, Steffen Schneider, Matthias Bethge
Title: Equivariance by Contrast: Identifiable Equivariant Embeddings from Unlabeled Finite Group Actions
Abstract:
We propose Equivariance by Contrast (EbC) to learn equivariant embeddings from observation pairs $(\mathbf{y}, g \cdot \mathbf{y})$, where $g$ is drawn from a finite group acting on the data. Our method jointly learns a latent space and a group representation in which group actions correspond to invertible linear maps -- without relying on group-specific inductive biases. We validate our approach on the infinite dSprites dataset with structured transformations defined by the finite group $G:= (R_m \times \mathbb{Z}_n \times \mathbb{Z}_n)$, combining discrete rotations and periodic translations. The resulting embeddings exhibit high-fidelity equivariance, with group operations faithfully reproduced in latent space. On synthetic data, we further validate the approach on the non-abelian orthogonal group $O(n)$ and the general linear group $GL(n)$. We also provide a theoretical proof for identifiability. While broad evaluation across diverse group types on real-world data remains future work, our results constitute the first successful demonstration of general-purpose encoder-only equivariant learning from group action observations alone, including non-trivial non-abelian groups and a product group motivated by modeling affine equivariances in computer vision.

Authors:Nir Goren, Shai Yehezkel, Omer Dahary, Andrey Voynov, Or Patashnik, Daniel Cohen-Or
Title: Visual Diffusion Models are Geometric Solvers
Abstract:
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.

Authors:Han Yan, Xibin Song, Yifu Wang, Hongdong Li, Pan Ji, Chao Ma
Title: BachVid: Training-Free Video Generation with Consistent Background and Character
Abstract:
Diffusion Transformers (DiTs) have recently driven significant progress in text-to-video (T2V) generation. However, generating multiple videos with consistent characters and backgrounds remains a significant challenge. Existing methods typically rely on reference images or extensive training, and often only address character consistency, leaving background consistency to image-to-video models. We introduce BachVid, the first training-free method that achieves consistent video generation without needing any reference images. Our approach is based on a systematic analysis of DiT's attention mechanism and intermediate features, revealing its ability to extract foreground masks and identify matching points during the denoising process. Our method leverages this finding by first generating an identity video and caching the intermediate variables, and then inject these cached variables into corresponding positions in newly generated videos, ensuring both foreground and background consistency across multiple videos. Experimental results demonstrate that BachVid achieves robust consistency in generated videos without requiring additional training, offering a novel and efficient solution for consistent video generation without relying on reference images or additional training.

Authors:Reuben Narad, Leonard Boussioux, Michael Wagner
Title: Mechanistic Interpretability for Neural TSP Solvers
Abstract:
Neural networks have advanced combinatorial optimization, with Transformer-based solvers achieving near-optimal solutions on the Traveling Salesman Problem (TSP) in milliseconds. However, these models operate as black boxes, providing no insight into the geometric patterns they learn or the heuristics they employ during tour construction. We address this opacity by applying sparse autoencoders (SAEs), a mechanistic interpretability technique, to a Transformer-based TSP solver, representing the first application of activation-based interpretability methods to operations research models. We train a pointer network with reinforcement learning on 100-node instances, then fit an SAE to the encoder's residual stream to discover an overcomplete dictionary of interpretable features. Our analysis reveals that the solver naturally develops features mirroring fundamental TSP concepts: boundary detectors that activate on convex-hull nodes, cluster-sensitive features responding to locally dense regions, and separator features encoding geometric partitions. These findings provide the first model-internal account of what neural TSP solvers compute before node selection, demonstrate that geometric structure emerges without explicit supervision, and suggest pathways toward transparent hybrid systems that combine neural efficiency with algorithmic interpretability. Interactive feature explorer: https://reubennarad.github.io/TSP_interp

Authors:Edward Berman, Jacob Ginesin, Marco Pacini, Robin Walters
Title: On Uncertainty Calibration for Equivariant Functions
Abstract:
Data-sparse settings such as robotic manipulation, molecular physics, and galaxy morphology classification are some of the hardest domains for deep learning. For these problems, equivariant networks can help improve modeling across undersampled parts of the input space, and uncertainty estimation can guard against overconfidence. However, until now, the relationships between equivariance and model confidence, and more generally equivariance and model calibration, has yet to be studied. Since traditional classification and regression error terms show up in the definitions of calibration error, it is natural to suspect that previous work can be used to help understand the relationship between equivariance and calibration error. In this work, we present a theory relating equivariance to uncertainty estimation. By proving lower and upper bounds on uncertainty calibration errors (ECE and ENCE) under various equivariance conditions, we elucidate the generalization limits of equivariant models and illustrate how symmetry mismatch can result in miscalibration in both classification and regression. We complement our theoretical framework with numerical experiments that clarify the relationship between equivariance and uncertainty using a variety of real and simulated datasets, and we comment on trends with symmetry mismatch, group size, and aleatoric and epistemic uncertainties.

Authors:Raheem Karim Hashmani, Garrett W. Merz, Helen Qu, Mariel Pettee, Kyle Cranmer
Title: Multimodal Datasets with Controllable Mutual Information
Abstract:
We introduce a framework for generating highly multimodal datasets with explicitly calculable mutual information between modalities. This enables the construction of benchmark datasets that provide a novel testbed for systematic studies of mutual information estimators and multimodal self-supervised learning techniques. Our framework constructs realistic datasets with known mutual information using a flow-based generative model and a structured causal framework for generating correlated latent variables.

Authors:Sikuang Li, Chen Yang, Jiemin Fang, Taoran Yi, Jia Lu, Jiazhong Cen, Lingxi Xie, Wei Shen, Qi Tian
Title: WorldGrow: Generating Infinite 3D World
Abstract:
We tackle the challenge of generating the infinitely extendable 3D world -- large, continuous environments with coherent geometry and realistic appearance. Existing methods face key challenges: 2D-lifting approaches suffer from geometric and appearance inconsistencies across views, 3D implicit representations are hard to scale up, and current 3D foundation models are mostly object-centric, limiting their applicability to scene-level generation. Our key insight is leveraging strong generation priors from pre-trained 3D models for structured scene block generation. To this end, we propose WorldGrow, a hierarchical framework for unbounded 3D scene synthesis. Our method features three core components: (1) a data curation pipeline that extracts high-quality scene blocks for training, making the 3D structured latent representations suitable for scene generation; (2) a 3D block inpainting mechanism that enables context-aware scene extension; and (3) a coarse-to-fine generation strategy that ensures both global layout plausibility and local geometric/textural fidelity. Evaluated on the large-scale 3D-FRONT dataset, WorldGrow achieves SOTA performance in geometry reconstruction, while uniquely supporting infinite scene generation with photorealistic and structurally consistent outputs. These results highlight its capability for constructing large-scale virtual environments and potential for building future world models.

Authors:Ying Xue, Jiaxi Jiang, Rayan Armani, Dominik Hollidt, Yi-Chi Liao, Christian Holz
Title: Group Inertial Poser: Multi-Person Pose and Global Translation from Sparse Inertial Sensors and Ultra-Wideband Ranging
Abstract:
Tracking human full-body motion using sparse wearable inertial measurement units (IMUs) overcomes the limitations of occlusion and instrumentation of the environment inherent in vision-based approaches. However, purely IMU-based tracking compromises translation estimates and accurate relative positioning between individuals, as inertial cues are inherently self-referential and provide no direct spatial reference for others. In this paper, we present a novel approach for robustly estimating body poses and global translation for multiple individuals by leveraging the distances between sparse wearable sensors - both on each individual and across multiple individuals. Our method Group Inertial Poser estimates these absolute distances between pairs of sensors from ultra-wideband ranging (UWB) and fuses them with inertial observations as input into structured state-space models to integrate temporal motion patterns for precise 3D pose estimation. Our novel two-step optimization further leverages the estimated distances for accurately tracking people's global trajectories through the world. We also introduce GIP-DB, the first IMU+UWB dataset for two-person tracking, which comprises 200 minutes of motion recordings from 14 participants. In our evaluation, Group Inertial Poser outperforms previous state-of-the-art methods in accuracy and robustness across synthetic and real-world data, showing the promise of IMU+UWB-based multi-human motion capture in the wild. Code, models, dataset: https://github.com/eth-siplab/GroupInertialPoser

Authors:Xiaoxi Li, Wenxiang Jiao, Jiarui Jin, Guanting Dong, Jiajie Jin, Yinuo Wang, Hao Wang, Yutao Zhu, Ji-Rong Wen, Yuan Lu, Zhicheng Dou
Title: DeepAgent: A General Reasoning Agent with Scalable Toolsets
Abstract:
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.

Authors:Wenyi Wang, Piotr Piękos, Li Nanbo, Firas Laakom, Yimeng Chen, Mateusz Ostaszewski, Mingchen Zhuge, Jürgen Schmidhuber
Title: Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Abstract:
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric ($\mathrm{CMP}$) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true $\mathrm{CMP}$ is sufficient to simulate how the Gödel Machine would behave under certain assumptions. We introduce the Huxley-Gödel Machine (HGM), which, by estimating $\mathrm{CMP}$ and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using fewer allocated CPU hours. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is publicly available at https://github.com/metauto-ai/HGM.

Authors:Elle Miller, Trevor McInroe, David Abel, Oisin Mac Aodha, Sethu Vijayakumar
Title: Enhancing Tactile-based Reinforcement Learning for Robotic Control
Abstract:
Achieving safe, reliable real-world robotic manipulation requires agents to evolve beyond vision and incorporate tactile sensing to overcome sensory deficits and reliance on idealised state information. Despite its potential, the efficacy of tactile sensing in reinforcement learning (RL) remains inconsistent. We address this by developing self-supervised learning (SSL) methodologies to more effectively harness tactile observations, focusing on a scalable setup of proprioception and sparse binary contacts. We empirically demonstrate that sparse binary tactile signals are critical for dexterity, particularly for interactions that proprioceptive control errors do not register, such as decoupled robot-object motions. Our agents achieve superhuman dexterity in complex contact tasks (ball bouncing and Baoding ball rotation). Furthermore, we find that decoupling the SSL memory from the on-policy memory can improve performance. We release the Robot Tactile Olympiad (RoTO) benchmark to standardise and promote future research in tactile-based manipulation. Project page: https://elle-miller.github.io/tactile_rl

Authors:Yassine El Ouahidi, Jonathan Lys, Philipp Thölke, Nicolas Farrugia, Bastien Pasdeloup, Vincent Gripon, Karim Jerbi, Giulia Lioi
Title: REVE: A Foundation Model for EEG -- Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects
Abstract:
Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has lagged due to the heterogeneity of public datasets, which are collected under varying protocols, devices, and electrode configurations. Existing EEG foundation models struggle to generalize across these variations, often restricting pretraining to a single setup, resulting in suboptimal performance, in particular under linear probing. We present REVE (Representation for EEG with Versatile Embeddings), a pretrained model explicitly designed to generalize across diverse EEG signals. REVE introduces a novel 4D positional encoding scheme that enables it to process signals of arbitrary length and electrode arrangement. Using a masked autoencoding objective, we pretrain REVE on over 60,000 hours of EEG data from 92 datasets spanning 25,000 subjects, representing the largest EEG pretraining effort to date. REVE achieves state-of-the-art results on 10 downstream EEG tasks, including motor imagery classification, seizure detection, sleep staging, cognitive load estimation, and emotion recognition. With little to no fine-tuning, it demonstrates strong generalization, and nuanced spatio-temporal modeling. We release code, pretrained weights, and tutorials to support standardized EEG research and accelerate progress in clinical neuroscience.

Authors:Ciara Rowles, Varun Jampani, Simon Donné, Shimon Vainer, Julian Parker, Zach Evans
Title: Foley Control: Aligning a Frozen Latent Text-to-Audio Model to Video
Abstract:
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).

Authors:Qixiu Li, Yu Deng, Yaobo Liang, Lin Luo, Lei Zhou, Chengtang Yao, Lingqi Zeng, Zhiyuan Feng, Huizhi Liang, Sicheng Xu, Yizhong Zhang, Xi Chen, Hao Chen, Lily Sun, Dong Chen, Jiaolong Yang, Baining Guo
Title: Scalable Vision-Language-Action Model Pretraining for Robotic Manipulation with Real-Life Human Activity Videos
Abstract:
This paper presents a novel approach for pretraining robotic manipulation Vision-Language-Action (VLA) models using a large corpus of unscripted real-life video recordings of human hand activities. Treating human hand as dexterous robot end-effector, we show that "in-the-wild" egocentric human videos without any annotations can be transformed into data formats fully aligned with existing robotic V-L-A training data in terms of task granularity and labels. This is achieved by the development of a fully-automated holistic human activity analysis approach for arbitrary human hand videos. This approach can generate atomic-level hand activity segments and their language descriptions, each accompanied with framewise 3D hand motion and camera motion. We process a large volume of egocentric videos and create a hand-VLA training dataset containing 1M episodes and 26M frames. This training data covers a wide range of objects and concepts, dexterous manipulation tasks, and environment variations in real life, vastly exceeding the coverage of existing robot data. We design a dexterous hand VLA model architecture and pretrain the model on this dataset. The model exhibits strong zero-shot capabilities on completely unseen real-world observations. Additionally, fine-tuning it on a small amount of real robot action data significantly improves task success rates and generalization to novel objects in real robotic experiments. We also demonstrate the appealing scaling behavior of the model's task performance with respect to pretraining data scale. We believe this work lays a solid foundation for scalable VLA pretraining, advancing robots toward truly generalizable embodied intelligence.

Authors:Fangwen Wu, Zheng Wu, Jihong Wang, Yunku Chen, Ruiguang Pei, Heyuan Huang, Xin Liao, Xingyu Lou, Huarong Deng, Zhihui Fu, Weiwen Liu, Zhuosheng Zhang, Weinan Zhang, Jun Wang
Title: ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
Abstract:
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.

Authors:Hongwei Zhang, Ji Lu, Shiqing Jiang, Chenxiang Zhu, Li Xie, Chen Zhong, Haoran Chen, Yurui Zhu, Yongsheng Du, Yanqin Gao, Lingjun Huang, Baoli Wang, Fang Tan, Peng Zou
Title: Co-Sight: Enhancing LLM-Based Agents via Conflict-Aware Meta-Verification and Trustworthy Reasoning with Structured Facts
Abstract:
Long-horizon reasoning in LLM-based agents often fails not from generative weakness but from insufficient verification of intermediate reasoning. Co-Sight addresses this challenge by turning reasoning into a falsifiable and auditable process through two complementary mechanisms: Conflict-Aware Meta-Verification (CAMV) and Trustworthy Reasoning with Structured Facts (TRSF). CAMV reformulates verification as conflict identification and targeted falsification, allocating computation only to disagreement hotspots among expert agents rather than to full reasoning chains. This bounds verification cost to the number of inconsistencies and improves efficiency and reliability. TRSF continuously organizes, validates, and synchronizes evidence across agents through a structured facts module. By maintaining verified, traceable, and auditable knowledge, it ensures that all reasoning is grounded in consistent, source-verified information and supports transparent verification throughout the reasoning process. Together, TRSF and CAMV form a closed verification loop, where TRSF supplies structured facts and CAMV selectively falsifies or reinforces them, yielding transparent and trustworthy reasoning. Empirically, Co-Sight achieves state-of-the-art accuracy on GAIA (84.4%) and Humanity's Last Exam (35.5%), and strong results on Chinese-SimpleQA (93.8%). Ablation studies confirm that the synergy between structured factual grounding and conflict-aware verification drives these improvements. Co-Sight thus offers a scalable paradigm for reliable long-horizon reasoning in LLM-based agents. Code is available at https://github.com/ZTE-AICloud/Co-Sight/tree/cosight2.0_benchmarks.

Authors:Mojtaba Nafez, Mobina Poulaei, Nikan Vasei, Bardia Soltani Moakhar, Mohammad Sabokrou, MohammadHossein Rohban
Title: FrameShield: Adversarially Robust Video Anomaly Detection
Abstract:
Weakly Supervised Video Anomaly Detection (WSVAD) has achieved notable advancements, yet existing models remain vulnerable to adversarial attacks, limiting their reliability. Due to the inherent constraints of weak supervision, where only video-level labels are provided despite the need for frame-level predictions, traditional adversarial defense mechanisms, such as adversarial training, are not effective since video-level adversarial perturbations are typically weak and inadequate. To address this limitation, pseudo-labels generated directly from the model can enable frame-level adversarial training; however, these pseudo-labels are inherently noisy, significantly degrading performance. We therefore introduce a novel Pseudo-Anomaly Generation method called Spatiotemporal Region Distortion (SRD), which creates synthetic anomalies by applying severe augmentations to localized regions in normal videos while preserving temporal consistency. Integrating these precisely annotated synthetic anomalies with the noisy pseudo-labels substantially reduces label noise, enabling effective adversarial training. Extensive experiments demonstrate that our method significantly enhances the robustness of WSVAD models against adversarial attacks, outperforming state-of-the-art methods by an average of 71.0\% in overall AUROC performance across multiple benchmarks. The implementation and code are publicly available at https://github.com/rohban-lab/FrameShield.

Authors:Ilija Lichkovski, Alexander Müller, Mariam Ibrahim, Tiwai Mhundwa
Title: EU-Agent-Bench: Measuring Illegal Behavior of LLM Agents Under EU Law
Abstract:
Large language models (LLMs) are increasingly deployed as agents in various contexts by providing tools at their disposal. However, LLM agents can exhibit unpredictable behaviors, including taking undesirable and/or unsafe actions. In order to measure the latent propensity of LLM agents for taking illegal actions under an EU legislative context, we introduce EU-Agent-Bench, a verifiable human-curated benchmark that evaluates an agent's alignment with EU legal norms in situations where benign user inputs could lead to unlawful actions. Our benchmark spans scenarios across several categories, including data protection, bias/discrimination, and scientific integrity, with each user request allowing for both compliant and non-compliant execution of the requested actions. Comparing the model's function calls against a rubric exhaustively supported by citations of the relevant legislature, we evaluate the legal compliance of frontier LLMs, and furthermore investigate the compliance effect of providing the relevant legislative excerpts in the agent's system prompt along with explicit instructions to comply. We release a public preview set for the research community, while holding out a private test set to prevent data contamination in evaluating upcoming models. We encourage future work extending agentic safety benchmarks to different legal jurisdictions and to multi-turn and multilingual interactions. We release our code on \href{https://github.com/ilijalichkovski/eu-agent-bench}{this URL}.

Authors:Omer Moussa, Mariya Toneva
Title: Brain-tuning Improves Generalizability and Efficiency of Brain Alignment in Speech Models
Abstract:
Pretrained language models are remarkably effective in aligning with human brain responses elicited by natural language stimuli, positioning them as promising model organisms for studying language processing in the brain. However, existing approaches for both estimating and improving this brain alignment are participant-dependent and highly affected by the amount of data available per participant, hindering both generalization to new participants and population-level analyses. In this work, we address these limitations by introducing a scalable, generalizable brain-tuning method, in which we fine-tune pretrained speech language models to jointly predict fMRI responses from multiple participants. We demonstrate that the resulting brain-tuned models exhibit strong individual brain alignment while generalizing across participants. Specifically, our method leads to 1) a 5-fold decrease in the amount of fMRI data needed to predict brain data from new participants, 2) up to a 50% increase in the overall brain alignment, and 3) strong generalization to new unseen datasets. Furthermore, this multi-participant brain-tuning additionally improves downstream performance on semantic tasks, suggesting that training using brain data from multiple participants leads to more generalizable semantic representations. Taken together, these findings demonstrate a bidirectional benefit between neuroscience and AI, helping bridge the gap between the two fields. We make our code and models publicly available at https://github.com/bridge-ai-neuro/multi-brain-tuning.

Authors:Chaewoon Bae, Doyun Choi, Jaehyun Lee, Jaemin Yoo
Title: Parameter-Free Hypergraph Neural Network for Few-Shot Node Classification
Abstract:
Few-shot node classification on hypergraphs requires models that generalize from scarce labels while capturing high-order structures. Existing hypergraph neural networks (HNNs) effectively encode such structures but often suffer from overfitting and scalability issues due to complex, black-box architectures. In this work, we propose ZEN (Zero-Parameter Hypergraph Neural Network), a fully linear and parameter-free model that achieves both expressiveness and efficiency. Built upon a unified formulation of linearized HNNs, ZEN introduces a tractable closed-form solution for the weight matrix and a redundancy-aware propagation scheme to avoid iterative training and to eliminate redundant self information. On 11 real-world hypergraph benchmarks, ZEN consistently outperforms eight baseline models in classification accuracy while achieving up to 696x speedups over the fastest competitor. Moreover, the decision process of ZEN is fully interpretable, providing insights into the characteristic of a dataset. Our code and datasets are fully available at https://github.com/chaewoonbae/ZEN.

Authors:Shengtian Yang, Yue Feng, Yingshi Liu, Jingrou Zhang, Jie Qin
Title: MoniTor: Exploiting Large Language Models with Instruction for Online Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) aims to locate unusual activities or behaviors within videos. Recently, offline VAD has garnered substantial research attention, which has been invigorated by the progress in large language models (LLMs) and vision-language models (VLMs), offering the potential for a more nuanced understanding of anomalies. However, online VAD has seldom received attention due to real-time constraints and computational intensity. In this paper, we introduce a novel Memory-based online scoring queue scheme for Training-free VAD (MoniTor), to address the inherent complexities in online VAD. Specifically, MoniTor applies a streaming input to VLMs, leveraging the capabilities of pre-trained large-scale models. To capture temporal dependencies more effectively, we incorporate a novel prediction mechanism inspired by Long Short-Term Memory (LSTM) networks. This ensures the model can effectively model past states and leverage previous predictions to identify anomalous behaviors. Thereby, it better understands the current frame. Moreover, we design a scoring queue and an anomaly prior to dynamically store recent scores and cover all anomalies in the monitoring scenario, providing guidance for LLMs to distinguish between normal and abnormal behaviors over time. We evaluate MoniTor on two large datasets (i.e., UCF-Crime and XD-Violence) containing various surveillance and real-world scenarios. The results demonstrate that MoniTor outperforms state-of-the-art methods and is competitive with weakly supervised methods without training. Code is available at https://github.com/YsTvT/MoniTor.

Authors:Honghua Chen, Yushi Lan, Yongwei Chen, Xingang Pan
Title: ArtiLatent: Realistic Articulated 3D Object Generation via Structured Latents
Abstract:
We propose ArtiLatent, a generative framework that synthesizes human-made 3D objects with fine-grained geometry, accurate articulation, and realistic appearance. Our approach jointly models part geometry and articulation dynamics by embedding sparse voxel representations and associated articulation properties, including joint type, axis, origin, range, and part category, into a unified latent space via a variational autoencoder. A latent diffusion model is then trained over this space to enable diverse yet physically plausible sampling. To reconstruct photorealistic 3D shapes, we introduce an articulation-aware Gaussian decoder that accounts for articulation-dependent visibility changes (e.g., revealing the interior of a drawer when opened). By conditioning appearance decoding on articulation state, our method assigns plausible texture features to regions that are typically occluded in static poses, significantly improving visual realism across articulation configurations. Extensive experiments on furniture-like objects from PartNet-Mobility and ACD datasets demonstrate that ArtiLatent outperforms existing approaches in geometric consistency and appearance fidelity. Our framework provides a scalable solution for articulated 3D object synthesis and manipulation.

Authors:Whie Jung, Semin Kim, Junee Kim, Seunghoon Hong
Title: Bridging the gap to real-world language-grounded visual concept learning
Abstract:
Human intelligence effortlessly interprets visual scenes along a rich spectrum of semantic dimensions. However, existing approaches to language-grounded visual concept learning are limited to a few predefined primitive axes, such as color and shape, and are typically explored in synthetic datasets. In this work, we propose a scalable framework that adaptively identifies image-related concept axes and grounds visual concepts along these axes in real-world scenes. Leveraging a pretrained vision-language model and our universal prompting strategy, our framework identifies a diverse image-related axes without any prior knowledge. Our universal concept encoder adaptively binds visual features to the discovered axes without introducing additional model parameters for each concept. To ground visual concepts along the discovered axes, we optimize a compositional anchoring objective, which ensures that each axis can be independently manipulated without affecting others. We demonstrate the effectiveness of our framework on subsets of ImageNet, CelebA-HQ, and AFHQ, showcasing superior editing capabilities across diverse real-world concepts that are too varied to be manually predefined. Our method also exhibits strong compositional generalization, outperforming existing visual concept learning and text-based editing methods. The code is available at https://github.com/whieya/Language-grounded-VCL.

Authors:Yue Feng, Jinwei Hu, Qijia Lu, Jiawei Niu, Li Tan, Shuo Yuan, Ziyi Yan, Yizhen Jia, Qingzhi He, Shiping Ge, Ethan Q. Chen, Wentong Li, Limin Wang, Jie Qin
Title: MUVR: A Multi-Modal Untrimmed Video Retrieval Benchmark with Multi-Level Visual Correspondence
Abstract:
We propose the Multi-modal Untrimmed Video Retrieval task, along with a new benchmark (MUVR) to advance video retrieval for long-video platforms. MUVR aims to retrieve untrimmed videos containing relevant segments using multi-modal queries. It has the following features: 1) Practical retrieval paradigm: MUVR supports video-centric multi-modal queries, expressing fine-grained retrieval needs through long text descriptions, video tag prompts, and mask prompts. It adopts a one-to-many retrieval paradigm and focuses on untrimmed videos, tailored for long-video platform applications. 2) Multi-level visual correspondence: To cover common video categories (e.g., news, travel, dance) and precisely define retrieval matching criteria, we construct multi-level visual correspondence based on core video content (e.g., news events, travel locations, dance moves) which users are interested in and want to retrieve. It covers six levels: copy, event, scene, instance, action, and others. 3) Comprehensive evaluation criteria: We develop 3 versions of MUVR (i.e., Base, Filter, QA). MUVR-Base/Filter evaluates retrieval models, while MUVR-QA assesses MLLMs in a question-answering format. We also propose a Reranking Score to evaluate the reranking ability of MLLMs. MUVR consists of 53K untrimmed videos from the video platform Bilibili, with 1,050 multi-modal queries and 84K matches. Extensive evaluations of 3 state-of-the-art video retrieval models, 6 image-based VLMs, and 10 MLLMs are conducted. MUVR reveals the limitations of retrieval methods in processing untrimmed videos and multi-modal queries, as well as MLLMs in multi-video understanding and reranking. Our code and benchmark is available at https://github.com/debby-0527/MUVR.

Authors:Jieyuan Zhang, Xiaolong Zhou, Shuai Wang, Wenjie Wei, Hanwen Liu, Qian Sun, Malu Zhang, Yang Yang, Haizhou Li
Title: Unveiling the Spatial-temporal Effective Receptive Fields of Spiking Neural Networks
Abstract:
Spiking Neural Networks (SNNs) demonstrate significant potential for energy-efficient neuromorphic computing through an event-driven paradigm. While training methods and computational models have greatly advanced, SNNs struggle to achieve competitive performance in visual long-sequence modeling tasks. In artificial neural networks, the effective receptive field (ERF) serves as a valuable tool for analyzing feature extraction capabilities in visual long-sequence modeling. Inspired by this, we introduce the Spatio-Temporal Effective Receptive Field (ST-ERF) to analyze the ERF distributions across various Transformer-based SNNs. Based on the proposed ST-ERF, we reveal that these models suffer from establishing a robust global ST-ERF, thereby limiting their visual feature modeling capabilities. To overcome this issue, we propose two novel channel-mixer architectures: \underline{m}ulti-\underline{l}ayer-\underline{p}erceptron-based m\underline{ixer} (MLPixer) and \underline{s}plash-and-\underline{r}econstruct \underline{b}lock (SRB). These architectures enhance global spatial ERF through all timesteps in early network stages of Transformer-based SNNs, improving performance on challenging visual long-sequence modeling tasks. Extensive experiments conducted on the Meta-SDT variants and across object detection and semantic segmentation tasks further validate the effectiveness of our proposed method. Beyond these specific applications, we believe the proposed ST-ERF framework can provide valuable insights for designing and optimizing SNN architectures across a broader range of tasks. The code is available at \href{https://github.com/EricZhang1412/Spatial-temporal-ERF}{\faGithub~EricZhang1412/Spatial-temporal-ERF}.

Authors:Whie Jung, Dong Hoon Lee, Seunghoon Hong
Title: Disentangled Representation Learning via Modular Compositional Bias
Abstract:
Recent disentangled representation learning (DRL) methods heavily rely on factor specific strategies-either learning objectives for attributes or model architectures for objects-to embed inductive biases. Such divergent approaches result in significant overhead when novel factors of variation do not align with prior assumptions, such as statistical independence or spatial exclusivity, or when multiple factors coexist, as practitioners must redesign architectures or objectives. To address this, we propose a compositional bias, a modular inductive bias decoupled from both objectives and architectures. Our key insight is that different factors obey distinct recombination rules in the data distribution: global attributes are mutually exclusive, e.g., a face has one nose, while objects share a common support (any subset of objects can co-exist). We therefore randomly remix latents according to factor-specific rules, i.e., a mixing strategy, and force the encoder to discover whichever factor structure the mixing strategy reflects through two complementary objectives: (i) a prior loss that ensures every remix decodes into a realistic image, and (ii) the compositional consistency loss introduced by Wiedemer et al. (arXiv:2310.05327), which aligns each composite image with its corresponding composite latent. Under this general framework, simply adjusting the mixing strategy enables disentanglement of attributes, objects, and even both, without modifying the objectives or architectures. Extensive experiments demonstrate that our method shows competitive performance in both attribute and object disentanglement, and uniquely achieves joint disentanglement of global style and objects. Code is available at https://github.com/whieya/Compositional-DRL.

Authors:Zhiying Jiang, Ruhao Yan, Zengxi Zhang, Bowei Zhang, Jinyuan Liu
Title: Depth-Supervised Fusion Network for Seamless-Free Image Stitching
Abstract:
Image stitching synthesizes images captured from multiple perspectives into a single image with a broader field of view. The significant variations in object depth often lead to large parallax, resulting in ghosting and misalignment in the stitched results. To address this, we propose a depth-consistency-constrained seamless-free image stitching method. First, to tackle the multi-view alignment difficulties caused by parallax, a multi-stage mechanism combined with global depth regularization constraints is developed to enhance the alignment accuracy of the same apparent target across different depth ranges. Second, during the multi-view image fusion process, an optimal stitching seam is determined through graph-based low-cost computation, and a soft-seam region is diffused to precisely locate transition areas, thereby effectively mitigating alignment errors induced by parallax and achieving natural and seamless stitching results. Furthermore, considering the computational overhead in the shift regression process, a reparameterization strategy is incorporated to optimize the structural design, significantly improving algorithm efficiency while maintaining optimal performance. Extensive experiments demonstrate the superior performance of the proposed method against the existing methods. Code is available at https://github.com/DLUT-YRH/DSFN.

Authors:Dong Bok Lee, Aoxuan Silvia Zhang, Byungjoo Kim, Junhyeon Park, Steven Adriaensen, Juho Lee, Sung Ju Hwang, Hae Beom Lee
Title: Cost-Sensitive Freeze-thaw Bayesian Optimization for Efficient Hyperparameter Tuning
Abstract:
In this paper, we address the problem of \emph{cost-sensitive} hyperparameter optimization (HPO) built upon freeze-thaw Bayesian optimization (BO). Specifically, we assume a scenario where users want to early-stop the HPO process when the expected performance improvement is not satisfactory with respect to the additional computational cost. Motivated by this scenario, we introduce \emph{utility} in the freeze-thaw framework, a function describing the trade-off between the cost and performance that can be estimated from the user's preference data. This utility function, combined with our novel acquisition function and stopping criterion, allows us to dynamically continue training the configuration that we expect to maximally improve the utility in the future, and also automatically stop the HPO process around the maximum utility. Further, we improve the sample efficiency of existing freeze-thaw methods with transfer learning to develop a specialized surrogate model for the cost-sensitive HPO problem. We validate our algorithm on established multi-fidelity HPO benchmarks and show that it outperforms all the previous freeze-thaw BO and transfer-BO baselines we consider, while achieving a significantly better trade-off between the cost and performance. Our code is publicly available at https://github.com/db-Lee/CFBO.

Authors:Xi Zhang, Hanwei Zhu, Yan Zhong, Jiamang Wang, Weisi Lin
Title: BADiff: Bandwidth Adaptive Diffusion Model
Abstract:
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.

Authors:Zihao Fu, Ryan Brown, Shun Shao, Kai Rawal, Eoin Delaney, Chris Russell
Title: FairImagen: Post-Processing for Bias Mitigation in Text-to-Image Models
Abstract:
Text-to-image diffusion models, such as Stable Diffusion, have demonstrated remarkable capabilities in generating high-quality and diverse images from natural language prompts. However, recent studies reveal that these models often replicate and amplify societal biases, particularly along demographic attributes like gender and race. In this paper, we introduce FairImagen (https://github.com/fuzihaofzh/FairImagen), a post-hoc debiasing framework that operates on prompt embeddings to mitigate such biases without retraining or modifying the underlying diffusion model. Our method integrates Fair Principal Component Analysis to project CLIP-based input embeddings into a subspace that minimizes group-specific information while preserving semantic content. We further enhance debiasing effectiveness through empirical noise injection and propose a unified cross-demographic projection method that enables simultaneous debiasing across multiple demographic attributes. Extensive experiments across gender, race, and intersectional settings demonstrate that FairImagen significantly improves fairness with a moderate trade-off in image quality and prompt fidelity. Our framework outperforms existing post-hoc methods and offers a simple, scalable, and model-agnostic solution for equitable text-to-image generation.

Authors:Anupam Pani, Yanchao Yang
Title: Gaze-VLM:Bridging Gaze and VLMs through Attention Regularization for Egocentric Understanding
Abstract:
Eye gaze offers valuable cues about attention, short-term intent, and future actions, making it a powerful signal for modeling egocentric behavior. In this work, we propose a gaze-regularized framework that enhances VLMs for two key egocentric understanding tasks: fine-grained future event prediction and current activity understanding. Unlike prior approaches that rely solely on visual inputs or use gaze as an auxiliary input signal , our method uses gaze only during training. We introduce a gaze-regularized attention mechanism that aligns model focus with human visual gaze. This design is flexible and modular, allowing it to generalize across multiple VLM architectures that utilize attention. Experimental results show that our approach improves semantic prediction scores by up to 11 for future event prediction and around 7 for current activity understanding, compared to the corresponding baseline models trained without gaze regularization. These results highlight the value of gaze-guided training in improving the accuracy and robustness of egocentric VLMs. Overall, this work establishes a foundation for using human gaze to enhance the predictive capabilities of VLMs in real-world scenarios like assistive robots and human-machine collaboration. Code and additional information is available at: https://github.com/anupampani/Gaze-VLM

Authors:Xinyu Zhou, Tongxin Pan, Lingyi Hong, Pinxue Guo, Haijing Guo, Zhaoyu Chen, Kaixun Jiang, Wenqiang Zhang
Title: Dynamic Semantic-Aware Correlation Modeling for UAV Tracking
Abstract:
UAV tracking can be widely applied in scenarios such as disaster rescue, environmental monitoring, and logistics transportation. However, existing UAV tracking methods predominantly emphasize speed and lack exploration in semantic awareness, which hinders the search region from extracting accurate localization information from the template. The limitation results in suboptimal performance under typical UAV tracking challenges such as camera motion, fast motion, and low resolution, etc. To address this issue, we propose a dynamic semantic aware correlation modeling tracking framework. The core of our framework is a Dynamic Semantic Relevance Generator, which, in combination with the correlation map from the Transformer, explore semantic relevance. The approach enhances the search region's ability to extract important information from the template, improving accuracy and robustness under the aforementioned challenges. Additionally, to enhance the tracking speed, we design a pruning method for the proposed framework. Therefore, we present multiple model variants that achieve trade-offs between speed and accuracy, enabling flexible deployment according to the available computational resources. Experimental results validate the effectiveness of our method, achieving competitive performance on multiple UAV tracking datasets. The code is available at https://github.com/zxyyxzz/DSATrack.

Authors:Jinhui Lou, Yan Yang, Zhou Yu, Zhenqi Fu, Weidong Han, Qingming Huang, Jun Yu
Title: CXRAgent: Director-Orchestrated Multi-Stage Reasoning for Chest X-Ray Interpretation
Abstract:
Chest X-ray (CXR) plays a pivotal role in clinical diagnosis, and a variety of task-specific and foundation models have been developed for automatic CXR interpretation. However, these models often struggle to adapt to new diagnostic tasks and complex reasoning scenarios. Recently, LLM-based agent models have emerged as a promising paradigm for CXR analysis, enhancing model's capability through tool coordination, multi-step reasoning, and team collaboration, etc. However, existing agents often rely on a single diagnostic pipeline and lack mechanisms for assessing tools' reliability, limiting their adaptability and credibility. To this end, we propose CXRAgent, a director-orchestrated, multi-stage agent for CXR interpretation, where a central director coordinates the following stages: (1) Tool Invocation: The agent strategically orchestrates a set of CXR-analysis tools, with outputs normalized and verified by the Evidence-driven Validator (EDV), which grounds diagnostic outputs with visual evidence to support reliable downstream diagnosis; (2) Diagnostic Planning: Guided by task requirements and intermediate findings, the agent formulates a targeted diagnostic plan. It then assembles an expert team accordingly, defining member roles and coordinating their interactions to enable adaptive and collaborative reasoning; (3) Collaborative Decision-making: The agent integrates insights from the expert team with accumulated contextual memories, synthesizing them into an evidence-backed diagnostic conclusion. Experiments on various CXR interpretation tasks show that CXRAgent delivers strong performance, providing visual evidence and generalizes well to clinical tasks of different complexity. Code and data are valuable at this \href{https://github.com/laojiahuo2003/CXRAgent/}{link}.

Authors:Shufan Shen, Junshu Sun, Qingming Huang, Shuhui Wang
Title: VL-SAE: Interpreting and Enhancing Vision-Language Alignment with a Unified Concept Set
Abstract:
The alignment of vision-language representations endows current Vision-Language Models (VLMs) with strong multi-modal reasoning capabilities. However, the interpretability of the alignment component remains uninvestigated due to the difficulty in mapping the semantics of multi-modal representations into a unified concept set. To address this problem, we propose VL-SAE, a sparse autoencoder that encodes vision-language representations into its hidden activations. Each neuron in its hidden layer correlates to a concept represented by semantically similar images and texts, thereby interpreting these representations with a unified concept set. To establish the neuron-concept correlation, we encourage semantically similar representations to exhibit consistent neuron activations during self-supervised training. First, to measure the semantic similarity of multi-modal representations, we perform their alignment in an explicit form based on cosine similarity. Second, we construct the VL-SAE with a distance-based encoder and two modality-specific decoders to ensure the activation consistency of semantically similar representations. Experiments across multiple VLMs (e.g., CLIP, LLaVA) demonstrate the superior capability of VL-SAE in interpreting and enhancing the vision-language alignment. For interpretation, the alignment between vision and language representations can be understood by comparing their semantics with concepts. For enhancement, the alignment can be strengthened by aligning vision-language representations at the concept level, contributing to performance improvements in downstream tasks, including zero-shot image classification and hallucination elimination. Codes are available at https://github.com/ssfgunner/VL-SAE.

Authors:Sukanya Patra, Souhaib Ben Taieb
Title: An Evidence-Based Post-Hoc Adjustment Framework for Anomaly Detection Under Data Contamination
Abstract:
Unsupervised anomaly detection (AD) methods typically assume clean training data, yet real-world datasets often contain undetected or mislabeled anomalies, leading to significant performance degradation. Existing solutions require access to the training pipelines, data or prior knowledge of the proportions of anomalies in the data, limiting their real-world applicability. To address this challenge, we propose EPHAD, a simple yet effective test-time adaptation framework that updates the outputs of AD models trained on contaminated datasets using evidence gathered at test time. Our approach integrates the prior knowledge captured by the AD model trained on contaminated datasets with evidence derived from multimodal foundation models like Contrastive Language-Image Pre-training (CLIP), classical AD methods like the Latent Outlier Factor or domain-specific knowledge. We illustrate the intuition behind EPHAD using a synthetic toy example and validate its effectiveness through comprehensive experiments across eight visual AD datasets, twenty-six tabular AD datasets, and a real-world industrial AD dataset. Additionally, we conduct an ablation study to analyse hyperparameter influence and robustness to varying contamination levels, demonstrating the versatility and robustness of EPHAD across diverse AD models and evidence pairs. To ensure reproducibility, our code is publicly available at https://github.com/sukanyapatra1997/EPHAD.

Authors:Qiyong Zhong, Jiajie Su, Yunshan Ma, Julian McAuley, Yupeng Hou
Title: Pctx: Tokenizing Personalized Context for Generative Recommendation
Abstract:
Generative recommendation (GR) models tokenize each action into a few discrete tokens (called semantic IDs) and autoregressively generate the next tokens as predictions, showing advantages such as memory efficiency, scalability, and the potential to unify retrieval and ranking. Despite these benefits, existing tokenization methods are static and non-personalized. They typically derive semantic IDs solely from item features, assuming a universal item similarity that overlooks user-specific perspectives. However, under the autoregressive paradigm, semantic IDs with the same prefixes always receive similar probabilities, so a single fixed mapping implicitly enforces a universal item similarity standard across all users. In practice, the same item may be interpreted differently depending on user intentions and preferences. To address this issue, we propose a personalized context-aware tokenizer that incorporates a user's historical interactions when generating semantic IDs. This design allows the same item to be tokenized into different semantic IDs under different user contexts, enabling GR models to capture multiple interpretive standards and produce more personalized predictions. Experiments on three public datasets demonstrate up to 11.44% improvement in NDCG@10 over non-personalized action tokenization baselines. Our code is available at https://github.com/YoungZ365/Pctx.

Authors:Hyeongyu Kim, Geonhui Han, Dosik Hwang
Title: Buffer layers for Test-Time Adaptation
Abstract:
In recent advancements in Test Time Adaptation (TTA), most existing methodologies focus on updating normalization layers to adapt to the test domain. However, the reliance on normalization-based adaptation presents key challenges. First, normalization layers such as Batch Normalization (BN) are highly sensitive to small batch sizes, leading to unstable and inaccurate statistics. Moreover, normalization-based adaptation is inherently constrained by the structure of the pre-trained model, as it relies on training-time statistics that may not generalize well to unseen domains. These issues limit the effectiveness of normalization-based TTA approaches, especially under significant domain shift. In this paper, we introduce a novel paradigm based on the concept of a Buffer layer, which addresses the fundamental limitations of normalization layer updates. Unlike existing methods that modify the core parameters of the model, our approach preserves the integrity of the pre-trained backbone, inherently mitigating the risk of catastrophic forgetting during online adaptation. Through comprehensive experimentation, we demonstrate that our approach not only outperforms traditional methods in mitigating domain shift and enhancing model robustness, but also exhibits strong resilience to forgetting. Furthermore, our Buffer layer is modular and can be seamlessly integrated into nearly all existing TTA frameworks, resulting in consistent performance improvements across various architectures. These findings validate the effectiveness and versatility of the proposed solution in real-world domain adaptation scenarios. The code is available at https://github.com/hyeongyu-kim/Buffer_TTA.

Authors:Xinghao Wang, Pengyu Wang, Dong Zhang, Chenkun Tan, Shaojun Zhou, Zhaoxiang Liu, Shiguo Lian, Fangxu Liu, Kai Song, Xipeng Qiu
Title: Sparser Block-Sparse Attention via Token Permutation
Abstract:
Scaling the context length of large language models (LLMs) offers significant benefits but is computationally expensive. This expense stems primarily from the self-attention mechanism, whose $O(N^2)$ complexity with respect to sequence length presents a major bottleneck for both memory and latency. Fortunately, the attention matrix is often sparse, particularly for long sequences, suggesting an opportunity for optimization. Block-sparse attention has emerged as a promising solution that partitions sequences into blocks and skips computation for a subset of these blocks. However, the effectiveness of this method is highly dependent on the underlying attention patterns, which can lead to sub-optimal block-level sparsity. For instance, important key tokens for queries within a single block may be scattered across numerous other blocks, leading to computational redundancy. In this work, we propose Permuted Block-Sparse Attention (\textbf{PBS-Attn}), a plug-and-play method that leverages the permutation properties of attention to increase block-level sparsity and enhance the computational efficiency of LLM prefilling. We conduct comprehensive experiments on challenging real-world long-context datasets, demonstrating that PBS-Attn consistently outperforms existing block-sparse attention methods in model accuracy and closely matches the full attention baseline. Powered by our custom permuted-FlashAttention kernels, PBS-Attn achieves an end-to-end speedup of up to $2.75\times$ in long-context prefilling, confirming its practical viability. Code available at https://github.com/xinghaow99/pbs-attn

Authors:Kaiyu Song, Hanjiang Lai, Yaqing Zhang, Chuangjian Cai, Yan Pan Kun Yue, Jian Yin
Title: Topology Sculptor, Shape Refiner: Discrete Diffusion Model for High-Fidelity 3D Meshes Generation
Abstract:
In this paper, we introduce Topology Sculptor, Shape Refiner (TSSR), a novel method for generating high-quality, artist-style 3D meshes based on Discrete Diffusion Models (DDMs). Our primary motivation for TSSR is to achieve highly accurate token prediction while enabling parallel generation, a significant advantage over sequential autoregressive methods. By allowing TSSR to "see" all mesh tokens concurrently, we unlock a new level of efficiency and control. We leverage this parallel generation capability through three key innovations: 1) Decoupled Training and Hybrid Inference, which distinctly separates the DDM-based generation into a topology sculpting stage and a subsequent shape refinement stage. This strategic decoupling enables TSSR to effectively capture both intricate local topology and overarching global shape. 2) An Improved Hourglass Architecture, featuring bidirectional attention enriched by face-vertex-sequence level Rotational Positional Embeddings (RoPE), thereby capturing richer contextual information across the mesh structure. 3) A novel Connection Loss, which acts as a topological constraint to further enhance the realism and fidelity of the generated meshes. Extensive experiments on complex datasets demonstrate that TSSR generates high-quality 3D artist-style meshes, capable of achieving up to 10,000 faces at a remarkable spatial resolution of $1024^3$. The code will be released at: https://github.com/psky1111/Tencent-TSSR.

Authors:Dogyun Park, Taehoon Lee, Minseok Joo, Hyunwoo J. Kim
Title: Blockwise Flow Matching: Improving Flow Matching Models For Efficient High-Quality Generation
Abstract:
Recently, Flow Matching models have pushed the boundaries of high-fidelity data generation across a wide range of domains. It typically employs a single large network to learn the entire generative trajectory from noise to data. Despite their effectiveness, this design struggles to capture distinct signal characteristics across timesteps simultaneously and incurs substantial inference costs due to the iterative evaluation of the entire model. To address these limitations, we propose Blockwise Flow Matching (BFM), a novel framework that partitions the generative trajectory into multiple temporal segments, each modeled by smaller but specialized velocity blocks. This blockwise design enables each block to specialize effectively in its designated interval, improving inference efficiency and sample quality. To further enhance generation fidelity, we introduce a Semantic Feature Guidance module that explicitly conditions velocity blocks on semantically rich features aligned with pretrained representations. Additionally, we propose a lightweight Feature Residual Approximation strategy that preserves semantic quality while significantly reducing inference cost. Extensive experiments on ImageNet 256x256 demonstrate that BFM establishes a substantially improved Pareto frontier over existing Flow Matching methods, achieving 2.1x to 4.9x accelerations in inference complexity at comparable generation performance. Code is available at https://github.com/mlvlab/BFM.

Authors:Dandan Liang, Jianing Zhang, Evan Chen, Zhe Li, Rui Li, Haibo Yang
Title: Towards Straggler-Resilient Split Federated Learning: An Unbalanced Update Approach
Abstract:
Split Federated Learning (SFL) enables scalable training on edge devices by combining the parallelism of Federated Learning (FL) with the computational offloading of Split Learning (SL). Despite its great success, SFL suffers significantly from the well-known straggler issue in distributed learning systems. This problem is exacerbated by the dependency between Split Server and clients: the Split Server side model update relies on receiving activations from clients. Such synchronization requirement introduces significant time latency, making straggler a critical bottleneck to the scalability and efficiency of the system. To mitigate this problem, we propose MU-SplitFed, a straggler-resilient SFL algorithm in zeroth-order optimization that decouples training progress from straggler delays via a simple yet effective unbalanced update mechanism. By enabling the server to perform $τ$ local updates per client round, MU-SplitFed achieves a convergence rate of $O(\sqrt{d/(τT)})$ for non-convex objectives, demonstrating a linear speedup of $τ$ in communication rounds. Experiments demonstrate that MU-SplitFed consistently outperforms baseline methods with the presence of stragglers and effectively mitigates their impact through adaptive tuning of $τ$. The code for this project is available at https://github.com/Johnny-Zip/MU-SplitFed.

Authors:Jihyun Lee, Yejin Min, San Kim, Yejin Jeon, SungJun Yang, Hyounghun Kim, Gary Geunbae Lee
Title: PanicToCalm: A Proactive Counseling Agent for Panic Attacks
Abstract:
Panic attacks are acute episodes of fear and distress, in which timely, appropriate intervention can significantly help individuals regain stability. However, suitable datasets for training such models remain scarce due to ethical and logistical issues. To address this, we introduce PACE, which is a dataset that includes high-distress episodes constructed from first-person narratives, and structured around the principles of Psychological First Aid (PFA). Using this data, we train PACER, a counseling model designed to provide both empathetic and directive support, which is optimized through supervised learning and simulated preference alignment. To assess its effectiveness, we propose PanicEval, a multi-dimensional framework covering general counseling quality and crisis-specific strategies. Experimental results show that PACER outperforms strong baselines in both counselor-side metrics and client affect improvement. Human evaluations further confirm its practical value, with PACER consistently preferred over general, CBT-based, and GPT-4-powered models in panic scenarios (Code is available at https://github.com/JihyunLee1/PanicToCalm ).

Authors:Linyuan Geng, Linxiao Yang, Xinyue Gu, Liang Sun
Title: SolarBoost: Distributed Photovoltaic Power Forecasting Amid Time-varying Grid Capacity
Abstract:
This paper presents SolarBoost, a novel approach for forecasting power output in distributed photovoltaic (DPV) systems. While existing centralized photovoltaic (CPV) methods are able to precisely model output dependencies due to uniformity, it is difficult to apply such techniques to DPV systems, as DPVs face challenges such as missing grid-level data, temporal shifts in installed capacity, geographic variability, and panel diversity. SolarBoost overcomes these challenges by modeling aggregated power output as a composite of output from small grids, where each grid output is modeled using a unit output function multiplied by its capacity. This approach decouples the homogeneous unit output function from dynamic capacity for accurate prediction. Efficient algorithms over an upper-bound approximation are proposed to overcome computational bottlenecks in loss functions. We demonstrate the superiority of grid-level modeling via theoretical analysis and experiments. SolarBoost has been validated through deployment across various cities in China, significantly reducing potential losses and provides valuable insights for the operation of power grids. The code for this work is available at https://github.com/DAMO-DI-ML/SolarBoost.

Authors:Longtian Qiu, Shan Ning, Jiaxuan Sun, Xuming He
Title: NoisyGRPO: Incentivizing Multimodal CoT Reasoning via Noise Injection and Bayesian Estimation
Abstract:
Reinforcement learning (RL) has shown promise in enhancing the general Chain-of-Thought (CoT) reasoning capabilities of multimodal large language models (MLLMs). However, when applied to improve general CoT reasoning, existing RL frameworks often struggle to generalize beyond the training distribution. To address this, we propose NoisyGRPO, a systematic multimodal RL framework that introduces controllable noise into visual inputs for enhanced exploration and explicitly models the advantage estimation process via a Bayesian framework. Specifically, NoisyGRPO improves RL training by: (1) Noise-Injected Exploration Policy: Perturbing visual inputs with Gaussian noise to encourage exploration across a wider range of visual scenarios; and (2) Bayesian Advantage Estimation: Formulating advantage estimation as a principled Bayesian inference problem, where the injected noise level serves as a prior and the observed trajectory reward as the likelihood. This Bayesian modeling fuses both sources of information to compute a robust posterior estimate of trajectory advantage, effectively guiding MLLMs to prefer visually grounded trajectories over noisy ones. Experiments on standard CoT quality, general capability, and hallucination benchmarks demonstrate that NoisyGRPO substantially improves generalization and robustness, especially in RL settings with small-scale MLLMs such as Qwen2.5-VL 3B. The project page is available at https://artanic30.github.io/project_pages/NoisyGRPO/.

Authors:Yanguang Sun, Jiawei Lian, Jian Yang, Lei Luo
Title: Controllable-LPMoE: Adapting to Challenging Object Segmentation via Dynamic Local Priors from Mixture-of-Experts
Abstract:
Large-scale foundation models provide powerful feature representations for downstream object segmentation tasks. However, when adapted to specific tasks through the full-parameter fine-tuning, the enormous parameters being updated often results in significant computational overhead, creating a bottleneck in training efficiency. Although existing methods attempt to fine-tune frozen models by directly embedding trainable prompts, these prompts lack inherent semantic priors, limiting the adaptability of large-scale models. In this paper, we propose a novel dynamic priors-based fine-tuning paradigm with fewer trainable parameters, dubbed Controllable-LPMoE, which adaptively modulates frozen foundation models by dynamically controlling local priors to enhance fine-grained perception for specific segmentation tasks. More specifically, we construct a lightweight dynamic mixed local priors extractor that captures diverse local priors from input images through heterogeneous convolutions while employing a gating network to dynamically output expert priors required for the subsequent fine-tuning. Furthermore, we design a bi-directional interaction adapter that employs cosine-aligned deformable attention and channel-oriented adaptive scale enhancement to interact and restructure between frozen and trainable features, achieving efficient fine-tuning. Extensive experiments validate the superiority of our \href{https://github.com/CSYSI/Controllable-LPMoE} {Controllable-LPMoE} approach, demonstrating excellent segmentation performance compared to 31 state-of-the-art (SOTA) methods and adaptability to multiple binary object segmentation tasks.

Authors:Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, Gabor Karsai, Abhishek Dubey
Title: ESCORT: Efficient Stein-variational and Sliced Consistency-Optimized Temporal Belief Representation for POMDPs
Abstract:
In Partially Observable Markov Decision Processes (POMDPs), maintaining and updating belief distributions over possible underlying states provides a principled way to summarize action-observation history for effective decision-making under uncertainty. As environments grow more realistic, belief distributions develop complexity that standard mathematical models cannot accurately capture, creating a fundamental challenge in maintaining representational accuracy. Despite advances in deep learning and probabilistic modeling, existing POMDP belief approximation methods fail to accurately represent complex uncertainty structures such as high-dimensional, multi-modal belief distributions, resulting in estimation errors that lead to suboptimal agent behaviors. To address this challenge, we present ESCORT (Efficient Stein-variational and sliced Consistency-Optimized Representation for Temporal beliefs), a particle-based framework for capturing complex, multi-modal distributions in high-dimensional belief spaces. ESCORT extends SVGD with two key innovations: correlation-aware projections that model dependencies between state dimensions, and temporal consistency constraints that stabilize updates while preserving correlation structures. This approach retains SVGD's attractive-repulsive particle dynamics while enabling accurate modeling of intricate correlation patterns. Unlike particle filters prone to degeneracy or parametric methods with fixed representational capacity, ESCORT dynamically adapts to belief landscape complexity without resampling or restrictive distributional assumptions. We demonstrate ESCORT's effectiveness through extensive evaluations on both POMDP domains and synthetic multi-modal distributions of varying dimensionality, where it consistently outperforms state-of-the-art methods in terms of belief approximation accuracy and downstream decision quality.

Authors:Jiaqi Xue, Mayank Kumar, Yuzhang Shang, Shangqian Gao, Rui Ning, Mengxin Zheng, Xiaoqian Jiang, Qian Lou
Title: DictPFL: Efficient and Private Federated Learning on Encrypted Gradients
Abstract:
Federated Learning (FL) enables collaborative model training across institutions without sharing raw data. However, gradient sharing still risks privacy leakage, such as gradient inversion attacks. Homomorphic Encryption (HE) can secure aggregation but often incurs prohibitive computational and communication overhead. Existing HE-based FL methods sit at two extremes: encrypting all gradients for full privacy at high cost, or partially encrypting gradients to save resources while exposing vulnerabilities. We present DictPFL, a practical framework that achieves full gradient protection with minimal overhead. DictPFL encrypts every transmitted gradient while keeping non-transmitted parameters local, preserving privacy without heavy computation. It introduces two key modules: Decompose-for-Partial-Encrypt (DePE), which decomposes model weights into a static dictionary and an updatable lookup table, only the latter is encrypted and aggregated, while the static dictionary remains local and requires neither sharing nor encryption; and Prune-for-Minimum-Encrypt (PrME), which applies encryption-aware pruning to minimize encrypted parameters via consistent, history-guided masks. Experiments show that DictPFL reduces communication cost by 402-748$\times$ and accelerates training by 28-65$\times$ compared to fully encrypted FL, while outperforming state-of-the-art selective encryption methods by 51-155$\times$ in overhead and 4-19$\times$ in speed. Remarkably, DictPFL's runtime is within 2$\times$ of plaintext FL, demonstrating for the first time, that HE-based private federated learning is practical for real-world deployment. The code is publicly available at https://github.com/UCF-ML-Research/DictPFL.

Authors:Juntao Li, Haobin Yuan, Ling Luo, Yan Jiang, Fan Wang, Ping Zhang, Huiyi Lv, Jian Wang, Yuanyuan Sun, Hongfei Lin
Title: CDrugRed: A Chinese Drug Recommendation Dataset for Discharge Medications in Metabolic Diseases
Abstract:
Intelligent drug recommendation based on Electronic Health Records (EHRs) is critical for improving for improving the quality and efficiency of clinical decision-making. By leveraging large-scale patient data, drug recommendation systems can assist physicians in selecting the most appropriate medications according to a patient's medical history, diagnoses, laboratory results, and comorbidities. However, the advancement of such systems is significantly hampered by the scarcity of publicly available, real-world EHR datasets, particularly in languages other than English. In this work, we present CDrugRed, a first publicly available Chinese drug recommendation dataset focused on discharge medications for metabolic diseases. The dataset includes 5,894 de-identified records from 3,190 patients, containing comprehensive information such as patient demographics, medical history, clinical course, and discharge diagnoses. We assess the utility of CDrugRed by benchmarking several state-of-the-art large language models (LLMs) on the discharge medication recommendation task. Experimental results show that while supervised fine-tuning improves model performance, there remains substantial room for improvement, with the best model achieving the F1 score of 0.5648 and Jaccard score of 0.4477. This result highlights the complexity of the clinical drug recommendation task and establishes CDrugRed as a challenging and valuable resource for developing more robust and accurate drug recommendation systems. The dataset is publicly available to the research community under the data usage agreements at https://github.com/DUTIR-BioNLP/CDrugRed.

Authors:Mahmud Wasif Nafee, Maiqi Jiang, Haipeng Chen, Yanfu Zhang
Title: Dynamic Retriever for In-Context Knowledge Editing via Policy Optimization
Abstract:
Large language models (LLMs) excel at factual recall yet still propagate stale or incorrect knowledge. In-context knowledge editing offers a gradient-free remedy suitable for black-box APIs, but current editors rely on static demonstration sets chosen by surface-level similarity, leading to two persistent obstacles: (i) a quantity-quality trade-off, and (ii) lack of adaptivity to task difficulty. We address these issues by dynamically selecting supporting demonstrations according to their utility for the edit. We propose Dynamic Retriever for In-Context Knowledge Editing (DR-IKE), a lightweight framework that (1) trains a BERT retriever with REINFORCE to rank demonstrations by editing reward, and (2) employs a learnable threshold to prune low-value examples, shortening the prompt when the edit is easy and expanding it when the task is hard. DR-IKE performs editing without modifying model weights, relying solely on forward passes for compatibility with black-box LLMs. On the COUNTERFACT benchmark, it improves edit success by up to 17.1%, reduces latency by 41.6%, and preserves accuracy on unrelated queries, demonstrating scalable and adaptive knowledge editing. The code is available at https://github.com/mwnafee/DR-IKE .

Authors:Li An, Yujian Liu, Yepeng Liu, Yuheng Bu, Yang Zhang, Shiyu Chang
Title: A Reinforcement Learning Framework for Robust and Secure LLM Watermarking
Abstract:
Watermarking has emerged as a promising solution for tracing and authenticating text generated by large language models (LLMs). A common approach to LLM watermarking is to construct a green/red token list and assign higher or lower generation probabilities to the corresponding tokens, respectively. However, most existing watermarking algorithms rely on heuristic green/red token list designs, as directly optimizing the list design with techniques such as reinforcement learning (RL) comes with several challenges. First, desirable watermarking involves multiple criteria, i.e., detectability, text quality, robustness against removal attacks, and security against spoofing attacks. Directly optimizing for these criteria introduces many partially conflicting reward terms, leading to an unstable convergence process. Second, the vast action space of green/red token list choices is susceptible to reward hacking. In this paper, we propose an end-to-end RL framework for robust and secure LLM watermarking. Our approach adopts an anchoring mechanism for reward terms to ensure stable training and introduces additional regularization terms to prevent reward hacking. Experiments on standard benchmarks with two backbone LLMs show that our method achieves a state-of-the-art trade-off across all criteria, with notable improvements in resistance to spoofing attacks without degrading other criteria. Our code is available at https://github.com/UCSB-NLP-Chang/RL-watermark.

Authors:Sai Haneesh Allu, Jishnu Jaykumar P, Ninad Khargonkar, Tyler Summers, Jian Yao, Yu Xiang
Title: HRT1: One-Shot Human-to-Robot Trajectory Transfer for Mobile Manipulation
Abstract:
We introduce a novel system for human-to-robot trajectory transfer that enables robots to manipulate objects by learning from human demonstration videos. The system consists of four modules. The first module is a data collection module that is designed to collect human demonstration videos from the point of view of a robot using an AR headset. The second module is a video understanding module that detects objects and extracts 3D human-hand trajectories from demonstration videos. The third module transfers a human-hand trajectory into a reference trajectory of a robot end-effector in 3D space. The last module utilizes a trajectory optimization algorithm to solve a trajectory in the robot configuration space that can follow the end-effector trajectory transferred from the human demonstration. Consequently, these modules enable a robot to watch a human demonstration video once and then repeat the same mobile manipulation task in different environments, even when objects are placed differently from the demonstrations. Experiments of different manipulation tasks are conducted on a mobile manipulator to verify the effectiveness of our system

Authors:Enshu Liu, Qian Chen, Xuefei Ning, Shengen Yan, Guohao Dai, Zinan Lin, Yu Wang
Title: Distilled Decoding 2: One-step Sampling of Image Auto-regressive Models with Conditional Score Distillation
Abstract:
Image Auto-regressive (AR) models have emerged as a powerful paradigm of visual generative models. Despite their promising performance, they suffer from slow generation speed due to the large number of sampling steps required. Although Distilled Decoding 1 (DD1) was recently proposed to enable few-step sampling for image AR models, it still incurs significant performance degradation in the one-step setting, and relies on a pre-defined mapping that limits its flexibility. In this work, we propose a new method, Distilled Decoding 2 (DD2), to further advances the feasibility of one-step sampling for image AR models. Unlike DD1, DD2 does not without rely on a pre-defined mapping. We view the original AR model as a teacher model which provides the ground truth conditional score in the latent embedding space at each token position. Based on this, we propose a novel \emph{conditional score distillation loss} to train a one-step generator. Specifically, we train a separate network to predict the conditional score of the generated distribution and apply score distillation at every token position conditioned on previous tokens. Experimental results show that DD2 enables one-step sampling for image AR models with an minimal FID increase from 3.40 to 5.43 on ImageNet-256. Compared to the strongest baseline DD1, DD2 reduces the gap between the one-step sampling and original AR model by 67%, with up to 12.3$\times$ training speed-up simultaneously. DD2 takes a significant step toward the goal of one-step AR generation, opening up new possibilities for fast and high-quality AR modeling. Code is available at https://github.com/imagination-research/Distilled-Decoding-2.

Authors:Jesimon Barreto, Carlos Caetano, André Araujo, William Robson Schwartz
Title: VESSA: Video-based objEct-centric Self-Supervised Adaptation for Visual Foundation Models
Abstract:
Foundation models have advanced computer vision by enabling strong performance across diverse tasks through large-scale pretraining and supervised fine-tuning. However, they may underperform in domains with distribution shifts and scarce labels, where supervised fine-tuning may be infeasible. While continued self-supervised learning for model adaptation is common for generative language models, this strategy has not proven effective for vision-centric encoder models. To address this challenge, we introduce a novel formulation of self-supervised fine-tuning for vision foundation models, where the model is adapted to a new domain without requiring annotations, leveraging only short multi-view object-centric videos. Our method is referred to as VESSA: Video-based objEct-centric Self-Supervised Adaptation for visual foundation models. VESSA's training technique is based on a self-distillation paradigm, where it is critical to carefully tune prediction heads and deploy parameter-efficient adaptation techniques - otherwise, the model may quickly forget its pretrained knowledge and reach a degraded state. VESSA benefits significantly from multi-view object observations sourced from different frames in an object-centric video, efficiently learning robustness to varied capture conditions, without the need of annotations. Through comprehensive experiments with 3 vision foundation models on 2 datasets, VESSA demonstrates consistent improvements in downstream classification tasks, compared to the base models and previous adaptation methods. Code is publicly available at https://github.com/jesimonbarreto/VESSA.

Authors:Xi Zhang, Xiaolin Wu, Jiamang Wang, Weisi Lin
Title: Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.

Authors:Stefan Abi-Karam, Rishov Sarkar, Suhail Basalama, Jason Cong, Callie Hao
Title: FIFOAdvisor: A DSE Framework for Automated FIFO Sizing of High-Level Synthesis Designs
Abstract:
Dataflow hardware designs enable efficient FPGA implementations via high-level synthesis (HLS), but correctly sizing first-in-first-out (FIFO) channel buffers remains challenging. FIFO sizes are user-defined and balance latency and area-undersized FIFOs cause stalls and potential deadlocks, while oversized ones waste memory. Determining optimal sizes is non-trivial: existing methods rely on restrictive assumptions, conservative over-allocation, or slow RTL simulations. We emphasize that runtime-based analyses (i.e., simulation) are the only reliable way to ensure deadlock-free FIFO optimization for data-dependent designs. We present FIFOAdvisor, a framework that automatically determines FIFO sizes in HLS designs. It leverages LightningSim, a 99.9\% cycle-accurate simulator supporting millisecond-scale incremental runs with new FIFO configurations. FIFO sizing is formulated as a dual-objective black-box optimization problem, and we explore heuristic and search-based methods to characterize the latency-resource trade-off. FIFOAdvisor also integrates with Stream-HLS, a framework for optimizing affine dataflow designs lowered from C++, MLIR, or PyTorch, enabling deeper optimization of FIFOs in these workloads. We evaluate FIFOAdvisor on Stream-HLS design benchmarks spanning linear algebra and deep learning workloads. Our results reveal Pareto-optimal latency-memory frontiers across optimization strategies. Compared to baseline designs, FIFOAdvisor achieves much lower memory usage with minimal delay overhead. Additionally, it delivers significant runtime speedups over traditional HLS/RTL co-simulation, making it practical for rapid design space exploration. We further demonstrate its capability on a complex accelerator with data-dependent control flow. Code and results: https://github.com/sharc-lab/fifo-advisor

Authors:Darrin Lea, James Ghawaly, Golden Richard, Aisha Ali-Gombe, Andrew Case
Title: REx86: A Local Large Language Model for Assisting in x86 Assembly Reverse Engineering
Abstract:
Reverse engineering (RE) of x86 binaries is indispensable for malware and firmware analysis, but remains slow due to stripped metadata and adversarial obfuscation. Large Language Models (LLMs) offer potential for improving RE efficiency through automated comprehension and commenting, but cloud-hosted, closed-weight models pose privacy and security risks and cannot be used in closed-network facilities. We evaluate parameter-efficient fine-tuned local LLMs for assisting with x86 RE tasks in these settings. Eight open-weight models across the CodeLlama, Qwen2.5-Coder, and CodeGemma series are fine-tuned on a custom curated dataset of 5,981 x86 assembly examples. We evaluate them quantitatively and identify the fine-tuned Qwen2.5-Coder-7B as the top performer, which we name REx86. REx86 reduces test-set cross-entropy loss by 64.2% and improves semantic cosine similarity against ground truth by 20.3\% over its base model. In a limited user case study (n=43), REx86 significantly enhanced line-level code understanding (p = 0.031) and increased the correct-solve rate from 31% to 53% (p = 0.189), though the latter did not reach statistical significance. Qualitative analysis shows more accurate, concise comments with fewer hallucinations. REx86 delivers state-of-the-art assistance in x86 RE among local, open-weight LLMs. Our findings demonstrate the value of domain-specific fine-tuning, and highlight the need for more commented disassembly data to further enhance LLM performance in RE. REx86, its dataset, and LoRA adapters are publicly available at https://github.com/dlea8/REx86 and https://zenodo.org/records/15420461.

Authors:Jubilee Lee, Daniele E. Schiavazzi
Title: On the accuracy of implicit neural representations for cardiovascular anatomies and hemodynamic fields
Abstract:
Implicit neural representations (INRs, also known as neural fields) have recently emerged as a powerful framework for knowledge representation, synthesis, and compression. By encoding fields as continuous functions within the weights and biases of deep neural networks-rather than relying on voxel- or mesh-based structured or unstructured representations-INRs offer both resolution independence and high memory efficiency. However, their accuracy in domain-specific applications remains insufficiently understood. In this work, we assess the performance of state-of-the-art INRs for compressing hemodynamic fields derived from numerical simulations and for representing cardiovascular anatomies via signed distance functions. We investigate several strategies to mitigate spectral bias, including specialized activation functions, both fixed and trainable positional encoding, and linear combinations of nonlinear kernels. On realistic, space- and time-varying hemodynamic fields in the thoracic aorta, INRs achieved remarkable compression ratios of up to approximately 230, with maximum absolute errors of 1 mmHg for pressure and 5-10 cm/s for velocity, without extensive hyperparameter tuning. Across 48 thoracic aortic anatomies, the average and maximum absolute anatomical discrepancies were below 0.5 mm and 1.6 mm, respectively. Overall, the SIREN, MFN-Gabor, and MHE architectures demonstrated the best performance. Source code and data is available at https://github.com/desResLab/nrf.

Authors:Yuxuan Bian, Xin Chen, Zenan Li, Tiancheng Zhi, Shen Sang, Linjie Luo, Qiang Xu
Title: Video-As-Prompt: Unified Semantic Control for Video Generation
Abstract:
Unified, generalizable semantic control in video generation remains a critical open challenge. Existing methods either introduce artifacts by enforcing inappropriate pixel-wise priors from structure-based controls, or rely on non-generalizable, condition-specific finetuning or task-specific architectures. We introduce Video-As-Prompt (VAP), a new paradigm that reframes this problem as in-context generation. VAP leverages a reference video as a direct semantic prompt, guiding a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting and is guided by a temporally biased position embedding that eliminates spurious mapping priors for robust context retrieval. To power this approach and catalyze future research, we built VAP-Data, the largest dataset for semantic-controlled video generation with over 100K paired videos across 100 semantic conditions. As a single unified model, VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user preference rate that rivals leading condition-specific commercial models. VAP's strong zero-shot generalization and support for various downstream applications mark a significant advance toward general-purpose, controllable video generation.

Authors:Anujraaj Argo Goyal, Guocheng Gordon Qian, Huseyin Coskun, Aarush Gupta, Himmy Tam, Daniil Ostashev, Ju Hu, Dhritiman Sagar, Sergey Tulyakov, Kfir Aberman, Kuan-Chieh Jackson Wang
Title: Preventing Shortcuts in Adapter Training via Providing the Shortcuts
Abstract:
Adapter-based training has emerged as a key mechanism for extending the capabilities of powerful foundation image generators, enabling personalized and stylized text-to-image synthesis. These adapters are typically trained to capture a specific target attribute, such as subject identity, using single-image reconstruction objectives. However, because the input image inevitably contains a mixture of visual factors, adapters are prone to entangle the target attribute with incidental ones, such as pose, expression, and lighting. This spurious correlation problem limits generalization and obstructs the model's ability to adhere to the input text prompt. In this work, we uncover a simple yet effective solution: provide the very shortcuts we wish to eliminate during adapter training. In Shortcut-Rerouted Adapter Training, confounding factors are routed through auxiliary modules, such as ControlNet or LoRA, eliminating the incentive for the adapter to internalize them. The auxiliary modules are then removed during inference. When applied to tasks like facial and full-body identity injection, our approach improves generation quality, diversity, and prompt adherence. These results point to a general design principle in the era of large models: when seeking disentangled representations, the most effective path may be to establish shortcuts for what should NOT be learned.

Authors:Baoquan Gong, Xiyuan Gao, Pengfei Zhu, Qinghua Hu, Bing Cao
Title: Multimodal Negative Learning
Abstract:
Multimodal learning systems often encounter challenges related to modality imbalance, where a dominant modality may overshadow others, thereby hindering the learning of weak modalities. Conventional approaches often force weak modalities to align with dominant ones in "Learning to be (the same)" (Positive Learning), which risks suppressing the unique information inherent in the weak modalities. To address this challenge, we offer a new learning paradigm: "Learning Not to be" (Negative Learning). Instead of enhancing weak modalities' target-class predictions, the dominant modalities dynamically guide the weak modality to suppress non-target classes. This stabilizes the decision space and preserves modality-specific information, allowing weak modalities to preserve unique information without being over-aligned. We proceed to reveal multimodal learning from a robustness perspective and theoretically derive the Multimodal Negative Learning (MNL) framework, which introduces a dynamic guidance mechanism tailored for negative learning. Our method provably tightens the robustness lower bound of multimodal learning by increasing the Unimodal Confidence Margin (UCoM) and reduces the empirical error of weak modalities, particularly under noisy and imbalanced scenarios. Extensive experiments across multiple benchmarks demonstrate the effectiveness and generalizability of our approach against competing methods. The code will be available at https://github.com/BaoquanGong/Multimodal-Negative-Learning.git.

Authors:Lam Ngo, Huong Ha, Jeffrey Chan, Hongyu Zhang
Title: MOBO-OSD: Batch Multi-Objective Bayesian Optimization via Orthogonal Search Directions
Abstract:
Bayesian Optimization (BO) is a powerful tool for optimizing expensive black-box objective functions. While extensive research has been conducted on the single-objective optimization problem, the multi-objective optimization problem remains challenging. In this paper, we propose MOBO-OSD, a multi-objective Bayesian Optimization algorithm designed to generate a diverse set of Pareto optimal solutions by solving multiple constrained optimization problems, referred to as MOBO-OSD subproblems, along orthogonal search directions (OSDs) defined with respect to an approximated convex hull of individual objective minima. By employing a well-distributed set of OSDs, MOBO-OSD ensures broad coverage of the objective space, enhancing both solution diversity and hypervolume performance. To further improve the density of the set of Pareto optimal candidate solutions without requiring an excessive number of subproblems, we leverage a Pareto Front Estimation technique to generate additional solutions in the neighborhood of existing solutions. Additionally, MOBO-OSD supports batch optimization, enabling parallel function evaluations to accelerate the optimization process when resources are available. Through extensive experiments and analysis on a variety of synthetic and real-world benchmark functions with two to six objectives, we demonstrate that MOBO-OSD consistently outperforms the state-of-the-art algorithms. Our code implementation can be found at https://github.com/LamNgo1/mobo-osd.

Authors:Jiawei Zhou, Ruicheng Zhu, Mengshi Chen, Jianwei Wang, Kai Wang
Title: \textsc{autoresearcher}: Automating Knowledge-Grounded and Transparent Research Ideation with Multi-Agent Collaboration
Abstract:
Effective research relies on organizing extensive information and stimulating novel solutions. Agentic systems have recently emerged as a promising tool to automate literature-based ideation. However, current systems often remain black-box. Their outputs may appear plausible but weakly grounded, with limited transparency or control for researchers. Our work introduces \textsc{autoresearcher}, a multi-agent demo system for knowledge-grounded and transparent ideation. Specifically, \textsc{autoresearcher} integrates meticulously designed four stages into a unified framework: (A) Structured Knowledge Curation, (B) Diversified Idea Generation, (C) Multi-stage Idea Selection, and (D) Expert Panel Review \& Synthesis. Different from prior pipelines, our system not only exposes intermediate reasoning states, execution logs, and tunable agents for inspections, but also enables the generation of hypotheses that are both diverse and evidence-aligned. Our design is also domain-agnostic: as long as literature sources exist, the same pipeline can be instantiated in any scientific field. As an illustrative case, we demonstrate \textsc{autoresearcher} on a graph-mining case study ($k$-truss breaking problem), where it generates distinct, plausible hypotheses with evidence and critiques. A live demo and source code are available at https://github.com/valleysprings/AutoResearcher.

Authors:Yihao Meng, Hao Ouyang, Yue Yu, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Hanlin Wang, Yixuan Li, Cheng Chen, Yanhong Zeng, Yujun Shen, Huamin Qu
Title: HoloCine: Holistic Generation of Cinematic Multi-Shot Long Video Narratives
Abstract:
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.

Authors:Guocheng Gordon Qian, Ruihang Zhang, Tsai-Shien Chen, Yusuf Dalva, Anujraaj Argo Goyal, Willi Menapace, Ivan Skorokhodov, Meng Dong, Arpit Sahni, Daniil Ostashev, Ju Hu, Sergey Tulyakov, Kuan-Chieh Jackson Wang
Title: LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Abstract:
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.

Authors:Guangqi Jiang, Haoran Chang, Ri-Zhao Qiu, Yutong Liang, Mazeyu Ji, Jiyue Zhu, Zhao Dong, Xueyan Zou, Xiaolong Wang
Title: GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
Abstract:
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.

Authors:Yuhan Liu, Lianhui Qin, Shengjie Wang
Title: Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Abstract:
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

Authors:Yair Feldman, Yoav Artzi
Title: Simple Context Compression: Mean-Pooling and Multi-Ratio Training
Abstract:
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.

Authors:Lei Cheng, Siyang Cao
Title: Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
Abstract:
This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT

Authors:Wenhao Wang, Kehe Ye, Xinyu Zhou, Tianxing Chen, Cao Min, Qiaoming Zhu, Xiaokang Yang, Ping Luo, Yongjian Shen, Yang Yang, Maoqing Yao, Yao Mu
Title: FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Abstract:
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.

Authors:Noam Issachar, Guy Yariv, Sagie Benaim, Yossi Adi, Dani Lischinski, Raanan Fattal
Title: DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Abstract:
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.

Authors:Nima Torbati, Anastasia Meshcheryakova, Ramona Woitek, Diana Mechtcheriakova, Amirreza Mahbod
Title: ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology
Abstract:
Automated histopathological image analysis plays a vital role in computer-aided diagnosis of various diseases. Among developed algorithms, deep learning-based approaches have demonstrated excellent performance in multiple tasks, including semantic tissue segmentation in histological images. In this study, we propose a novel approach based on attention-driven feature fusion of convolutional neural networks (CNNs) and vision transformers (ViTs) within a unified dual-encoder model to improve semantic segmentation performance. Evaluation on two publicly available datasets showed that our model achieved μIoU/μDice scores of 76.79%/86.87% on the GCPS dataset and 64.93%/76.60% on the PUMA dataset, outperforming state-of-the-art and baseline benchmarks. The implementation of our method is publicly available in a GitHub repository: https://github.com/NimaTorbati/ACS-SegNet

Authors:Tsai Hor Chan, Feng Wu, Yihang Chen, Guosheng Yin, Lequan Yu
Title: Amplifying Prominent Representations in Multimodal Learning via Variational Dirichlet Process
Abstract:
Developing effective multimodal fusion approaches has become increasingly essential in many real-world scenarios, such as health care and finance. The key challenge is how to preserve the feature expressiveness in each modality while learning cross-modal interactions. Previous approaches primarily focus on the cross-modal alignment, while over-emphasis on the alignment of marginal distributions of modalities may impose excess regularization and obstruct meaningful representations within each modality. The Dirichlet process (DP) mixture model is a powerful Bayesian non-parametric method that can amplify the most prominent features by its richer-gets-richer property, which allocates increasing weights to them. Inspired by this unique characteristic of DP, we propose a new DP-driven multimodal learning framework that automatically achieves an optimal balance between prominent intra-modal representation learning and cross-modal alignment. Specifically, we assume that each modality follows a mixture of multivariate Gaussian distributions and further adopt DP to calculate the mixture weights for all the components. This paradigm allows DP to dynamically allocate the contributions of features and select the most prominent ones, leveraging its richer-gets-richer property, thus facilitating multimodal feature fusion. Extensive experiments on several multimodal datasets demonstrate the superior performance of our model over other competitors. Ablation analysis further validates the effectiveness of DP in aligning modality distributions and its robustness to changes in key hyperparameters. Code is anonymously available at https://github.com/HKU-MedAI/DPMM.git

Authors:Xuyang Liu, Xiyan Gui, Yuchao Zhang, Linfeng Zhang
Title: Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models
Abstract:
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.

Authors:Ming-Ming Yu, Fei Zhu, Wenzhuo Liu, Yirong Yang, Qunbo Wang, Wenjun Wu, Jing Liu
Title: C-NAV: Towards Self-Evolving Continual Object Navigation in Open World
Abstract:
Embodied agents are expected to perform object navigation in dynamic, open-world environments. However, existing approaches typically rely on static trajectories and a fixed set of object categories during training, overlooking the real-world requirement for continual adaptation to evolving scenarios. To facilitate related studies, we introduce the continual object navigation benchmark, which requires agents to acquire navigation skills for new object categories while avoiding catastrophic forgetting of previously learned knowledge. To tackle this challenge, we propose C-Nav, a continual visual navigation framework that integrates two key innovations: (1) A dual-path anti-forgetting mechanism, which comprises feature distillation that aligns multi-modal inputs into a consistent representation space to ensure representation consistency, and feature replay that retains temporal features within the action decoder to ensure policy consistency. (2) An adaptive sampling strategy that selects diverse and informative experiences, thereby reducing redundancy and minimizing memory overhead. Extensive experiments across multiple model architectures demonstrate that C-Nav consistently outperforms existing approaches, achieving superior performance even compared to baselines with full trajectory retention, while significantly lowering memory requirements. The code will be publicly available at https://bigtree765.github.io/C-Nav-project.

Authors:Jinhee Kim, Jae Jun An, Kang Eun Jeon, Jong Hwan Ko
Title: Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Abstract:
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.

Authors:Jinbin Bai, Yu Lei, Hecong Wu, Yuchen Zhu, Shufan Li, Yi Xin, Xiangtai Li, Molei Tao, Aditya Grover, Ming-Hsuan Yang
Title: From Masks to Worlds: A Hitchhiker's Guide to World Models
Abstract:
This is not a typical survey of world models; it is a guide for those who want to build worlds. We do not aim to catalog every paper that has ever mentioned a ``world model". Instead, we follow one clear road: from early masked models that unified representation learning across modalities, to unified architectures that share a single paradigm, then to interactive generative models that close the action-perception loop, and finally to memory-augmented systems that sustain consistent worlds over time. We bypass loosely related branches to focus on the core: the generative heart, the interactive loop, and the memory system. We show that this is the most promising path towards true world models.

Authors:Chen Zhao, En Ci, Yunzhe Xu, Tiehan Fan, Shanyan Guan, Yanhao Ge, Jian Yang, Ying Tai
Title: UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset
Abstract:
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce \textbf{UltraHR-100K}, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) \textit{Detail-Oriented Timestep Sampling (DOTS)} to focus learning on detail-critical denoising steps, and (ii) \textit{Soft-Weighting Frequency Regularization (SWFR)}, which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at \href{https://github.com/NJU-PCALab/UltraHR-100k}{here}.

Authors:Jack Butler, Nikita Kozodoi, Zainab Afolabi, Brian Tyacke, Gaiar Baimuratov
Title: Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
Abstract:
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.

Authors:Reuben Dorent, Polina Golland, William Wells
Title: Connecting Jensen-Shannon and Kullback-Leibler Divergences: A New Bound for Representation Learning
Abstract:
Mutual Information (MI) is a fundamental measure of statistical dependence widely used in representation learning. While direct optimization of MI via its definition as a Kullback-Leibler divergence (KLD) is often intractable, many recent methods have instead maximized alternative dependence measures, most notably, the Jensen-Shannon divergence (JSD) between joint and product of marginal distributions via discriminative losses. However, the connection between these surrogate objectives and MI remains poorly understood. In this work, we bridge this gap by deriving a new, tight, and tractable lower bound on KLD as a function of JSD in the general case. By specializing this bound to joint and marginal distributions, we demonstrate that maximizing the JSD-based information increases a guaranteed lower bound on mutual information. Furthermore, we revisit the practical implementation of JSD-based objectives and observe that minimizing the cross-entropy loss of a binary classifier trained to distinguish joint from marginal pairs recovers a known variational lower bound on the JSD. Extensive experiments demonstrate that our lower bound is tight when applied to MI estimation. We compared our lower bound to state-of-the-art neural estimators of variational lower bound across a range of established reference scenarios. Our lower bound estimator consistently provides a stable, low-variance estimate of a tight lower bound on MI. We also demonstrate its practical usefulness in the context of the Information Bottleneck framework. Taken together, our results provide new theoretical justifications and strong empirical evidence for using discriminative learning in MI-based representation learning.

Authors:Ibrahim Ethem Hamamci, Sezgin Er, Suprosanna Shit, Hadrien Reynaud, Dong Yang, Pengfei Guo, Marc Edgar, Daguang Xu, Bernhard Kainz, Bjoern Menze
Title: Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging
Abstract:
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D

Authors:Lukas Miklautz, Chengzhi Shi, Andrii Shkabrii, Theodoros Thirimachos Davarakis, Prudence Lam, Claudia Plant, Jennifer Dy, Stratis Ioannidis
Title: H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition
Abstract:
We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.

Authors:Yang Han, Pengyu Wang, Kai Yu, Xin Chen, Lu Chen
Title: MS-BART: Unified Modeling of Mass Spectra and Molecules for Structure Elucidation
Abstract:
Mass spectrometry (MS) plays a critical role in molecular identification, significantly advancing scientific discovery. However, structure elucidation from MS data remains challenging due to the scarcity of annotated spectra. While large-scale pretraining has proven effective in addressing data scarcity in other domains, applying this paradigm to mass spectrometry is hindered by the complexity and heterogeneity of raw spectral signals. To address this, we propose MS-BART, a unified modeling framework that maps mass spectra and molecular structures into a shared token vocabulary, enabling cross-modal learning through large-scale pretraining on reliably computed fingerprint-molecule datasets. Multi-task pretraining objectives further enhance MS-BART's generalization by jointly optimizing denoising and translation task. The pretrained model is subsequently transferred to experimental spectra through finetuning on fingerprint predictions generated with MIST, a pre-trained spectral inference model, thereby enhancing robustness to real-world spectral variability. While finetuning alleviates the distributional difference, MS-BART still suffers molecular hallucination and requires further alignment. We therefore introduce a chemical feedback mechanism that guides the model toward generating molecules closer to the reference structure. Extensive evaluations demonstrate that MS-BART achieves SOTA performance across 5/12 key metrics on MassSpecGym and NPLIB1 and is faster by one order of magnitude than competing diffusion-based methods, while comprehensive ablation studies systematically validate the model's effectiveness and robustness.

Authors:Alexandru Oarga, Yilun Du
Title: Generalizable Reasoning through Compositional Energy Minimization
Abstract:
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/

Authors:Ding Zou, Feifan Wang, Mengyu Ge, Siyuan Fan, Zongbing Zhang, Wei Chen, Lingfeng Wang, Zhongyou Hu, Wenrui Yan, Zhengwei Gao, Hao Wang, Weizhao Jin, Yu Zhang, Hainan Zhao, Mingliang Zhang, Xianxian Xi, Yaru Zhang, Wenyuan Li, Zhengguang Gao, Yurui Zhu
Title: EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence
Abstract:
The realization of Artificial General Intelligence (AGI) necessitates Embodied AI agents capable of robust spatial perception, effective task planning, and adaptive execution in physical environments. However, current large language models (LLMs) and multimodal LLMs (MLLMs) for embodied tasks suffer from key limitations, including a significant gap between model design and agent requirements, an unavoidable trade-off between real-time latency and performance, and the use of unauthentic, offline evaluation metrics. To address these challenges, we propose EmbodiedBrain, a novel vision-language foundation model available in both 7B and 32B parameter sizes. Our framework features an agent-aligned data structure and employs a powerful training methodology that integrates large-scale Supervised Fine-Tuning (SFT) with Step-Augumented Group Relative Policy Optimization (Step-GRPO), which boosts long-horizon task success by integrating preceding steps as Guided Precursors. Furthermore, we incorporate a comprehensive reward system, including a Generative Reward Model (GRM) accelerated at the infrastructure level, to improve training efficiency. For enable thorough validation, we establish a three-part evaluation system encompassing General, Planning, and End-to-End Simulation Benchmarks, highlighted by the proposal and open-sourcing of a novel, challenging simulation environment. Experimental results demonstrate that EmbodiedBrain achieves superior performance across all metrics, establishing a new state-of-the-art for embodied foundation models. Towards paving the way for the next generation of generalist embodied agents, we open-source all of our data, model weight, and evaluating methods, which are available at https://zterobot.github.io/EmbodiedBrain.github.io.

Authors:Guillermo Carbajal, Andrés Almansa, Pablo Musé
Title: Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Abstract:
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/

Authors:Hippolyte Pilchen, Edouard Grave, Patrick Pérez
Title: ARC-Encoder: learning compressed text representations for large language models
Abstract:
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .

Authors:Lixiong Qin, Yang Zhang, Mei Wang, Jiani Hu, Weihong Deng, Weiran Xu
Title: Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
Abstract:
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.

Authors:Constantine Frost, Chad Council, Margaret McGuinness, Nathaniel Hanson
Title: RubbleSim: A Photorealistic Structural Collapse Simulator for Confined Space Mapping
Abstract:
Despite well-reported instances of robots being used in disaster response, there is scant published data on the internal composition of the void spaces within structural collapse incidents. Data collected during these incidents is mired in legal constraints, as ownership is often tied to the responding agencies, with little hope of public release for research. While engineered rubble piles are used for training, these sites are also reluctant to release information about their proprietary training grounds. To overcome this access challenge, we present RubbleSim -- an open-source, reconfigurable simulator for photorealistic void space exploration. The design of the simulation assets is directly informed by visits to numerous training rubble sites at differing levels of complexity. The simulator is implemented in Unity with multi-operating system support. The simulation uses a physics-based approach to build stochastic rubble piles, allowing for rapid iteration between simulation worlds while retaining absolute knowledge of the ground truth. Using RubbleSim, we apply a state-of-the-art structure-from-motion algorithm to illustrate how perception performance degrades under challenging visual conditions inside the emulated void spaces. Pre-built binaries and source code to implement are available online: https://github.com/mit-ll/rubble_pile_simulator.

Authors:Zhiyu Lin, Jingwen Yang, Jiale Zhao, Meng Liu, Sunzhu Li, Benyou Wang
Title: Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment
Abstract:
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech

Authors:Yixiong Yang, Tao Wu, Senmao Li, Shiqi Yang, Yaxing Wang, Joost van de Weijer, Kai Wang
Title: EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Abstract:
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.

Authors:Xin Zhang, Lin Li, Xiangni Lu, Jianquan Liu, Kong Aik Lee
Title: Speaking Clearly: A Simplified Whisper-Based Codec for Low-Bitrate Speech Coding
Abstract:
Speech codecs serve as bridges between continuous speech signals and large language models, yet face an inherent conflict between acoustic fidelity and semantic preservation. To mitigate this conflict, prevailing methods augment acoustic codecs with complex semantic supervision. We explore the opposite direction: a semantic-first approach that starts from a semantically-capable model and adapts it for high-fidelity acoustic reconstruction. Through empirical analysis, we discover that targeted architectural simplification can unlock the acoustic modeling potential of Whisper, a text-aligned Automatic Speech Recognition (ASR) model. Based on this finding, we propose SimWhisper-Codec, a novel codec that balances the semantic and acoustic preservation by leveraging a frozen, simplified Whisper encoder without requiring external supervision. Experimental results demonstrate that SimWhisper-Codec achieves superior performance in both semantic preservation and acoustic quality compared to semantically-supervised codecs such as Mimi Codec and SpeechTokenizer at similar bitrates, validating the effectiveness of our semantic-first approach. Code is available at https://github.com/ZhangXinWhut/SimWhisper-Codec.

Authors:Haoyin Yan, Chengwei Liu, Shaofei Xue, Xiaotao Liang, Zheng Xue
Title: UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement
Abstract:
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.

Authors:Quannian Zhang, Michael Röder, Nikit Srivastava, N'Dah Jean Kouagou, Axel-Cyrille Ngonga Ngomo
Title: Explainable Benchmarking through the Lense of Concept Learning
Abstract:
Evaluating competing systems in a comparable way, i.e., benchmarking them, is an undeniable pillar of the scientific method. However, system performance is often summarized via a small number of metrics. The analysis of the evaluation details and the derivation of insights for further development or use remains a tedious manual task with often biased results. Thus, this paper argues for a new type of benchmarking, which is dubbed explainable benchmarking. The aim of explainable benchmarking approaches is to automatically generate explanations for the performance of systems in a benchmark. We provide a first instantiation of this paradigm for knowledge-graph-based question answering systems. We compute explanations by using a novel concept learning approach developed for large knowledge graphs called PruneCEL. Our evaluation shows that PruneCEL outperforms state-of-the-art concept learners on the task of explainable benchmarking by up to 0.55 points F1 measure. A task-driven user study with 41 participants shows that in 80\% of the cases, the majority of participants can accurately predict the behavior of a system based on our explanations. Our code and data are available at https://github.com/dice-group/PruneCEL/tree/K-cap2025

Authors:Sishun Liu, Ke Deng, Yongli Ren, Yan Wang, Xiuzhen Zhang
Title: Addressing Mark Imbalance in Integration-free Neural Marked Temporal Point Processes
Abstract:
Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.

Authors:Kohei Nishi, Masato Kobayashi, Yuki Uranishi
Title: MR-UBi: Mixed Reality-Based Underwater Robot Arm Teleoperation System with Reaction Torque Indicator via Bilateral Control
Abstract:
We present a mixed reality-based underwater robot arm teleoperation system with a reaction torque indicator via bilateral control (MR-UBi). The reaction torque indicator (RTI) overlays a color and length-coded torque bar in the MR-HMD, enabling seamless integration of visual and haptic feedback during underwater robot arm teleoperation. User studies with sixteen participants compared MR-UBi against a bilateral-control baseline. MR-UBi significantly improved grasping-torque control accuracy, increasing the time within the optimal torque range and reducing both low and high grasping torque range during lift and pick-and-place tasks with objects of different stiffness. Subjective evaluations further showed higher usability (SUS) and lower workload (NASA--TLX). Overall, the results confirm that \textit{MR-UBi} enables more stable, accurate, and user-friendly underwater robot-arm teleoperation through the integration of visual and haptic feedback. For additional material, please check: https://mertcookimg.github.io/mr-ubi

Authors:Xiaogang Jia, Qian Wang, Anrui Wang, Han A. Wang, Balázs Gyenes, Emiliyan Gospodinov, Xinkai Jiang, Ge Li, Hongyi Zhou, Weiran Liao, Xi Huang, Maximilian Beck, Moritz Reuss, Rudolf Lioutikov, Gerhard Neumann
Title: PointMapPolicy: Structured Point Cloud Processing for Multi-Modal Imitation Learning
Abstract:
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/

Authors:Daniel Gilkarov, Ran Dubin
Title: NeuPerm: Disrupting Malware Hidden in Neural Network Parameters by Leveraging Permutation Symmetry
Abstract:
Pretrained deep learning model sharing holds tremendous value for researchers and enterprises alike. It allows them to apply deep learning by fine-tuning models at a fraction of the cost of training a brand-new model. However, model sharing exposes end-users to cyber threats that leverage the models for malicious purposes. Attackers can use model sharing by hiding self-executing malware inside neural network parameters and then distributing them for unsuspecting users to unknowingly directly execute them, or indirectly as a dependency in another software. In this work, we propose NeuPerm, a simple yet effec- tive way of disrupting such malware by leveraging the theoretical property of neural network permutation symmetry. Our method has little to no effect on model performance at all, and we empirically show it successfully disrupts state-of-the-art attacks that were only previously addressed using quantization, a highly complex process. NeuPerm is shown to work on LLMs, a feat that no other previous similar works have achieved. The source code is available at https://github.com/danigil/NeuPerm.git.

Authors:Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun, Benyou Wang, Xiang Wang, Junyang Lin, Dayiheng Liu
Title: Teaching Language Models to Reason with Tools
Abstract:
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.

Authors:Zixuan Wu, Hengyuan Zhang, Ting-Hsuan Chen, Yuliang Guo, David Paz, Xinyu Huang, Liu Ren
Title: Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking
Abstract:
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.

Authors:Ajay Sridhar, Jennifer Pan, Satvik Sharma, Chelsea Finn
Title: MemER: Scaling Up Memory for Robot Control via Experience Retrieval
Abstract:
Humans routinely rely on memory to perform tasks, yet most robot policies lack this capability; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we finetune Qwen2.5-VL-7B-Instruct and $π_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at https://jen-pan.github.io/memer/.

Authors:Fengyuan Yu, Yuyuan Li, Xiaohua Feng, Junjie Fang, Tao Wang, Chaochao Chen
Title: LEGO: A Lightweight and Efficient Multiple-Attribute Unlearning Framework for Recommender Systems
Abstract:
With the growing demand for safeguarding sensitive user information in recommender systems, recommendation attribute unlearning is receiving increasing attention. Existing studies predominantly focus on single-attribute unlearning. However, privacy protection requirements in the real world often involve multiple sensitive attributes and are dynamic. Existing single-attribute unlearning methods cannot meet these real-world requirements due to i) CH1: the inability to handle multiple unlearning requests simultaneously, and ii) CH2: the lack of efficient adaptability to dynamic unlearning needs. To address these challenges, we propose LEGO, a lightweight and efficient multiple-attribute unlearning framework. Specifically, we divide the multiple-attribute unlearning process into two steps: i) Embedding Calibration removes information related to a specific attribute from user embedding, and ii) Flexible Combination combines these embeddings into a single embedding, protecting all sensitive attributes. We frame the unlearning process as a mutual information minimization problem, providing LEGO a theoretical guarantee of simultaneous unlearning, thereby addressing CH1. With the two-step framework, where Embedding Calibration can be performed in parallel and Flexible Combination is flexible and efficient, we address CH2. Extensive experiments on three real-world datasets across three representative recommendation models demonstrate the effectiveness and efficiency of our proposed framework. Our code and appendix are available at https://github.com/anonymifish/lego-rec-multiple-attribute-unlearning.

Authors:Jan Buchmann, Iryna Gurevych
Title: Citation Failure: Definition, Analysis and Efficient Mitigation
Abstract:
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.

Authors:Liangyu Chen, Hanzhang Zhou, Chenglin Cai, Jianan Zhang, Panrong Tong, Quyu Kong, Xu Zhang, Chen Liu, Yuqi Liu, Wenxuan Wang, Yue Wang, Qin Jin, Steven Hoi
Title: UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
Abstract:
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.

Authors:Qitai Tan, Yiyun Chen, Mo Li, Ruiwen Gu, Yilin Su, Xiao-Ping Zhang
Title: SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series
Abstract:
Recent advances in deep learning have driven rapid progress in time series forecasting, yet many state-of-the-art models continue to struggle with robust performance in real-world applications, even when they achieve strong results on standard benchmark datasets. This persistent gap can be attributed to the black-box nature of deep learning architectures and the inherent limitations of current evaluation frameworks, which frequently lack the capacity to provide clear, quantitative insights into the specific strengths and weaknesses of different models, thereby complicating the selection of appropriate models for particular forecasting scenarios. To address these issues, we propose a synthetic data-driven evaluation paradigm, SynTSBench, that systematically assesses fundamental modeling capabilities of time series forecasting models through programmable feature configuration. Our framework isolates confounding factors and establishes an interpretable evaluation system with three core analytical dimensions: (1) temporal feature decomposition and capability mapping, which enables systematic evaluation of model capacities to learn specific pattern types; (2) robustness analysis under data irregularities, which quantifies noise tolerance thresholds and anomaly recovery capabilities; and (3) theoretical optimum benchmarking, which establishes performance boundaries for each pattern type-enabling direct comparison between model predictions and mathematical optima. Our experiments show that current deep learning models do not universally approach optimal baselines across all types of temporal features.The code is available at https://github.com/TanQitai/SynTSBench

Authors:Ziqian Zhong, Aditi Raghunathan, Nicholas Carlini
Title: ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
Abstract:
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.

Authors:Ismail Emir Yuksel, Ataberk Olgun, F. Nisa Bostanci, Oguzhan Canpolat, Geraldo F. Oliveira, Mohammad Sadrosadati, Abdullah Giray Yaglikci, Onur Mutlu
Title: In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips
Abstract:
In this work, we experimentally demonstrate that it is possible to generate true random numbers at high throughput and low latency in commercial off-the-shelf (COTS) DRAM chips by leveraging simultaneous multiple-row activation (SiMRA) via an extensive characterization of 96 DDR4 DRAM chips. We rigorously analyze SiMRA's true random generation potential in terms of entropy, latency, and throughput for varying numbers of simultaneously activated DRAM rows (i.e., 2, 4, 8, 16, and 32), data patterns, temperature levels, and spatial variations. Among our 11 key experimental observations, we highlight four key results. First, we evaluate the quality of our TRNG designs using the commonly-used NIST statistical test suite for randomness and find that all SiMRA-based TRNG designs successfully pass each test. Second, 2-, 8-, 16-, and 32-row activation-based TRNG designs outperform the state-of-theart DRAM-based TRNG in throughput by up to 1.15x, 1.99x, 1.82x, and 1.39x, respectively. Third, SiMRA's entropy tends to increase with the number of simultaneously activated DRAM rows. Fourth, operational parameters and conditions (e.g., data pattern and temperature) significantly affect entropy. For example, for most of the tested modules, the average entropy of 32-row activation is 2.51x higher than that of 2-row activation. For example, increasing the temperature from 50°C to 90°C decreases SiMRA's entropy by 1.53x for 32-row activation. To aid future research and development, we open-source our infrastructure at https://github.com/CMU-SAFARI/SiMRA-TRNG.

Authors:Thomas Rupf, Marco Bagatella, Marin Vlastelica, Andreas Krause
Title: Optimistic Task Inference for Behavior Foundation Models
Abstract:
Behavior Foundation Models (BFMs) are capable of retrieving high-performing policy for any reward function specified directly at test-time, commonly referred to as zero-shot reinforcement learning (RL). While this is a very efficient process in terms of compute, it can be less so in terms of data: as a standard assumption, BFMs require computing rewards over a non-negligible inference dataset, assuming either access to a functional form of rewards, or significant labeling efforts. To alleviate these limitations, we tackle the problem of task inference purely through interaction with the environment at test-time. We propose OpTI-BFM, an optimistic decision criterion that directly models uncertainty over reward functions and guides BFMs in data collection for task inference. Formally, we provide a regret bound for well-trained BFMs through a direct connection to upper-confidence algorithms for linear bandits. Empirically, we evaluate OpTI-BFM on established zero-shot benchmarks, and observe that it enables successor-features-based BFMs to identify and optimize an unseen reward function in a handful of episodes with minimal compute overhead. Code is available at https://github.com/ThomasRupf/opti-bfm.

Authors:Guowei Zhong, Junjie Li, Huaiyu Zhu, Ruohong Huan, Yun Pan
Title: Calibrating Multimodal Consensus for Emotion Recognition
Abstract:
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.

Authors:Zhiqin Yang, Yonggang Zhang, Chenxin Li, Yiu-ming Cheung, Bo Han, Yixuan Yuan
Title: FedGPS: Statistical Rectification Against Data Heterogeneity in Federated Learning
Abstract:
Federated Learning (FL) confronts a significant challenge known as data heterogeneity, which impairs model performance and convergence. Existing methods have made notable progress in addressing this issue. However, improving performance in certain heterogeneity scenarios remains an overlooked question: \textit{How robust are these methods to deploy under diverse heterogeneity scenarios?} To answer this, we conduct comprehensive evaluations across varied heterogeneity scenarios, showing that most existing methods exhibit limited robustness. Meanwhile, insights from these experiments highlight that sharing statistical information can mitigate heterogeneity by enabling clients to update with a global perspective. Motivated by this, we propose \textbf{FedGPS} (\textbf{Fed}erated \textbf{G}oal-\textbf{P}ath \textbf{S}ynergy), a novel framework that seamlessly integrates statistical distribution and gradient information from others. Specifically, FedGPS statically modifies each client's learning objective to implicitly model the global data distribution using surrogate information, while dynamically adjusting local update directions with gradient information from other clients at each round. Extensive experiments show that FedGPS outperforms state-of-the-art methods across diverse heterogeneity scenarios, validating its effectiveness and robustness. The code is available at: https://github.com/CUHK-AIM-Group/FedGPS.

Authors:Runsong Zhu, Ka-Hei Hui, Zhengzhe Liu, Qianyi Wu, Weiliang Tang, Shi Qiu, Pheng-Ann Heng, Chi-Wing Fu
Title: COS3D: Collaborative Open-Vocabulary 3D Segmentation
Abstract:
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.

Authors:Insu Jeon, Minui Hong, Junhyeog Yun, Gunhee Kim
Title: Federated Learning via Meta-Variational Dropout
Abstract:
Federated Learning (FL) aims to train a global inference model from remotely distributed clients, gaining popularity due to its benefit of improving data privacy. However, traditional FL often faces challenges in practical applications, including model overfitting and divergent local models due to limited and non-IID data among clients. To address these issues, we introduce a novel Bayesian meta-learning approach called meta-variational dropout (MetaVD). MetaVD learns to predict client-dependent dropout rates via a shared hypernetwork, enabling effective model personalization of FL algorithms in limited non-IID data settings. We also emphasize the posterior adaptation view of meta-learning and the posterior aggregation view of Bayesian FL via the conditional dropout posterior. We conducted extensive experiments on various sparse and non-IID FL datasets. MetaVD demonstrated excellent classification accuracy and uncertainty calibration performance, especially for out-of-distribution (OOD) clients. MetaVD compresses the local model parameters needed for each client, mitigating model overfitting and reducing communication costs. Code is available at https://github.com/insujeon/MetaVD.

Authors:Jiahuan Wang, Yuxin Chen, Jun Yu, Guangming Lu, Wenjie Pei
Title: EditInfinity: Image Editing with Binary-Quantized Generative Models
Abstract:
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.

Authors:Bingjie Gao, Qianli Ma, Xiaoxue Wu, Shuai Yang, Guanzhou Lan, Haonan Zhao, Jiaxuan Chen, Qingyang Liu, Yu Qiao, Xinyuan Chen, Yaohui Wang, Li Niu
Title: RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling
Abstract:
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.

Authors:Yun Wang, Junjie Hu, Qiaole Dong, Yongjian Zhang, Yanwei Fu, Tin Lun Lam, Dapeng Wu
Title: PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Abstract:
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.

Authors:Xudong Yan, Songhe Feng
Title: TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning
Abstract:
Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones. Existing methods suffer from performance degradation caused by the distribution shift of label space at test time, which stems from the inclusion of unseen compositions recombined from attributes and objects. To overcome the challenge, we propose a novel approach that accumulates comprehensive knowledge in both textual and visual modalities from unsupervised data to update multimodal prototypes at test time. Building on this, we further design an adaptive update weight to control the degree of prototype adjustment, enabling the model to flexibly adapt to distribution shift during testing. Moreover, a dynamic priority queue is introduced that stores high-confidence images to acquire visual knowledge from historical images for inference. Considering the semantic consistency of multimodal knowledge, we align textual and visual prototypes by multimodal collaborative representation learning. Extensive experiments indicate that our approach achieves state-of-the-art performance on four benchmark datasets under both closed-world and open-world settings. Code will be available at https://github.com/xud-yan/TOMCAT .

Authors:Penghao Wang, Yiyang He, Xin Lv, Yukai Zhou, Lan Xu, Jingyi Yu, Jiayuan Gu
Title: PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding
Abstract:
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.

Authors:Yaochen Zhu, Harald Steck, Dawen Liang, Yinhan He, Vito Ostuni, Jundong Li, Nathan Kallus
Title: Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Abstract:
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.

Authors:Jiachen Liang, Ruibing Hou, Minyang Hu, Hong Chang, Shiguang Shan, Xilin Chen
Title: Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.

Authors:Ziheng Zhang, Xinyue Ma, Arpita Chowdhury, Elizabeth G. Campolongo, Matthew J. Thompson, Net Zhang, Samuel Stevens, Hilmar Lapp, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao, Jianyang Gu
Title: BioCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
Abstract:
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BioCAP (i.e., BioCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.

Authors:Lorenzo Arboit, Dennis N. Schneider, Britty Baby, Vinkle Srivastav, Pietro Mascagni, Nicolas Padoy
Title: Endoshare: A Source Available Solution to De-Identify and Manage Surgical Videos
Abstract:
Video-based assessment and surgical data science can advance surgical training, research, and quality improvement. However, widespread use remains limited by heterogeneous recording formats and privacy concerns associated with video sharing. We present Endoshare, a source-available, cross-platform application for merging, standardizing, and de-identifying endoscopic videos in minimally invasive surgery. Development followed the software development life cycle with iterative, user-centered feedback. During the analysis phase, an internal survey of clinicians and computer scientists based on ten usability heuristics identified key requirements that guided a privacy-by-design architecture. In the testing phase, an external clinician survey combined the same heuristics with Technology Acceptance Model constructs to assess usability and adoption, complemented by benchmarking across different hardware configurations. Four clinicians and four computer scientists initially tested the prototype, reporting high usability (4.68 +/- 0.40/5 and 4.03 +/- 0.51/5), with the lowest score (4.00 +/- 0.93/5) relating to label clarity. After refinement, the testing phase surveyed ten surgeons who reported high perceived usefulness (5.07 +/- 1.75/7), ease of use (5.15 +/- 1.71/7), heuristic usability (4.38 +/- 0.48/5), and strong recommendation (9.20 +/- 0.79/10). Processing time varied with processing mode, video duration (both p <= 0.001), and machine computational power (p = 0.041). Endoshare provides a transparent, user-friendly pipeline for standardized, privacy-preserving surgical video management. Compliance certification and broader interoperability validation are needed to establish it as a deployable alternative to proprietary systems. The software is available at https://camma-public.github.io/Endoshare/

Authors:Hui Chen, Xinjie Wang, Xianchao Xiu, Wanquan Liu
Title: Data-Adaptive Transformed Bilateral Tensor Low-Rank Representation for Clustering
Abstract:
Tensor low-rank representation (TLRR) has demonstrated significant success in image clustering. However, most existing methods rely on fixed transformations and suffer from poor robustness to noise. In this paper, we propose a novel transformed bilateral tensor low-rank representation model called TBTLRR, which introduces a data-adaptive tensor nuclear norm by learning arbitrary unitary transforms, allowing for more effective capture of global correlations. In addition, by leveraging the bilateral structure of latent tensor data, TBTLRR is able to exploit local correlations between image samples and features. Furthermore, TBTLRR integrates the $\ell_{1/2}$-norm and Frobenius norm regularization terms for better dealing with complex noise in real-world scenarios. To solve the proposed nonconvex model, we develop an efficient optimization algorithm inspired by the alternating direction method of multipliers (ADMM) and provide theoretical convergence. Extensive experiments validate its superiority over the state-of-the-art methods in clustering. The code will be available at https://github.com/xianchaoxiu/TBTLRR.

Authors:Bernd Pfrommer
Title: Filter-Based Reconstruction of Images from Events
Abstract:
Reconstructing an intensity image from the events of a moving event camera is a challenging task that is typically approached with neural networks deployed on graphics processing units. This paper presents a much simpler, FIlter Based Asynchronous Reconstruction method (FIBAR). First, intensity changes signaled by events are integrated with a temporal digital IIR filter. To reduce reconstruction noise, stale pixels are detected by a novel algorithm that regulates a window of recently updated pixels. Arguing that for a moving camera, the absence of events at a pixel location likely implies a low image gradient, stale pixels are then blurred with a Gaussian filter. In contrast to most existing methods, FIBAR is asynchronous and permits image read-out at an arbitrary time. It runs on a modern laptop CPU at about 42(140) million events/s with (without) spatial filtering enabled. A few simple qualitative experiments are presented that show the difference in image reconstruction between FIBAR and a neural network-based approach (FireNet). FIBAR's reconstruction is noisier than neural network-based methods and suffers from ghost images. However, it is sufficient for certain tasks such as the detection of fiducial markers. Code is available at https://github.com/ros-event-camera/event_image_reconstruction_fibar

Authors:Vahid Jalili
Title: The Temporal Graph of Bitcoin Transactions
Abstract:
Since its 2009 genesis block, the Bitcoin network has processed \num{>1.08} billion (B) transactions representing \num{>8.72}B BTC, offering rich potential for machine learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its \utxo-based design, have rendered this data largely inaccessible for ML research. Addressing this gap, we present an ML-compatible graph modeling the Bitcoin's economic topology by reconstructing the flow of funds. This temporal, heterogeneous graph encompasses complete transaction history up to block \cutoffHeight, consisting of \num{>2.4}B nodes and \num{>39.72}B edges. Additionally, we provide custom sampling methods yielding node and edge feature vectors of sampled communities, tools to load and analyze the Bitcoin graph data within specialized graph databases, and ready-to-use database snapshots. This comprehensive dataset and toolkit empower the ML community to tackle Bitcoin's intricate ecosystem at scale, driving progress in applications such as anomaly detection, address classification, market analysis, and large-scale graph ML benchmarking. Dataset and code available at \href{https://github.com/B1AAB/EBA}{github.com/b1aab/eba}

Authors:Damian Bowness, Charalambos Poullis
Title: Extreme Views: 3DGS Filter for Novel View Synthesis from Out-of-Distribution Camera Poses
Abstract:
When viewing a 3D Gaussian Splatting (3DGS) model from camera positions significantly outside the training data distribution, substantial visual noise commonly occurs. These artifacts result from the lack of training data in these extrapolated regions, leading to uncertain density, color, and geometry predictions from the model. To address this issue, we propose a novel real-time render-aware filtering method. Our approach leverages sensitivity scores derived from intermediate gradients, explicitly targeting instabilities caused by anisotropic orientations rather than isotropic variance. This filtering method directly addresses the core issue of generative uncertainty, allowing 3D reconstruction systems to maintain high visual fidelity even when users freely navigate outside the original training viewpoints. Experimental evaluation demonstrates that our method substantially improves visual quality, realism, and consistency compared to existing Neural Radiance Field (NeRF)-based approaches such as BayesRays. Critically, our filter seamlessly integrates into existing 3DGS rendering pipelines in real-time, unlike methods that require extensive post-hoc retraining or fine-tuning. Code and results at https://damian-bowness.github.io/EV3DGS

Authors:Yixiao Wang, Zishan Shao, Ting Jiang, Aditya Devarakonda
Title: Enhanced Cyclic Coordinate Descent Methods for Elastic Net Penalized Linear Models
Abstract:
We present a novel enhanced cyclic coordinate descent (ECCD) framework for solving generalized linear models with elastic net constraints that reduces training time in comparison to existing state-of-the-art methods. We redesign the CD method by performing a Taylor expansion around the current iterate to avoid nonlinear operations arising in the gradient computation. By introducing this approximation, we are able to unroll the vector recurrences occurring in the CD method and reformulate the resulting computations into more efficient batched computations. We show empirically that the recurrence can be unrolled by a tunable integer parameter, $s$, such that $s > 1$ yields performance improvements without affecting convergence, whereas $s = 1$ yields the original CD method. A key advantage of ECCD is that it avoids the convergence delay and numerical instability exhibited by block coordinate descent. Finally, we implement our proposed method in C++ using Eigen to accelerate linear algebra computations. Comparison of our method against existing state-of-the-art solvers shows consistent performance improvements of $3\times$ in average for regularization path variant on diverse benchmark datasets. Our implementation is available at https://github.com/Yixiao-Wang-Stats/ECCD.

Authors:Hanbin Hong, Ashish Kundu, Ali Payani, Binghui Wang, Yuan Hong
Title: Towards Strong Certified Defense with Universal Asymmetric Randomization
Abstract:
Randomized smoothing has become essential for achieving certified adversarial robustness in machine learning models. However, current methods primarily use isotropic noise distributions that are uniform across all data dimensions, such as image pixels, limiting the effectiveness of robustness certification by ignoring the heterogeneity of inputs and data dimensions. To address this limitation, we propose UCAN: a novel technique that \underline{U}niversally \underline{C}ertifies adversarial robustness with \underline{A}nisotropic \underline{N}oise. UCAN is designed to enhance any existing randomized smoothing method, transforming it from symmetric (isotropic) to asymmetric (anisotropic) noise distributions, thereby offering a more tailored defense against adversarial attacks. Our theoretical framework is versatile, supporting a wide array of noise distributions for certified robustness in different $\ell_p$-norms and applicable to any arbitrary classifier by guaranteeing the classifier's prediction over perturbed inputs with provable robustness bounds through tailored noise injection. Additionally, we develop a novel framework equipped with three exemplary noise parameter generators (NPGs) to optimally fine-tune the anisotropic noise parameters for different data dimensions, allowing for pursuing different levels of robustness enhancements in practice.Empirical evaluations underscore the significant leap in UCAN's performance over existing state-of-the-art methods, demonstrating up to $182.6\%$ improvement in certified accuracy at large certified radii on MNIST, CIFAR10, and ImageNet datasets.\footnote{Code is anonymously available at \href{https://github.com/youbin2014/UCAN/}{https://github.com/youbin2014/UCAN/}}

Authors:Hien Bui, Yufeiyang Gao, Haoran Yang, Eric Cui, Siddhant Mody, Brian Acosta, Thomas Stephen Felix, Bibit Bianchini, Michael Posa
Title: Push Anything: Single- and Multi-Object Pushing From First Sight with Contact-Implicit MPC
Abstract:
Non-prehensile manipulation of diverse objects remains a core challenge in robotics, driven by unknown physical properties and the complexity of contact-rich interactions. Recent advances in contact-implicit model predictive control (CI-MPC), with contact reasoning embedded directly in the trajectory optimization, have shown promise in tackling the task efficiently and robustly, yet demonstrations have been limited to narrowly curated examples. In this work, we showcase the broader capabilities of CI-MPC through precise planar pushing tasks over a wide range of object geometries, including multi-object domains. These scenarios demand reasoning over numerous inter-object and object-environment contacts to strategically manipulate and de-clutter the environment, challenges that were intractable for prior CI-MPC methods. To achieve this, we introduce Consensus Complementarity Control Plus (C3+), an enhanced CI-MPC algorithm integrated into a complete pipeline spanning object scanning, mesh reconstruction, and hardware execution. Compared to its predecessor C3, C3+ achieves substantially faster solve times, enabling real-time performance even in multi-object pushing tasks. On hardware, our system achieves overall 98% success rate across 33 objects, reaching pose goals within tight tolerances. The average time-to-goal is approximately 0.5, 1.6, 3.2, and 5.3 minutes for 1-, 2-, 3-, and 4-object tasks, respectively. Project page: https://dairlab.github.io/push-anything.

Authors:Marc Amorós-Trepat, Luis Medrano-Navarro, Qiang Liu, Luca Guastoni, Nils Thuerey
Title: Guiding diffusion models to reconstruct flow fields from sparse data
Abstract:
The reconstruction of unsteady flow fields from limited measurements is a challenging and crucial task for many engineering applications. Machine learning models are gaining popularity in solving this problem due to their ability to learn complex patterns from data and generalize across diverse conditions. Among these, diffusion models have emerged as particularly powerful in generative tasks, producing high-quality samples by iteratively refining noisy inputs. In contrast to other methods, these generative models are capable of reconstructing the smallest scales of the fluid spectrum. In this work, we introduce a novel sampling method for diffusion models that enables the reconstruction of high-fidelity samples by guiding the reverse process using the available sparse data. Moreover, we enhance the reconstructions with available physics knowledge using a conflict-free update method during training. To evaluate the effectiveness of our method, we conduct experiments on 2 and 3-dimensional turbulent flow data. Our method consistently outperforms other diffusion-based methods in predicting the fluid's structure and in pixel-wise accuracy. This study underscores the remarkable potential of diffusion models in reconstructing flow field data, paving the way for their application in Computational Fluid Dynamics research.

Authors:Le Ren, Xiangjian Zeng, Qingqiang Wu, Ruoxuan Liang
Title: LyriCAR: A Difficulty-Aware Curriculum Reinforcement Learning Framework For Controllable Lyric Translation
Abstract:
Lyric translation is a challenging task that requires balancing multiple musical constraints. Existing methods often rely on hand-crafted rules and sentence-level modeling, which restrict their ability to internalize musical-linguistic patterns and to generalize effectively at the paragraph level, where cross-line coherence and global rhyme are crucial. In this work, we propose LyriCAR, a novel framework for controllable lyric translation that operates in a fully unsupervised manner. LyriCAR introduces a difficulty-aware curriculum designer and an adaptive curriculum strategy, ensuring efficient allocation of training resources, accelerating convergence, and improving overall translation quality by guiding the model with increasingly complex challenges. Extensive experiments on the EN-ZH lyric translation task show that LyriCAR achieves state-of-the-art results across both standard translation metrics and multi-dimensional reward scores, surpassing strong baselines. Notably, the adaptive curriculum strategy reduces training steps by nearly 40% while maintaining superior performance. Code, data and model can be accessed at https://github.com/rle27/LyriCAR.

Authors:Trajan Murphy, Akshunna S. Dogra, Hanfeng Gu, Caleb Meredith, Mark Kon, Julio Enrique Castrillion-Candas
Title: FINDER: Feature Inference on Noisy Datasets using Eigenspace Residuals
Abstract:
''Noisy'' datasets (regimes with low signal to noise ratios, small sample sizes, faulty data collection, etc) remain a key research frontier for classification methods with both theoretical and practical implications. We introduce FINDER, a rigorous framework for analyzing generic classification problems, with tailored algorithms for noisy datasets. FINDER incorporates fundamental stochastic analysis ideas into the feature learning and inference stages to optimally account for the randomness inherent to all empirical datasets. We construct ''stochastic features'' by first viewing empirical datasets as realizations from an underlying random field (without assumptions on its exact distribution) and then mapping them to appropriate Hilbert spaces. The Kosambi-Karhunen-Loéve expansion (KLE) breaks these stochastic features into computable irreducible components, which allow classification over noisy datasets via an eigen-decomposition: data from different classes resides in distinct regions, identified by analyzing the spectrum of the associated operators. We validate FINDER on several challenging, data-deficient scientific domains, producing state of the art breakthroughs in: (i) Alzheimer's Disease stage classification, (ii) Remote sensing detection of deforestation. We end with a discussion on when FINDER is expected to outperform existing methods, its failure modes, and other limitations.

Authors:Yatai Ji, Teng Wang, Yuying Ge, Zhiheng Liu, Sidi Yang, Ying Shan, Ping Luo
Title: From Denoising to Refining: A Corrective Framework for Vision-Language Diffusion Model
Abstract:
Discrete diffusion models have emerged as a promising direction for vision-language tasks, offering bidirectional context modeling and theoretical parallelization. However, their practical application is severely hindered by a train-inference discrepancy, which leads to catastrophic error cascades: initial token errors during parallel decoding pollute the generation context, triggering a chain reaction of compounding errors and leading to syntactic errors and semantic hallucinations. To address this fundamental challenge, we reframe the generation process from passive denoising to active refining. We introduce ReDiff, a refining-enhanced diffusion framework that teaches the model to identify and correct its own errors. Our approach features a two-stage training process: first, we instill a foundational revision capability by training the model to revise synthetic errors; second, we implement a novel online self-correction loop where the model is explicitly trained to revise its own flawed drafts by learning from an expert's corrections. This mistake-driven learning endows the model with the crucial ability to revisit and refine its already generated output, effectively breaking the error cascade. Extensive experiments demonstrate that ReDiff significantly improves the coherence and factual accuracy of generated content, enabling stable and efficient parallel generation far superior to traditional denoising methods. Our codes and models are available at https://rediff-hku.github.io/.

Authors:Isaac Wu, Michael Maslowski
Title: CourtGuard: A Local, Multiagent Prompt Injection Classifier
Abstract:
As large language models (LLMs) become integrated into various sensitive applications, prompt injection, the use of prompting to induce harmful behaviors from LLMs, poses an ever increasing risk. Prompt injection attacks can cause LLMs to leak sensitive data, spread misinformation, and exhibit harmful behaviors. To defend against these attacks, we propose CourtGuard, a locally-runnable, multiagent prompt injection classifier. In it, prompts are evaluated in a court-like multiagent LLM system, where a "defense attorney" model argues the prompt is benign, a "prosecution attorney" model argues the prompt is a prompt injection, and a "judge" model gives the final classification. CourtGuard has a lower false positive rate than the Direct Detector, an LLM as-a-judge. However, CourtGuard is generally a worse prompt injection detector. Nevertheless, this lower false positive rate highlights the importance of considering both adversarial and benign scenarios for the classification of a prompt. Additionally, the relative performance of CourtGuard in comparison to other prompt injection classifiers advances the use of multiagent systems as a defense against prompt injection attacks. The implementations of CourtGuard and the Direct Detector with full prompts for Gemma-3-12b-it, Llama-3.3-8B, and Phi-4-mini-instruct are available at https://github.com/isaacwu2000/CourtGuard.

Authors:Yuanhe Zhang, Ilja Kuzborskij, Jason D. Lee, Chenlei Leng, Fanghui Liu
Title: DAG-Math: Graph-Guided Mathematical Reasoning in LLMs
Abstract:
Large Language Models (LLMs) demonstrate strong performance on mathematical problems when prompted with Chain-of-Thought (CoT), yet it remains unclear whether this success stems from search, rote procedures, or rule-consistent reasoning. To address this, we propose modeling CoT as a certain rule-based stochastic process over directed acyclic graphs (DAGs), where nodes represent intermediate derivation states and edges encode rule applications. Within this framework, we introduce logical closeness, a metric that quantifies how well a model's CoT trajectory (i.e., the LLM's final output) adheres to the DAG structure, providing evaluation beyond classical PASS@k metrics. Building on this, we introduce the DAG-MATH CoT format and construct a benchmark that guides LLMs to generate CoT trajectories in this format, thereby enabling the evaluation of their reasoning ability under our framework. Across standard mathematical reasoning datasets, our analysis uncovers statistically significant differences in reasoning fidelity among representative LLM families-even when PASS@k is comparable-highlighting gaps between final-answer accuracy and rule-consistent derivation. Our framework provides a balance between free-form CoT and formal proofs systems, offering actionable diagnostics for LLMs reasoning evaluation. Our benchmark and code are available at: https://github.com/YuanheZ/DAG-MATH-Formatted-CoT.

Authors:Ilona Demler, Saumya Chauhan, Georgia Gkioxari
Title: Is This Tracker On? A Benchmark Protocol for Dynamic Tracking
Abstract:
We introduce ITTO, a challenging new benchmark suite for evaluating and diagnosing the capabilities and limitations of point tracking methods. Our videos are sourced from existing datasets and egocentric real-world recordings, with high-quality human annotations collected through a multi-stage pipeline. ITTO captures the motion complexity, occlusion patterns, and object diversity characteristic of real-world scenes -- factors that are largely absent in current benchmarks. We conduct a rigorous analysis of state-of-the-art tracking methods on ITTO, breaking down performance along key axes of motion complexity. Our findings reveal that existing trackers struggle with these challenges, particularly in re-identifying points after occlusion, highlighting critical failure modes. These results point to the need for new modeling approaches tailored to real-world dynamics. We envision ITTO as a foundation testbed for advancing point tracking and guiding the development of more robust tracking algorithms.

Authors:Jacob Berg, Chuning Zhu, Yanda Bao, Ishan Durugkar, Abhishek Gupta
Title: Semantic World Models
Abstract:
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.

Authors:Siyang Wu, Jack Nugent, Willow Yang, Jia Deng
Title: How to Evaluate Monocular Depth Estimation?
Abstract:
Monocular depth estimation is an important task with rapid progress, but how to evaluate it remains an open question, as evidenced by a lack of standardization in existing literature and a large selection of evaluation metrics whose trade-offs and behaviors are not well understood. This paper contributes a novel, quantitative analysis of existing metrics in terms of their sensitivity to various types of perturbations of ground truth, emphasizing comparison to human judgment. Our analysis reveals that existing metrics are severely under-sensitive to curvature perturbation such as making flat surfaces wavy. To remedy this, we introduce a new metric based on relative surface normals, along with new depth visualization tools and a principled method to create composite metrics with better human alignment. Code and data are available at: https://github.com/princeton-vl/evalmde.

Authors:Xichen Zhang, Sitong Wu, Yinghao Zhu, Haoru Tan, Shaozuo Yu, Ziyi He, Jiaya Jia
Title: Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Abstract:
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

Authors:Yuezhou Hu, Jiaxin Guo, Xinyu Feng, Tuo Zhao
Title: AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Abstract:
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.

Authors:Xichen Zhang, Sitong Wu, Haoru Tan, Shaozuo Yu, Yinghao Zhu, Ziyi He, Jiaya Jia
Title: SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
Abstract:
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.

Authors:Hui He, Kun Yi, Yuanchi Ma, Qi Zhang, Zhendong Niu, Guansong Pang
Title: SEMPO: Lightweight Foundation Models for Time Series Forecasting
Abstract:
The recent boom of large pre-trained models witnesses remarkable success in developing foundation models (FMs) for time series forecasting. Despite impressive performance across diverse downstream forecasting tasks, existing time series FMs possess massive network architectures and require substantial pre-training on large-scale datasets, which significantly hinders their deployment in resource-constrained environments. In response to this growing tension between versatility and affordability, we propose SEMPO, a novel lightweight foundation model that requires pretraining on relatively small-scale data, yet exhibits strong general time series forecasting. Concretely, SEMPO comprises two key modules: 1) energy-aware SpEctral decomposition module, that substantially improves the utilization of pre-training data by modeling not only the high-energy frequency signals but also the low-energy yet informative frequency signals that are ignored in current methods; and 2) Mixture-of-PrOmpts enabled Transformer, that learns heterogeneous temporal patterns through small dataset-specific prompts and adaptively routes time series tokens to prompt-based experts for parameter-efficient model adaptation across different datasets and domains. Equipped with these modules, SEMPO significantly reduces both pre-training data scale and model size, while achieving strong generalization. Extensive experiments on two large-scale benchmarks covering 16 datasets demonstrate the superior performance of SEMPO in both zero-shot and few-shot forecasting scenarios compared with state-of-the-art methods. Code and data are available at https://github.com/mala-lab/SEMPO.

Authors:Zhida Zhao, Talas Fu, Yifan Wang, Lijun Wang, Huchuan Lu
Title: From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Abstract:
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.

Authors:Shashi Kumar, Yacouba Kaloga, John Mitros, Petr Motlicek, Ina Kodrasi
Title: Latent Space Factorization in LoRA
Abstract:
Low-rank adaptation (LoRA) is a widely used method for parameter-efficient finetuning. However, existing LoRA variants lack mechanisms to explicitly disambiguate task-relevant information within the learned low-rank subspace, potentially limiting downstream performance. We propose Factorized Variational Autoencoder LoRA (FVAE-LoRA), which leverages a VAE to learn two distinct latent spaces. Our novel Evidence Lower Bound formulation explicitly promotes factorization between the latent spaces, dedicating one latent space to task-salient features and the other to residual information. Extensive experiments on text, audio, and image tasks demonstrate that FVAE-LoRA consistently outperforms standard LoRA. Moreover, spurious correlation evaluations confirm that FVAE-LoRA better isolates task-relevant signals, leading to improved robustness under distribution shifts. Our code is publicly available at: https://github.com/idiap/FVAE-LoRA

Authors:Yifan Li, Fenghe Tang, Yingtai Li, Shaohua Kevin Zhou
Title: MedReason-R1: Learning to Reason for CT Diagnosis with Reinforcement Learning and Local Zoom
Abstract:
General-purpose large Vision-Language Models (VLMs) demonstrate strong capabilities in generating detailed descriptions for natural images. However, their performance in the medical domain remains suboptimal, even for relatively straightforward tasks, primarily due to the lack of large-scale, high-quality, specialized medical imaging datasets and the neglect of the diagnostic process that progresses from coarse to fine-grained. To address the first issue, we construct the CT-RATE-VQA dataset, which has 84K QA pairs. For the second issue, we propose MedReason-R1, a medical VLM with explicit reasoning process for disease diagnosis. MedReason-R1 incorporates a novel strategy that embeds zoom-in disease region-of-interest areas into the image, highlighting the crucial role of both global localization and disease-specific details in enhancing the model's diagnostic performance. Furthermore, we introduce the GRPO reinforcement learning framework to MedReason-R1, which enables effective reasoning without relying on costly manual annotations. Compared to recent general-purpose and medical VLMs, MedReason-R1 achieves state-of-the-art performance in CT disease diagnosis while retaining generalization. The code, checkpoints, and dataset are available at: https://github.com/Leevan001/MedReason-R1

Authors:Junfei Zhou, Penglin Dai, Quanmin Wei, Bingyi Liu, Xiao Wu, Jianping Wang
Title: Pragmatic Heterogeneous Collaborative Perception via Generative Communication Mechanism
Abstract:
Multi-agent collaboration enhances the perception capabilities of individual agents through information sharing. However, in real-world applications, differences in sensors and models across heterogeneous agents inevitably lead to domain gaps during collaboration. Existing approaches based on adaptation and reconstruction fail to support pragmatic heterogeneous collaboration due to two key limitations: (1) Intrusive retraining of the encoder or core modules disrupts the established semantic consistency among agents; and (2) accommodating new agents incurs high computational costs, limiting scalability. To address these challenges, we present a novel Generative Communication mechanism (GenComm) that facilitates seamless perception across heterogeneous multi-agent systems through feature generation, without altering the original network, and employs lightweight numerical alignment of spatial information to efficiently integrate new agents at minimal cost. Specifically, a tailored Deformable Message Extractor is designed to extract spatial message for each collaborator, which is then transmitted in place of intermediate features. The Spatial-Aware Feature Generator, utilizing a conditional diffusion model, generates features aligned with the ego agent's semantic space while preserving the spatial information of the collaborators. These generated features are further refined by a Channel Enhancer before fusion. Experiments conducted on the OPV2V-H, DAIR-V2X and V2X-Real datasets demonstrate that GenComm outperforms existing state-of-the-art methods, achieving an 81\% reduction in both computational cost and parameter count when incorporating new agents. Our code is available at https://github.com/jeffreychou777/GenComm.

Authors:Qianli Ma, Siyu Wang, Yilin Chen, Yinhao Tang, Yixiang Yang, Chang Guo, Bingjie Gao, Zhening Xing, Yanan Sun, Zhipeng Zhang
Title: Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
Abstract:
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.

Authors:Haozhe Luo, Shelley Zixin Shu, Ziyu Zhou, Sebastian Otalora, Mauricio Reyes
Title: XBench: A Comprehensive Benchmark for Visual-Language Explanations in Chest Radiography
Abstract:
Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention

Authors:Su Ho Han, Jeongseok Hyun, Pilhyeon Lee, Minho Shim, Dongyoon Wee, Seon Joo Kim
Title: Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation
Abstract:
Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to textual queries. To directly adapt this for localization in a training-free manner, we cast video reasoning segmentation as a video QA task and extract attention maps via rollout mechanism. However, raw attention maps are noisy and poorly aligned with object regions. We propose Decomposed Attention Fusion (DecAF), which refines these maps through two mechanisms: (1) contrastive object-background fusion and (2) complementary video-frame fusion. This method suppresses irrelevant activations and enhances object-focused cues, enabling direct conversion of attention maps into coarse segmentation masks. In addition, we introduce attention-guided SAM2 prompting for obtaining fine-grained masks. Unlike existing methods that jointly train MLLMs with SAM, our method operates entirely without retraining. DecAF outperforms training-free methods and achieves performance comparable to training-based methods on both referring and reasoning VOS benchmarks. The code will be available at https://github.com/HYUNJS/DecAF.

Authors:Runpeng Xie, Quanwei Wang, Hao Hu, Zherui Zhou, Ni Mu, Xiyun Li, Yiqin Yang, Shuang Xu, Qianchuan Zhao, Bo XU
Title: DAIL: Beyond Task Ambiguity for Language-Conditioned Reinforcement Learning
Abstract:
Comprehending natural language and following human instructions are critical capabilities for intelligent agents. However, the flexibility of linguistic instructions induces substantial ambiguity across language-conditioned tasks, severely degrading algorithmic performance. To address these limitations, we present a novel method named DAIL (Distributional Aligned Learning), featuring two key components: distributional policy and semantic alignment. Specifically, we provide theoretical results that the value distribution estimation mechanism enhances task differentiability. Meanwhile, the semantic alignment module captures the correspondence between trajectories and linguistic instructions. Extensive experimental results on both structured and visual observation benchmarks demonstrate that DAIL effectively resolves instruction ambiguities, achieving superior performance to baseline methods. Our implementation is available at https://github.com/RunpengXie/Distributional-Aligned-Learning.

Authors:Nidham Tekaya, Manuela Waldner, Matthias Zeppelzauer
Title: A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Abstract:
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.

Authors:Canbin Huang, Tianyuan Shi, Yuhua Zhu, Ruijun Chen, Xiaojun Quan
Title: Lookahead Routing for Large Language Models
Abstract:
Large language model (LLM) routers improve the efficiency of multi-model systems by directing each query to the most appropriate model while leveraging the diverse strengths of heterogeneous LLMs. Most existing approaches frame routing as a classification problem based solely on the input query. While this reduces overhead by avoiding inference across all models, it overlooks valuable information that could be gleaned from potential outputs and fails to capture implicit intent or contextual nuances that often emerge only during response generation. These limitations can result in suboptimal routing decisions, particularly for complex or ambiguous queries that require deeper semantic understanding. To address this challenge, we propose Lookahead, a routing framework that "foresees" potential model outputs by predicting their latent representations and uses these predictions to guide model selection, thus enabling more informed routing without full inference. Within this framework, we implement two approaches based on causal and masked language models. Empirical evaluations across seven public benchmarks - spanning instruction following, mathematical reasoning, and code generation - show that Lookahead consistently outperforms existing routing baselines, achieving an average performance gain of 7.7% over the state-of-the-art. Our code is available at https://github.com/huangcb01/lookahead-routing.

Authors:Kevin Huang, Rosario Scalise, Cleah Winston, Ayush Agrawal, Yunchu Zhang, Rohan Baijal, Markus Grotz, Byron Boots, Benjamin Burchfiel, Masha Itkina, Paarth Shah, Abhishek Gupta
Title: Using Non-Expert Data to Robustify Imitation Learning via Offline Reinforcement Learning
Abstract:
Imitation learning has proven effective for training robots to perform complex tasks from expert human demonstrations. However, it remains limited by its reliance on high-quality, task-specific data, restricting adaptability to the diverse range of real-world object configurations and scenarios. In contrast, non-expert data -- such as play data, suboptimal demonstrations, partial task completions, or rollouts from suboptimal policies -- can offer broader coverage and lower collection costs. However, conventional imitation learning approaches fail to utilize this data effectively. To address these challenges, we posit that with right design decisions, offline reinforcement learning can be used as a tool to harness non-expert data to enhance the performance of imitation learning policies. We show that while standard offline RL approaches can be ineffective at actually leveraging non-expert data under the sparse data coverage settings typically encountered in the real world, simple algorithmic modifications can allow for the utilization of this data, without significant additional assumptions. Our approach shows that broadening the support of the policy distribution can allow imitation algorithms augmented by offline RL to solve tasks robustly, showing considerably enhanced recovery and generalization behavior. In manipulation tasks, these innovations significantly increase the range of initial conditions where learned policies are successful when non-expert data is incorporated. Moreover, we show that these methods are able to leverage all collected data, including partial or suboptimal demonstrations, to bolster task-directed policy performance. This underscores the importance of algorithmic techniques for using non-expert data for robust policy learning in robotics. Website: https://uwrobotlearning.github.io/RISE-offline/

Authors:Zaifei Yang, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Title: KnowMol: Advancing Molecular Large Language Models with Multi-Level Chemical Knowledge
Abstract:
The molecular large language models have garnered widespread attention due to their promising potential on molecular applications. However, current molecular large language models face significant limitations in understanding molecules due to inadequate textual descriptions and suboptimal molecular representation strategies during pretraining. To address these challenges, we introduce KnowMol-100K, a large-scale dataset with 100K fine-grained molecular annotations across multiple levels, bridging the gap between molecules and textual descriptions. Additionally, we propose chemically-informative molecular representation, effectively addressing limitations in existing molecular representation strategies. Building upon these innovations, we develop KnowMol, a state-of-the-art multi-modal molecular large language model. Extensive experiments demonstrate that KnowMol achieves superior performance across molecular understanding and generation tasks. GitHub: https://github.com/yzf-code/KnowMol Huggingface: https://hf.co/datasets/yzf1102/KnowMol-100K

Authors:Qiang Chen, Zhongze Wu, Ang He, Xi Lin, Shuo Jiang, Shan You, Chang Xu, Yi Chen, Xiu Su
Title: Graph Unlearning Meets Influence-aware Negative Preference Optimization
Abstract:
Recent advancements in graph unlearning models have enhanced model utility by preserving the node representation essentially invariant, while using gradient ascent on the forget set to achieve unlearning. However, this approach causes a drastic degradation in model utility during the unlearning process due to the rapid divergence speed of gradient ascent. In this paper, we introduce \textbf{INPO}, an \textbf{I}nfluence-aware \textbf{N}egative \textbf{P}reference \textbf{O}ptimization framework that focuses on slowing the divergence speed and improving the robustness of the model utility to the unlearning process. Specifically, we first analyze that NPO has slower divergence speed and theoretically propose that unlearning high-influence edges can reduce impact of unlearning. We design an influence-aware message function to amplify the influence of unlearned edges and mitigate the tight topological coupling between the forget set and the retain set. The influence of each edge is quickly estimated by a removal-based method. Additionally, we propose a topological entropy loss from the perspective of topology to avoid excessive information loss in the local structure during unlearning. Extensive experiments conducted on five real-world datasets demonstrate that INPO-based model achieves state-of-the-art performance on all forget quality metrics while maintaining the model's utility. Codes are available at \href{https://github.com/sh-qiangchen/INPO}{https://github.com/sh-qiangchen/INPO}.

Authors:Constance Ferragu, Jonathan D. Ziegler, Nicolas Deutschmann, Arthur Lindoulsi, Eli Bixby, Cradle ML Team
Title: g-DPO: Scalable Preference Optimization for Protein Language Models
Abstract:
Direct Preference Optimization (DPO) is an effective approach for aligning protein language models with experimental design goals. However, DPO faces a scalability bottleneck: the number of possible training pairs grows quadratically with the number of labeled sequences, leading to prohibitive training times even for modestly sized datasets. We introduce g-DPO, a framework that (i) uses sequence space clustering to prune redundant pairs while preserving training signal, and (ii) amortizes likelihood computations with group-based approximations. Across three protein engineering tasks, g-DPO maintains in-silico and in-vitro performance that is statistically indistinguishable from standard DPO, while converging 1.8 to 3.7 times faster, with greater gains expected as the size of the dataset increases.

Authors:Yuu Jinnai
Title: Re-evaluating Minimum Bayes Risk Decoding for Automatic Speech Recognition
Abstract:
Recent work has shown that sample-based Minimum Bayes Risk (MBR) decoding outperforms beam search in text-to-text generation tasks, such as machine translation, text summarization, and image captioning. On the other hand, beam search is the current practice for speech-to-text tasks such as automatic speech recognition (ASR) and Speech Translation (ST). Given that MBR decoding is effective in text-to-text generation tasks, it is reasonable to expect it to also be effective for speech-to-text tasks. In this paper, we evaluate MBR decoding for ASR and ST tasks on English and Japanese using Whisper and its derivative models. We observe that the accuracy of MBR decoding outperforms that of beam search in most of the experimental settings we have evaluated. The results show that MBR decoding is a promising method for offline ASR and ST tasks that require high accuracy. The code is available at https://github.com/CyberAgentAILab/mbr-for-asr

Authors:Jia-Kai Dong, I-Wei Huang, Chun-Tin Wu, Yi-Tien Tsai
Title: MSC-Bench: A Rigorous Benchmark for Multi-Server Tool Orchestration
Abstract:
We introduce MSC-Bench, a large-scale benchmark for evaluating multi-hop, end-to-end tool orchestration by LLM agents in a hierarchical Model-Context Protocol (MCP) ecosystem. Existing benchmarks often evaluate tools in isolation, ignoring challenges such as functional overlap and cross-server orchestration, leading to overly optimistic assessments. MSC-Bench addresses these gaps by constructing ground truth through 'equal function sets', allowing objective metrics such as F1 score and reducing the dependency on LLM-as-a-judge evaluation. Organized as a five-level curriculum, it systematically tests agent capabilities from single-tool orchestration to complex cross-server planning, and robustness to out-of-scope requests. Experiments reveal that rigid hierarchies can hinder performance without co-designed strategies, and even state-of-the-art agents exhibit systemic weaknesses in robustness. MSC-Bench provides a diagnostic framework to expose these limitations and guide the development of more capable and efficient tool-using agents. The benchmark and resources are publicly available at https://github.com/snooow1029/MSC_Bench.

Authors:Chengcan Wu, Zhixin Zhang, Mingqian Xu, Zeming Wei, Meng Sun
Title: Monitoring LLM-based Multi-Agent Systems Against Corruptions via Node Evaluation
Abstract:
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have become a popular paradigm of AI applications. However, trustworthiness issues in MAS remain a critical concern. Unlike challenges in single-agent systems, MAS involve more complex communication processes, making them susceptible to corruption attacks. To mitigate this issue, several defense mechanisms have been developed based on the graph representation of MAS, where agents represent nodes and communications form edges. Nevertheless, these methods predominantly focus on static graph defense, attempting to either detect attacks in a fixed graph structure or optimize a static topology with certain defensive capabilities. To address this limitation, we propose a dynamic defense paradigm for MAS graph structures, which continuously monitors communication within the MAS graph, then dynamically adjusts the graph topology, accurately disrupts malicious communications, and effectively defends against evolving and diverse dynamic attacks. Experimental results in increasingly complex and dynamic MAS environments demonstrate that our method significantly outperforms existing MAS defense mechanisms, contributing an effective guardrail for their trustworthy applications. Our code is available at https://github.com/ChengcanWu/Monitoring-LLM-Based-Multi-Agent-Systems.

Authors:Victor Morand, Nadi Tomeh, Josiane Mothe, Benjamin Piwowarski
Title: ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Abstract:
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.

Authors:Zhiyuan Feng, Zhaolu Kang, Qijie Wang, Zhiying Du, Jiongrui Yan, Shubin Shi, Chengbo Yuan, Huizhi Liang, Yu Deng, Qixiu Li, Rushuai Yang, Arctanx An, Leqi Zheng, Weijie Wang, Shawn Chen, Sicheng Xu, Yaobo Liang, Jiaolong Yang, Baining Guo
Title: Seeing Across Views: Benchmarking Spatial Reasoning of Vision-Language Models in Robotic Scenes
Abstract:
Vision-language models (VLMs) are essential to Embodied AI, enabling robots to perceive, reason, and act in complex environments. They also serve as the foundation for the recent Vision-Language-Action (VLA) models. Yet most evaluations of VLMs focus on single-view settings, leaving their ability to integrate multi-view information underexplored. At the same time, multi-camera setups are increasingly standard in robotic platforms, as they provide complementary perspectives to mitigate occlusion and depth ambiguity. Whether VLMs can effectively leverage such multi-view inputs for robotic reasoning therefore remains an open question. To bridge this gap, we introduce MV-RoboBench, a benchmark specifically designed to evaluate the multi-view spatial reasoning capabilities of VLMs in robotic manipulation. MV-RoboBench consists of 1.7k manually curated QA items across eight subtasks, divided into two primary categories: spatial understanding and robotic execution. We evaluate a diverse set of existing VLMs, including both open-source and closed-source models, along with enhanced versions incorporating CoT-inspired techniques. The results show that state-of-the-art models remain far below human performance, underscoring the substantial challenges VLMs face in multi-view robotic perception. Additionally, our analysis uncovers two key findings: (i) spatial intelligence and robotic task execution are positively correlated in multi-view robotic scenarios; and (ii) strong performance on existing general-purpose single-view spatial understanding benchmarks does not reliably translate to success in the robotic spatial tasks assessed by our benchmark. We release MV-RoboBench as an open resource to foster progress in spatially grounded VLMs and VLAs, providing not only data but also a standardized evaluation protocol for multi-view embodied reasoning.

Authors:Woo Jae Kim, Kyu Beom Han, Yoonki Cho, Youngju Na, Junsik Jung, Sooel Son, Sung-eui Yoon
Title: AegisRF: Adversarial Perturbations Guided with Sensitivity for Protecting Intellectual Property of Neural Radiance Fields
Abstract:
As Neural Radiance Fields (NeRFs) have emerged as a powerful tool for 3D scene representation and novel view synthesis, protecting their intellectual property (IP) from unauthorized use is becoming increasingly crucial. In this work, we aim to protect the IP of NeRFs by injecting adversarial perturbations that disrupt their unauthorized applications. However, perturbing the 3D geometry of NeRFs can easily deform the underlying scene structure and thus substantially degrade the rendering quality, which has led existing attempts to avoid geometric perturbations or restrict them to explicit spaces like meshes. To overcome this limitation, we introduce a learnable sensitivity to quantify the spatially varying impact of geometric perturbations on rendering quality. Building upon this, we propose AegisRF, a novel framework that consists of a Perturbation Field, which injects adversarial perturbations into the pre-rendering outputs (color and volume density) of NeRF models to fool an unauthorized downstream target model, and a Sensitivity Field, which learns the sensitivity to adaptively constrain geometric perturbations, preserving rendering quality while disrupting unauthorized use. Our experimental evaluations demonstrate the generalized applicability of AegisRF across diverse downstream tasks and modalities, including multi-view image classification and voxel-based 3D localization, while maintaining high visual fidelity. Codes are available at https://github.com/wkim97/AegisRF.

Authors:Nilesh Ramgolam, Gustavo Carneiro, Hsiang-Ting Chen
Title: Learning To Defer To A Population With Limited Demonstrations
Abstract:
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.

Authors:Kai Shi, Jun Yang, Ni Yang, Binqiang Pan, Qingsong Xie, Chao Zhang, Zhenyu Yang, Tianhuang Su, Haonan Lu
Title: DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents
Abstract:
Mobile Phone Agents (MPAs) have emerged as a promising research direction due to their broad applicability across diverse scenarios. While Multimodal Large Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness in handling multiple mobile phone tasks simultaneously remains limited. Although multitask supervised fine-tuning (SFT) is widely adopted for multitask learning, existing approaches struggle to determine optimal training data compositions for peak performance. To address this challenge, we propose DaMo (Data Mixture Optimizer) - a novel solution employing a trainable network that predicts optimal data mixtures by forecasting downstream task performance for any given dataset ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks, comprising 1235 QA pairs spanning diverse real-world industrial mobile application scenarios. Demonstrating strong predictive capability (R^2=0.81) in small-scale pilot experiments, DaMo efficiently extrapolates optimal data mixing configurations. Our results show DaMo achieves a 3.38% performance improvement on PhoneAgentBench compared to alternative methods. Furthermore, extensive experiments across established benchmarks including BFCL-v3, MME-Reasoning, MME-Perception, and OCRBench reveal DaMo's superior generalization, outperforming other approaches by 2.57% in terms of average score. When used solely for MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47% than other methods. Notably, DaMo maintains robust scalability, preserving its effectiveness when applied to other model architectures. The code and dataset are available at https://github.com/OPPO-Mente-Lab/DaMo.git

Authors:Panagiotis Agrafiotis, Begüm Demir
Title: Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters
Abstract:
Accurate, detailed, and regularly updated bathymetry, coupled with complex semantic content, is essential for under-mapped shallow-water environments facing increasing climatological and anthropogenic pressures. However, existing approaches that derive either depth or seabed classes from remote sensing imagery treat these tasks in isolation, forfeiting the mutual benefits of their interaction and hindering the broader adoption of deep learning methods. To address these limitations, we introduce Seabed-Net, a unified multi-task framework that simultaneously predicts bathymetry and pixel-based seabed classification from remote sensing imagery of various resolutions. Seabed-Net employs dual-branch encoders for bathymetry estimation and pixel-based seabed classification, integrates cross-task features via an Attention Feature Fusion module and a windowed Swin-Transformer fusion block, and balances objectives through dynamic task uncertainty weighting. In extensive evaluations at two heterogeneous coastal sites, it consistently outperforms traditional empirical models and traditional machine learning regression methods, achieving up to 75\% lower RMSE. It also reduces bathymetric RMSE by 10-30\% compared to state-of-the-art single-task and multi-task baselines and improves seabed classification accuracy up to 8\%. Qualitative analyses further demonstrate enhanced spatial consistency, sharper habitat boundaries, and corrected depth biases in low-contrast regions. These results confirm that jointly modeling depth with both substrate and seabed habitats yields synergistic gains, offering a robust, open solution for integrated shallow-water mapping. Code and pretrained weights are available at https://github.com/pagraf/Seabed-Net.

Authors:Junjie Song, Yiwen Liu, Dapeng Li, Yin Sun, Shukun Fu, Siqi Chen, Yuji Cao
Title: Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Abstract:
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git

Authors:Fan Xu, Xinyu Hu, Zhenghan Yu, Li Lin, Xu Zhang, Yang Zhang, Wei Zhou, Jinjie Gu, Xiaojun Wan
Title: HAD: HAllucination Detection Language Models Based on a Comprehensive Hallucination Taxonomy
Abstract:
The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.

Authors:Jinwu Hu, Zihao Lian, Zhiquan Wen, Chenghao Li, Guohao Chen, Xutao Wen, Bin Xiao, Mingkui Tan
Title: Continual Knowledge Adaptation for Reinforcement Learning
Abstract:
Reinforcement Learning enables agents to learn optimal behaviors through interactions with environments. However, real-world environments are typically non-stationary, requiring agents to continuously adapt to new tasks and changing conditions. Although Continual Reinforcement Learning facilitates learning across multiple tasks, existing methods often suffer from catastrophic forgetting and inefficient knowledge utilization. To address these challenges, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL), which enables the accumulation and effective utilization of historical knowledge. Specifically, we introduce a Continual Knowledge Adaptation strategy, which involves maintaining a task-specific knowledge vector pool and dynamically using historical knowledge to adapt the agent to new tasks. This process mitigates catastrophic forgetting and enables efficient knowledge transfer across tasks by preserving and adapting critical model parameters. Additionally, we propose an Adaptive Knowledge Merging mechanism that combines similar knowledge vectors to address scalability challenges, reducing memory requirements while ensuring the retention of essential knowledge. Experiments on three benchmarks demonstrate that the proposed CKA-RL outperforms state-of-the-art methods, achieving an improvement of 4.20% in overall performance and 8.02% in forward transfer. The source code is available at https://github.com/Fhujinwu/CKA-RL.

Authors:Fan Xu, Huixuan Zhang, Zhenliang Zhang, Jiahao Wang, Xiaojun Wan
Title: JointCQ: Improving Factual Hallucination Detection with Joint Claim and Query Generation
Abstract:
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.

Authors:Byung-Kwan Lee, Ryo Hachiuma, Yong Man Ro, Yu-Chiang Frank Wang, Yueh-Hua Wu
Title: Unified Reinforcement and Imitation Learning for Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have achieved remarkable progress, yet their large scale often renders them impractical for resource-constrained environments. This paper introduces Unified Reinforcement and Imitation Learning (RIL), a novel and efficient training algorithm designed to create powerful, lightweight VLMs. RIL distinctively combines the strengths of reinforcement learning with adversarial imitation learning. This enables smaller student VLMs not only to mimic the sophisticated text generation of large teacher models but also to systematically improve their generative capabilities through reinforcement signals. Key to our imitation framework is an LLM-based discriminator that adeptly distinguishes between student and teacher outputs, complemented by guidance from multiple large teacher VLMs to ensure diverse learning. This unified learning strategy, leveraging both reinforcement and imitation, empowers student models to achieve significant performance gains, making them competitive with leading closed-source VLMs. Extensive experiments on diverse vision-language benchmarks demonstrate that RIL significantly narrows the performance gap with state-of-the-art open- and closed-source VLMs and, in several instances, surpasses them.

Authors:Ziheng Deng, Xue Liu, Jiantong Jiang, Yankai Li, Qingxu Deng, Xiaochun Yang
Title: FLASH Viterbi: Fast and Adaptive Viterbi Decoding for Modern Data Systems
Abstract:
The Viterbi algorithm is a key operator for structured sequence inference in modern data systems, with applications in trajectory analysis, online recommendation, and speech recognition. As these workloads increasingly migrate to resource-constrained edge platforms, standard Viterbi decoding remains memory-intensive and computationally inflexible. Existing methods typically trade decoding time for space efficiency, but often incur significant runtime overhead and lack adaptability to various system constraints. This paper presents FLASH Viterbi, a Fast, Lightweight, Adaptive, and Hardware-Friendly Viterbi decoding operator that enhances adaptability and resource efficiency. FLASH Viterbi combines a non-recursive divide-and-conquer strategy with pruning and parallelization techniques to enhance both time and memory efficiency, making it well-suited for resource-constrained data systems. To further decouple space complexity from the hidden state space size, we present FLASH-BS Viterbi, a dynamic beam search variant built on a memory-efficient data structure. Both proposed algorithms exhibit strong adaptivity to diverse deployment scenarios by dynamically tuning internal parameters. To ensure practical deployment on edge devices, we also develop FPGA-based hardware accelerators for both algorithms, demonstrating high throughput and low resource usage. Extensive experiments show that our algorithms consistently outperform existing baselines in both decoding time and memory efficiency, while preserving adaptability and hardware-friendly characteristics essential for modern data systems. All codes are publicly available at https://github.com/Dzh-16/FLASH-Viterbi.

Authors:Yang Zhang, Rui Zhang, Jiaming Guo, Lei Huang, Di Huang, Yunpu Zhao, Shuyao Cheng, Pengwei Jin, Chongxiao Li, Zidong Du, Xing Hu, Qi Guo, Yunji Chen
Title: QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation
Abstract:
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/zy1xxx/SALV.

Authors:Reza Esfandiarpoor, Vishwas Suryanarayanan, Stephen H. Bach, Vishal Chowdhary, Anthony Aue
Title: TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Abstract:
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.

Authors:Saurabh Chauhan, Zeeshan Rasheed, Malik Abdul Sami, Kai-Kristian Kemell, Muhammad Waseem, Zheying Zhang, Jussi Rasku, Mika Saari, Pekka Abrahamsson
Title: From Specification to Service: Accelerating API-First Development Using Multi-Agent Systems
Abstract:
This paper presents a system that uses Large Language Models (LLMs)-based agents to automate the API-first development of RESTful microservices. This system helps to create an OpenAPI specification, generate server code from it, and refine the code through a feedback loop that analyzes execution logs and error messages. The integration of log analysis enables the LLM to detect and address issues efficiently, reducing the number of iterations required to produce functional and robust services. This study's main goal is to advance API-first development automation for RESTful web services and test the capability of LLM-based multi-agent systems in supporting the API-first development approach. To test the proposed system's potential, we utilized the PRAB benchmark. The results indicate that if we keep the OpenAPI specification small and focused, LLMs are capable of generating complete functional code with business logic that aligns to the specification. The code for the system is publicly available at https://github.com/sirbh/code-gen

Authors:Yun Kai Zhuang
Title: SCEESR: Semantic-Control Edge Enhancement for Diffusion-Based Super-Resolution
Abstract:
Real-world image super-resolution (Real-ISR) must handle complex degradations and inherent reconstruction ambiguities. While generative models have improved perceptual quality, a key trade-off remains with computational cost. One-step diffusion models offer speed but often produce structural inaccuracies due to distillation artifacts. To address this, we propose a novel SR framework that enhances a one-step diffusion model using a ControlNet mechanism for semantic edge guidance. This integrates edge information to provide dynamic structural control during single-pass inference. We also introduce a hybrid loss combining L2, LPIPS, and an edge-aware AME loss to optimize for pixel accuracy, perceptual quality, and geometric precision. Experiments show our method effectively improves structural integrity and realism while maintaining the efficiency of one-step generation, achieving a superior balance between output quality and inference speed. The results of test datasets will be published at https://drive.google.com/drive/folders/1amddXQ5orIyjbxHgGpzqFHZ6KTolinJF?usp=drive_link and the related code will be published at https://github.com/ARBEZ-ZEBRA/SCEESR.

Authors:Soyoung Park, Sungsu Lim
Title: FnRGNN: Distribution-aware Fairness in Graph Neural Network
Abstract:
Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.

Authors:Mingrui Zhao, Sauradip Nag, Kai Wang, Aditya Vora, Guangda Ji, Peter Chun, Ali Mahdavi-Amiri, Hao Zhang
Title: Advances in 4D Representation: Geometry, Motion, and Interaction
Abstract:
We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/

Authors:Ziwei Wang, Jiayuan Su, Mengyu Zhou, Huaxing Zeng, Mengni Jia, Xiao Lv, Haoyu Dong, Xiaojun Ma, Shi Han, Dongmei Zhang
Title: SheetBrain: A Neuro-Symbolic Agent for Accurate Reasoning over Complex and Large Spreadsheets
Abstract:
Understanding and reasoning over complex spreadsheets remain fundamental challenges for large language models (LLMs), which often struggle with accurately capturing the complex structure of tables and ensuring reasoning correctness. In this work, we propose SheetBrain, a neuro-symbolic dual workflow agent framework designed for accurate reasoning over tabular data, supporting both spreadsheet question answering and manipulation tasks. SheetBrain comprises three core modules: an understanding module, which produces a comprehensive overview of the spreadsheet - including sheet summary and query-based problem insight to guide reasoning; an execution module, which integrates a Python sandbox with preloaded table-processing libraries and an Excel helper toolkit for effective multi-turn reasoning; and a validation module, which verifies the correctness of reasoning and answers, triggering re-execution when necessary. We evaluate SheetBrain on multiple public tabular QA and manipulation benchmarks, and introduce SheetBench, a new benchmark targeting large, multi-table, and structurally complex spreadsheets. Experimental results show that SheetBrain significantly improves accuracy on both existing benchmarks and the more challenging scenarios presented in SheetBench. Our code is publicly available at https://github.com/microsoft/SheetBrain.

Authors:Yizhu Wang, Sizhe Chen, Raghad Alkhudair, Basel Alomair, David Wagner
Title: Defending Against Prompt Injection with DataFilter
Abstract:
When large language model (LLM) agents are increasingly deployed to automate tasks and interact with untrusted external data, prompt injection emerges as a significant security threat. By injecting malicious instructions into the data that LLMs access, an attacker can arbitrarily override the original user task and redirect the agent toward unintended, potentially harmful actions. Existing defenses either require access to model weights (fine-tuning), incur substantial utility loss (detection-based), or demand non-trivial system redesign (system-level). Motivated by this, we propose DataFilter, a test-time model-agnostic defense that removes malicious instructions from the data before it reaches the backend LLM. DataFilter is trained with supervised fine-tuning on simulated injections and leverages both the user's instruction and the data to selectively strip adversarial content while preserving benign information. Across multiple benchmarks, DataFilter consistently reduces the prompt injection attack success rates to near zero while maintaining the LLMs' utility. DataFilter delivers strong security, high utility, and plug-and-play deployment, making it a strong practical defense to secure black-box commercial LLMs against prompt injection. Our DataFilter model is released at https://huggingface.co/JoyYizhu/DataFilter for immediate use, with the code to reproduce our results at https://github.com/yizhu-joy/DataFilter.

Authors:Matteo Bortolon, Nuno Ferreira Duarte, Plinio Moreno, Fabio Poiesi, José Santos-Victor, Alessio Del Bue
Title: GRASPLAT: Enabling dexterous grasping through novel view synthesis
Abstract:
Achieving dexterous robotic grasping with multi-fingered hands remains a significant challenge. While existing methods rely on complete 3D scans to predict grasp poses, these approaches face limitations due to the difficulty of acquiring high-quality 3D data in real-world scenarios. In this paper, we introduce GRASPLAT, a novel grasping framework that leverages consistent 3D information while being trained solely on RGB images. Our key insight is that by synthesizing physically plausible images of a hand grasping an object, we can regress the corresponding hand joints for a successful grasp. To achieve this, we utilize 3D Gaussian Splatting to generate high-fidelity novel views of real hand-object interactions, enabling end-to-end training with RGB data. Unlike prior methods, our approach incorporates a photometric loss that refines grasp predictions by minimizing discrepancies between rendered and real images. We conduct extensive experiments on both synthetic and real-world grasping datasets, demonstrating that GRASPLAT improves grasp success rates up to 36.9% over existing image-based methods. Project page: https://mbortolon97.github.io/grasplat/

Authors:Kai Zeng, Zhanqian Wu, Kaixin Xiong, Xiaobao Wei, Xiangyu Guo, Zhenxin Zhu, Kalok Ho, Lijun Zhou, Bohan Zeng, Ming Lu, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Wentao Zhang
Title: Rethinking Driving World Model as Synthetic Data Generator for Perception Tasks
Abstract:
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Page: https://wm-research.github.io/Dream4Drive/ GitHub Link: https://github.com/wm-research/Dream4Drive

Authors:Yuqiao Tan, Shizhu He, Kang Liu, Jun Zhao
Title: The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models
Abstract:
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.

Authors:Keaton Kraiger, Jingjing Li, Skanda Bharadwaj, Jesse Scott, Robert T. Collins, Yanxi Liu
Title: FootFormer: Estimating Stability from Visual Input
Abstract:
We propose FootFormer, a cross-modality approach for jointly predicting human motion dynamics directly from visual input. On multiple datasets, FootFormer achieves statistically significantly better or equivalent estimates of foot pressure distributions, foot contact maps, and center of mass (CoM), as compared with existing methods that generate one or two of those measures. Furthermore, FootFormer achieves SOTA performance in estimating stability-predictive components (CoP, CoM, BoS) used in classic kinesiology metrics. Code and data are available at https://github.com/keatonkraiger/Vision-to-Stability.git.

Authors:Yunzhe Wang, Soham Hans, Volkan Ustun
Title: X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Abstract:
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.

Authors:Amith Ananthram, Elias Stengel-Eskin, Lorena A. Bradford, Julia Demarest, Adam Purvis, Keith Krut, Robert Stein, Rina Elster Pantalony, Mohit Bansal, Kathleen McKeown
Title: PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
Abstract:
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $ρ$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.

Authors:Nakul Upadhya, Eldan Cohen
Title: Empowering Decision Trees via Shape Function Branching
Abstract:
Decision trees are prized for their interpretability and strong performance on tabular data. Yet, their reliance on simple axis-aligned linear splits often forces deep, complex structures to capture non-linear feature effects, undermining human comprehension of the constructed tree. To address this limitation, we propose a novel generalization of a decision tree, the Shape Generalized Tree (SGT), in which each internal node applies a learnable axis-aligned shape function to a single feature, enabling rich, non-linear partitioning in one split. As users can easily visualize each node's shape function, SGTs are inherently interpretable and provide intuitive, visual explanations of the model's decision mechanisms. To learn SGTs from data, we propose ShapeCART, an efficient induction algorithm for SGTs. We further extend the SGT framework to bivariate shape functions (S$^2$GT) and multi-way trees (SGT$_K$), and present Shape$^2$CART and ShapeCART$_K$, extensions to ShapeCART for learning S$^2$GTs and SGT$_K$s, respectively. Experiments on various datasets show that SGTs achieve superior performance with reduced model size compared to traditional axis-aligned linear trees.

Authors:Abeer Badawi, Elahe Rahimi, Md Tahmid Rahman Laskar, Sheri Grach, Lindsay Bertrand, Lames Danok, Jimmy Huang, Frank Rudzicz, Elham Dolatabadi
Title: When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Abstract:
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/

Authors:Joydeep Chandra, Satyam Kumar Navneet
Title: Plural Voices, Single Agent: Towards Inclusive AI in Multi-User Domestic Spaces
Abstract:
Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora

Authors:Zhilin Wang, Jaehun Jung, Ximing Lu, Shizhe Diao, Ellie Evans, Jiaqi Zeng, Pavlo Molchanov, Yejin Choi, Jan Kautz, Yi Dong
Title: ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Abstract:
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench

Authors:Zhi Zhang, Yixian Shen, Congfeng Cao, Ekaterina Shutova
Title: NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Abstract:
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.

Authors:Howard Yen, Ashwin Paranjape, Mengzhou Xia, Thejas Venkatesh, Jack Hessel, Danqi Chen, Yuhao Zhang
Title: Lost in the Maze: Overcoming Context Limitations in Long-Horizon Agentic Search
Abstract:
Long-horizon agentic search requires iteratively exploring the web over long trajectories and synthesizing information across many sources, and is the foundation for enabling powerful applications like deep research systems. In this work, we show that popular agentic search frameworks struggle to scale to long trajectories primarily due to context limitations-they accumulate long, noisy content, hit context window and tool budgets, or stop early. Then, we introduce SLIM (Simple Lightweight Information Management), a simple framework that separates retrieval into distinct search and browse tools, and periodically summarizes the trajectory, keeping context concise while enabling longer, more focused searches. On long-horizon tasks, SLIM achieves comparable performance at substantially lower cost and with far fewer tool calls than strong open-source baselines across multiple base models. Specifically, with o3 as the base model, SLIM achieves 56% on BrowseComp and 31% on HLE, outperforming all open-source frameworks by 8 and 4 absolute points, respectively, while incurring 4-6x fewer tool calls. Finally, we release an automated fine-grained trajectory analysis pipeline and error taxonomy for characterizing long-horizon agentic search frameworks; SLIM exhibits fewer hallucinations than prior systems. We hope our analysis framework and simple tool design inform future long-horizon agents.

Authors:Chen Chen, ZeYang Hu, Fengjiao Chen, Liya Ma, Jiaxing Liu, Xiaoyu Li, Xuezhi Cao
Title: UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Abstract:
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench

Authors:Jizhan Fang, Xinle Deng, Haoming Xu, Ziyan Jiang, Yuqi Tang, Ziwen Xu, Shumin Deng, Yunzhi Yao, Mengru Wang, Shuofei Qiao, Huajun Chen, Ningyu Zhang
Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
Abstract:
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.

Authors:Yanlin Wang, Rongyi Ou, Yanli Wang, Mingwei Liu, Jiachi Chen, Ensheng Shi, Xilin Liu, Yuchi Ma, Zibin Zheng
Title: EffiReasonTrans: RL-Optimized Reasoning for Code Translation
Abstract:
Code translation is a crucial task in software development and maintenance. While recent advancements in large language models (LLMs) have improved automated code translation accuracy, these gains often come at the cost of increased inference latency, hindering real-world development workflows that involve human-in-the-loop inspection. To address this trade-off, we propose EffiReasonTrans, a training framework designed to improve translation accuracy while balancing inference latency. We first construct a high-quality reasoning-augmented dataset by prompting a stronger language model, DeepSeek-R1, to generate intermediate reasoning and target translations. Each (source code, reasoning, target code) triplet undergoes automated syntax and functionality checks to ensure reliability. Based on this dataset, we employ a two-stage training strategy: supervised fine-tuning on reasoning-augmented samples, followed by reinforcement learning to further enhance accuracy and balance inference latency. We evaluate EffiReasonTrans on six translation pairs. Experimental results show that it consistently improves translation accuracy (up to +49.2% CA and +27.8% CodeBLEU compared to the base model) while reducing the number of generated tokens (up to -19.3%) and lowering inference latency in most cases (up to -29.0%). Ablation studies further confirm the complementary benefits of the two-stage training framework. Additionally, EffiReasonTrans demonstrates improved translation accuracy when integrated into agent-based frameworks. Our code and data are available at https://github.com/DeepSoftwareAnalytics/EffiReasonTrans.

Authors:Rishav Sen, Abhishek Dubey, Ayan Mukhopadhyay, Samitha Samaranayake, Aron Laszka
Title: MoveOD: Synthesizing Origin-Destination Commute Distribution from U.S. Census Data
Abstract:
High-resolution origin-destination (OD) tables are essential for a wide spectrum of transportation applications, from modeling traffic and signal timing optimization to congestion pricing and vehicle routing. However, outside a handful of data rich cities, such data is rarely available. We introduce MOVEOD, an open-source pipeline that synthesizes public data into commuter OD flows with fine-grained spatial and temporal departure times for any county in the United States. MOVEOD combines five open data sources: American Community Survey (ACS) departure time and travel time distributions, Longitudinal Employer-Household Dynamics (LODES) residence-to-workplace flows, county geometries, road network information from OpenStreetMap (OSM), and building footprints from OSM and Microsoft, into a single OD dataset. We use a constrained sampling and integer-programming method to reconcile the OD dataset with data from ACS and LODES. Our approach involves: (1) matching commuter totals per origin zone, (2) aligning workplace destinations with employment distributions, and (3) calibrating travel durations to ACS-reported commute times. This ensures the OD data accurately reflects commuting patterns. We demonstrate the framework on Hamilton County, Tennessee, where we generate roughly 150,000 synthetic trips in minutes, which we feed into a benchmark suite of classical and learning-based vehicle-routing algorithms. The MOVEOD pipeline is an end-to-end automated system, enabling users to easily apply it across the United States by giving only a county and a year; and it can be adapted to other countries with comparable census datasets. The source code and a lightweight browser interface are publicly available.

Authors:Wenxuan Li, Chengruidong Zhang, Huiqiang Jiang, Yucheng Li, Yuqing Yang, Lili Qiu
Title: MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
Abstract:
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.

Authors:Yigit Korkmaz, Urvi Bhuwania, Ayush Jain, Erdem Bıyık
Title: Actor-Free Continuous Control via Structurally Maximizable Q-Functions
Abstract:
Value-based algorithms are a cornerstone of off-policy reinforcement learning due to their simplicity and training stability. However, their use has traditionally been restricted to discrete action spaces, as they rely on estimating Q-values for individual state-action pairs. In continuous action spaces, evaluating the Q-value over the entire action space becomes computationally infeasible. To address this, actor-critic methods are typically employed, where a critic is trained on off-policy data to estimate Q-values, and an actor is trained to maximize the critic's output. Despite their popularity, these methods often suffer from instability during training. In this work, we propose a purely value-based framework for continuous control that revisits structural maximization of Q-functions, introducing a set of key architectural and algorithmic choices to enable efficient and stable learning. We evaluate the proposed actor-free Q-learning approach on a range of standard simulation tasks, demonstrating performance and sample efficiency on par with state-of-the-art baselines, without the cost of learning a separate actor. Particularly, in environments with constrained action spaces, where the value functions are typically non-smooth, our method with structural maximization outperforms traditional actor-critic methods with gradient-based maximization. We have released our code at https://github.com/USC-Lira/Q3C.

Authors:Seunghee Ryu, Donghoon Kwon, Seongjin Choi, Aryan Deshwal, Seungmo Kang, Carolina Osorio
Title: BO4Mob: Bayesian Optimization Benchmarks for High-Dimensional Urban Mobility Problem
Abstract:
We introduce \textbf{BO4Mob}, a new benchmark framework for high-dimensional Bayesian Optimization (BO), driven by the challenge of origin-destination (OD) travel demand estimation in large urban road networks. Estimating OD travel demand from limited traffic sensor data is a difficult inverse optimization problem, particularly in real-world, large-scale transportation networks. This problem involves optimizing over high-dimensional continuous spaces where each objective evaluation is computationally expensive, stochastic, and non-differentiable. BO4Mob comprises five scenarios based on real-world San Jose, CA road networks, with input dimensions scaling up to 10,100. These scenarios utilize high-resolution, open-source traffic simulations that incorporate realistic nonlinear and stochastic dynamics. We demonstrate the benchmark's utility by evaluating five optimization methods: three state-of-the-art BO algorithms and two non-BO baselines. This benchmark is designed to support both the development of scalable optimization algorithms and their application for the design of data-driven urban mobility models, including high-resolution digital twins of metropolitan road networks. Code and documentation are available at https://github.com/UMN-Choi-Lab/BO4Mob.

Authors:Hongliang Lu, Yuhang Wen, Pengyu Cheng, Ruijin Ding, Haotian Xu, Jiaqi Guo, Chutian Wang, Haonan Chen, Xiaoxi Jiang, Guanjun Jiang
Title: Search Self-play: Pushing the Frontier of Agent Capability without Supervision
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has become the mainstream technique for training LLM agents. However, RLVR highly depends on well-crafted task queries and corresponding ground-truth answers to provide accurate rewards, which requires massive human efforts and hinders the RL scaling processes, especially under agentic scenarios. Although a few recent works explore task synthesis methods, the difficulty of generated agentic tasks can hardly be controlled to provide effective RL training advantages. To achieve agentic RLVR with higher scalability, we explore self-play training for deep search agents, in which the learning LLM utilizes multi-turn search engine calling and acts simultaneously as both a task proposer and a problem solver. The task proposer aims to generate deep search queries with well-defined ground-truth answers and increasing task difficulty. The problem solver tries to handle the generated search queries and output the correct answer predictions. To ensure that each generated search query has accurate ground truth, we collect all the searching results from the proposer's trajectory as external knowledge, then conduct retrieval-augmentation generation (RAG) to test whether the proposed query can be correctly answered with all necessary search documents provided. In this search self-play (SSP) game, the proposer and the solver co-evolve their agent capabilities through both competition and cooperation. With substantial experimental results, we find that SSP can significantly improve search agents' performance uniformly on various benchmarks without any supervision under both from-scratch and continuous RL training setups. The code is at https://github.com/Alibaba-Quark/SSP.

Authors:Shuxin Lin, Dhaval Patel, Christodoulos Constantinides
Title: Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring
Abstract:
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.

Authors:Mengqi Li, Lei Zhao, Anthony Man-Cho So, Ruoyu Sun, Xiao Li
Title: Online SFT for LLM Reasoning: Surprising Effectiveness of Self-Tuning without Rewards
Abstract:
We present a simple, self-help online supervised finetuning (OSFT) paradigm for LLM reasoning. In this paradigm, the model generates its own responses and is immediately finetuned on this self-generated data. OSFT is a highly efficient training strategy for LLM reasoning, as it is reward-free and uses just one rollout by default. Experiment results show that OSFT achieves downstream performance on challenging mathematical reasoning tasks comparable to strong reinforcement learning with verifiable rewards (RLVR) methods such as GRPO. Our ablation study further demonstrates the efficiency and robustness of OSFT. The major mechanism of OSFT lies in facilitating the model's own existing preference (latent knowledge) learned from pretraining, which leads to reasoning ability improvement. We believe that OSFT offers an efficient and promising alternative to more complex, reward-based training paradigms. Our code is available at https://github.com/ElementQi/OnlineSFT.

Authors:Guanzhong He, Zhen Yang, Jinxin Liu, Bin Xu, Lei Hou, Juanzi Li
Title: WebSeer: Training Deeper Search Agents through Reinforcement Learning with Self-Reflection
Abstract:
Search agents have achieved significant advancements in enabling intelligent information retrieval and decision-making within interactive environments. Although reinforcement learning has been employed to train agentic models capable of more dynamic interactive retrieval, existing methods are limited by shallow tool-use depth and the accumulation of errors over multiple iterative interactions. In this paper, we present WebSeer, a more intelligent search agent trained via reinforcement learning enhanced with a self-reflection mechanism. Specifically, we construct a large dataset annotated with reflection patterns and design a two-stage training framework that unifies cold start and reinforcement learning within the self-reflection paradigm for real-world web-based environments, which enables the model to generate longer and more reflective tool-use trajectories. Our approach substantially extends tool-use chains and improves answer accuracy. Using a single 14B model, we achieve state-of-the-art results on HotpotQA and SimpleQA, with accuracies of 72.3% and 90.0%, respectively, and demonstrate strong generalization to out-of-distribution datasets. The code is available at https://github.com/99hgz/WebSeer

Authors:Xiaoxing Hu, Kaicheng Yang, Ziyang Gong, Qi Ming, Zonghao Guo, Xiang An, Ziyong Feng, Junchi Yan, Xue Yang
Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
Abstract:
The original CLIP text encoder is limited by a maximum input length of 77 tokens, which hampers its ability to effectively process long texts and perform fine-grained semantic understanding. In addition, the CLIP text encoder lacks support for multilingual inputs. All these limitations significantly restrict its applicability across a broader range of tasks. Recent studies have attempted to replace the CLIP text encoder with an LLM-based embedder to enhance its ability in processing long texts, multilingual understanding, and fine-grained semantic comprehension. However, because the representation spaces of LLMs and the vision-language space of CLIP are pretrained independently without alignment priors, direct alignment using contrastive learning can disrupt the intrinsic vision-language alignment in the CLIP image encoder, leading to an underutilization of the knowledge acquired during pre-training. To address this challenge, we propose ProCLIP, a curriculum learning-based progressive vision-language alignment framework to effectively align the CLIP image encoder with an LLM-based embedder. Specifically, ProCLIP first distills knowledge from CLIP's text encoder into the LLM-based embedder to leverage CLIP's rich pretrained knowledge while establishing initial alignment between the LLM embedder and CLIP image encoder. Subsequently, ProCLIP further aligns the CLIP image encoder with the LLM-based embedder through image-text contrastive tuning, employing self-distillation regularization to avoid overfitting. To achieve a more effective alignment, instance semantic alignment loss and embedding structure alignment loss are employed during representation inheritance and contrastive tuning. The Code is available at https://github.com/VisionXLab/ProCLIP.

Authors:Wenping Jin, Yuyang Tang, Li Zhu, Fei Guo
Title: Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
Abstract:
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.

Authors:Zhenqi He, Yuanpei Liu, Kai Han
Title: SEAL: Semantic-Aware Hierarchical Learning for Generalized Category Discovery
Abstract:
This paper investigates the problem of Generalized Category Discovery (GCD). Given a partially labelled dataset, GCD aims to categorize all unlabelled images, regardless of whether they belong to known or unknown classes. Existing approaches typically depend on either single-level semantics or manually designed abstract hierarchies, which limit their generalizability and scalability. To address these limitations, we introduce a SEmantic-aware hierArchical Learning framework (SEAL), guided by naturally occurring and easily accessible hierarchical structures. Within SEAL, we propose a Hierarchical Semantic-Guided Soft Contrastive Learning approach that exploits hierarchical similarity to generate informative soft negatives, addressing the limitations of conventional contrastive losses that treat all negatives equally. Furthermore, a Cross-Granularity Consistency (CGC) module is designed to align the predictions from different levels of granularity. SEAL consistently achieves state-of-the-art performance on fine-grained benchmarks, including the SSB benchmark, Oxford-Pet, and the Herbarium19 dataset, and further demonstrates generalization on coarse-grained datasets. Project page: https://visual-ai.github.io/seal/

Authors:Shihao Li, Yuanxing Zhang, Jiangtao Wu, Zhide Lei, Yiwen He, Runzhe Wen, Chenxi Liao, Chengkang Jiang, An Ping, Shuo Gao, Suhan Wang, Zhaozhou Bian, Zijun Zhou, Jingyi Xie, Jiayi Zhou, Jing Wang, Yifan Yao, Weihao Xie, Yingshui Tan, Yanghai Wang, Qianqian Xie, Zhaoxiang Zhang, Jiaheng Liu
Title: IF-VidCap: Can Video Caption Models Follow Instructions?
Abstract:
Although Multimodal Large Language Models (MLLMs) have demonstrated proficiency in video captioning, practical applications require captions that follow specific user instructions rather than generating exhaustive, unconstrained descriptions. Current benchmarks, however, primarily assess descriptive comprehensiveness while largely overlooking instruction-following capabilities. To address this gap, we introduce IF-VidCap, a new benchmark for evaluating controllable video captioning, which contains 1,400 high-quality samples. Distinct from existing video captioning or general instruction-following benchmarks, IF-VidCap incorporates a systematic framework that assesses captions on two dimensions: format correctness and content correctness. Our comprehensive evaluation of over 20 prominent models reveals a nuanced landscape: despite the continued dominance of proprietary models, the performance gap is closing, with top-tier open-source solutions now achieving near-parity. Furthermore, we find that models specialized for dense captioning underperform general-purpose MLLMs on complex instructions, indicating that future work should simultaneously advance both descriptive richness and instruction-following fidelity.

Authors:Changkun Liu, Bin Tan, Zeran Ke, Shangzhan Zhang, Jiachen Liu, Ming Qian, Nan Xue, Yujun Shen, Tristan Braud
Title: PLANA3R: Zero-shot Metric Planar 3D Reconstruction via Feed-Forward Planar Splatting
Abstract:
This paper addresses metric 3D reconstruction of indoor scenes by exploiting their inherent geometric regularities with compact representations. Using planar 3D primitives - a well-suited representation for man-made environments - we introduce PLANA3R, a pose-free framework for metric Planar 3D Reconstruction from unposed two-view images. Our approach employs Vision Transformers to extract a set of sparse planar primitives, estimate relative camera poses, and supervise geometry learning via planar splatting, where gradients are propagated through high-resolution rendered depth and normal maps of primitives. Unlike prior feedforward methods that require 3D plane annotations during training, PLANA3R learns planar 3D structures without explicit plane supervision, enabling scalable training on large-scale stereo datasets using only depth and normal annotations. We validate PLANA3R on multiple indoor-scene datasets with metric supervision and demonstrate strong generalization to out-of-domain indoor environments across diverse tasks under metric evaluation protocols, including 3D surface reconstruction, depth estimation, and relative pose estimation. Furthermore, by formulating with planar 3D representation, our method emerges with the ability for accurate plane segmentation. The project page is available at https://lck666666.github.io/plana3r

Authors:Tung Nguyen, Tuan Pham, Troy Arcomano, Veerabhadra Kotamarthi, Ian Foster, Sandeep Madireddy, Aditya Grover
Title: OmniCast: A Masked Latent Diffusion Model for Weather Forecasting Across Time Scales
Abstract:
Accurate weather forecasting across time scales is critical for anticipating and mitigating the impacts of climate change. Recent data-driven methods based on deep learning have achieved significant success in the medium range, but struggle at longer subseasonal-to-seasonal (S2S) horizons due to error accumulation in their autoregressive approach. In this work, we propose OmniCast, a scalable and skillful probabilistic model that unifies weather forecasting across timescales. OmniCast consists of two components: a VAE model that encodes raw weather data into a continuous, lower-dimensional latent space, and a diffusion-based transformer model that generates a sequence of future latent tokens given the initial conditioning tokens. During training, we mask random future tokens and train the transformer to estimate their distribution given conditioning and visible tokens using a per-token diffusion head. During inference, the transformer generates the full sequence of future tokens by iteratively unmasking random subsets of tokens. This joint sampling across space and time mitigates compounding errors from autoregressive approaches. The low-dimensional latent space enables modeling long sequences of future latent states, allowing the transformer to learn weather dynamics beyond initial conditions. OmniCast performs competitively with leading probabilistic methods at the medium-range timescale while being 10x to 20x faster, and achieves state-of-the-art performance at the subseasonal-to-seasonal scale across accuracy, physics-based, and probabilistic metrics. Furthermore, we demonstrate that OmniCast can generate stable rollouts up to 100 years ahead. Code and model checkpoints are available at https://github.com/tung-nd/omnicast.

Authors:Peiqin Zhuang, Lei Bai, Yichao Wu, Ding Liang, Luping Zhou, Yali Wang, Wanli Ouyang
Title: A Renaissance of Explicit Motion Information Mining from Transformers for Action Recognition
Abstract:
Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2. Our project is available at https://github.com/PeiqinZhuang/EMIM .

Authors:Yiqi Lin, Alex Jinpeng Wang, Linjie Li, Zhengyuan Yang, Mike Zheng Shou
Title: Exploring a Unified Vision-Centric Contrastive Alternatives on Multi-Modal Web Documents
Abstract:
Contrastive vision-language models such as CLIP have demonstrated strong performance across a wide range of multimodal tasks by learning from aligned image-text pairs. However, their ability to handle complex, real-world web documents remains limited, particularly in scenarios where text and images are interleaved, loosely aligned, or embedded in visual form. To address these challenges, we propose Vision-Centric Contrastive Learning (VC2L), a unified framework that models text, images, and their combinations using a single vision transformer. VC2L operates entirely in pixel space by rendering all inputs, whether textual, visual, or combined, as images, thus eliminating the need for OCR, text tokenization, or modality fusion strategy. To capture complex cross-modal relationships in multimodal web documents, VC2L employs a snippet-level contrastive learning objective that aligns consecutive multimodal segments, leveraging the inherent coherence of documents without requiring explicitly paired image-text data. To assess the effectiveness of this approach, we introduce three retrieval benchmarks, AnyCIR, SeqCIR, and CSR, designed to evaluate cross-modal retrieval, fine-grained sequential understanding, and generalization to unseen data, respectively. Empirical results show that VC2L achieves competitive or superior performance compared to CLIP-style models on both the proposed benchmarks and established datasets such as M-BEIR and MTEB. These findings underscore the potential of multimodal web data as a valuable training resource for contrastive learning and illustrate the scalability of a unified, vision-centric approach for multimodal representation learning. Code and models are available at: https://github.com/showlab/VC2L.

Authors:Phuoc Nguyen, Francesco Verdoja, Ville Kyrki
Title: Event-Grounding Graph: Unified Spatio-Temporal Scene Graph from Robotic Observations
Abstract:
A fundamental aspect for building intelligent autonomous robots that can assist humans in their daily lives is the construction of rich environmental representations. While advances in semantic scene representations have enriched robotic scene understanding, current approaches lack a connection between spatial features and dynamic events; e.g., connecting the blue mug to the event washing a mug. In this work, we introduce the event-grounding graph (EGG), a framework grounding event interactions to spatial features of a scene. This representation allows robots to perceive, reason, and respond to complex spatio-temporal queries. Experiments using real robotic data demonstrate EGG's capability to retrieve relevant information and respond accurately to human inquiries concerning the environment and events within. Furthermore, the EGG framework's source code and evaluation dataset are released as open-source at: https://github.com/aalto-intelligent-robotics/EGG.

Authors:Zhangquan Chen, Manyuan Zhang, Xinlei Yu, Xufang Luo, Mingze Sun, Zihao Pan, Yan Feng, Peng Pei, Xunliang Cai, Ruqi Huang
Title: Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
Abstract:
Though recent advances in vision-language models (VLMs) have achieved remarkable progress across a wide range of multimodal tasks, understanding 3D spatial relationships from limited views remains a significant challenge. Previous reasoning methods typically rely on pure text (e.g., topological cognitive maps) or on 2D visual cues. However, their limited representational capacity hinders performance in specific tasks that require 3D spatial imagination. To address this limitation, we propose 3DThinker, a framework that can effectively exploits the rich geometric information embedded within images while reasoning, like humans do. Our framework is the first to enable 3D mentaling during reasoning without any 3D prior input, and it does not rely on explicitly labeled 3D data for training. Specifically, our training consists of two stages. First, we perform supervised training to align the 3D latent generated by VLM while reasoning with that of a 3D foundation model (e.g., VGGT). Then, we optimize the entire reasoning trajectory solely based on outcome signals, thereby refining the underlying 3D mentaling. Extensive experiments across multiple benchmarks show that 3DThinker consistently outperforms strong baselines and offers a new perspective toward unifying 3D representations into multimodal reasoning. Our code will be available at https://github.com/zhangquanchen/3DThinker.

Authors:Chunyang Li, Yilun Zheng, Xinting Huang, Tianqing Fang, Jiahao Xu, Yangqiu Song, Lihui Chen, Han Hu
Title: WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
Abstract:
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.

Authors:Loc Phuc Truong Nguyen, Hung Thanh Do
Title: RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
Abstract:
As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.

Authors:Hyewon Lee, Junghyun Oh, Minkyung Song, Soyoung Park, Seunghoon Han
Title: Alibaba International E-commerce Product Search Competition DILAB Team Technical Report
Abstract:
This study presents the multilingual e-commerce search system developed by the DILAB team, which achieved 5th place on the final leaderboard with a competitive overall score of 0.8819, demonstrating stable and high-performing results across evaluation metrics. To address challenges in multilingual query-item understanding, we designed a multi-stage pipeline integrating data refinement, lightweight preprocessing, and adaptive modeling. The data refinement stage enhanced dataset consistency and category coverage, while language tagging and noise filtering improved input quality. In the modeling phase, multiple architectures and fine-tuning strategies were explored, and hyperparameters optimized using curated validation sets to balance performance across query-category (QC) and query-item (QI) tasks. The proposed framework exhibited robustness and adaptability across languages and domains, highlighting the effectiveness of systematic data curation and iterative evaluation for multilingual search systems. The source code is available at https://github.com/2noweyh/DILAB-Alibaba-Ecommerce-Search.

Authors:Anamitra Ghorui, Uday P. Khedker
Title: LatticeHashForest: An Efficient Data Structure for Repetitive Data and Operations
Abstract:
Analysis of entire programs as a single unit, or whole-program analysis, involves propagation of large amounts of information through the control flow of the program. This is especially true for pointer analysis, where, unless significant compromises are made in the precision of the analysis, there is a combinatorial blowup of information. One of the key problems we observed in our own efforts to this end is that a lot of duplicate data was being propagated, and many low-level data structure operations were repeated a large number of times. We present what we consider to be a novel and generic data structure, LatticeHashForest (LHF), to store and operate on such data in a manner that eliminates a majority of redundant computations and duplicate data in scenarios similar to those encountered in compilers and program optimization. LHF differs from similar work in this vein, such as hash-consing, ZDDs, and BDDs, by not only providing a way to efficiently operate on large, aggregate structures, but also modifying the elements of such structures in a manner that they can be deduplicated immediately. LHF also provides a way to perform a nested construction of elements such that they can be deduplicated at multiple levels, cutting down the need for additional, nested computations. We provide a detailed structural description, along with an abstract model of this data structure. An entire C++ implementation of LHF is provided as an artifact along with evaluations of LHF using examples and benchmark programs. We also supply API documentation and a user manual for users to make independent applications of LHF. Our main use case in the realm of pointer analysis shows memory usage reduction to an almost negligible fraction, and speedups beyond 4x for input sizes approaching 10 million when compared to other implementations.

Authors:Lianchen Jia, Chaoyang Li, Qian Houde, Tianchi Huang, Jiangchuan Liu, Lifeng Sun
Title: Crucible: Quantifying the Potential of Control Algorithms through LLM Agents
Abstract:
Control algorithms in production environments typically require domain experts to tune their parameters and logic for specific scenarios. However, existing research predominantly focuses on algorithmic performance under ideal or default configurations, overlooking the critical aspect of Tuning Potential. To bridge this gap, we introduce Crucible, an agent that employs an LLM-driven, multi-level expert simulation to turn algorithms and defines a formalized metric to quantitatively evaluate their Tuning Potential. We demonstrate Crucible's effectiveness across a wide spectrum of case studies, from classic control tasks to complex computer systems, and validate its findings in a real-world deployment. Our experimental results reveal that Crucible systematically quantifies the tunable space across different algorithms. Furthermore, Crucible provides a new dimension for algorithm analysis and design, which ultimately leads to performance improvements. Our code is available at https://github.com/thu-media/Crucible.

Authors:Jinfeng Liu, Lingtong Kong, Mi Zhou, Jinwen Chen, Dan Xu
Title: Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos
Abstract:
We introduce Mono4DGS-HDR, the first system for reconstructing renderable 4D high dynamic range (HDR) scenes from unposed monocular low dynamic range (LDR) videos captured with alternating exposures. To tackle such a challenging problem, we present a unified framework with two-stage optimization approach based on Gaussian Splatting. The first stage learns a video HDR Gaussian representation in orthographic camera coordinate space, eliminating the need for camera poses and enabling robust initial HDR video reconstruction. The second stage transforms video Gaussians into world space and jointly refines the world Gaussians with camera poses. Furthermore, we propose a temporal luminance regularization strategy to enhance the temporal consistency of the HDR appearance. Since our task has not been studied before, we construct a new evaluation benchmark using publicly available datasets for HDR video reconstruction. Extensive experiments demonstrate that Mono4DGS-HDR significantly outperforms alternative solutions adapted from state-of-the-art methods in both rendering quality and speed.

Authors:Mariano Barone, Antonio Laudante, Giuseppe Riccio, Antonio Romano, Marco Postiglione, Vincenzo Moscato
Title: DART: A Structured Dataset of Regulatory Drug Documents in Italian for Clinical NLP
Abstract:
The extraction of pharmacological knowledge from regulatory documents has become a key focus in biomedical natural language processing, with applications ranging from adverse event monitoring to AI-assisted clinical decision support. However, research in this field has predominantly relied on English-language corpora such as DrugBank, leaving a significant gap in resources tailored to other healthcare systems. To address this limitation, we introduce DART (Drug Annotation from Regulatory Texts), the first structured corpus of Italian Summaries of Product Characteristics derived from the official repository of the Italian Medicines Agency (AIFA). The dataset was built through a reproducible pipeline encompassing web-scale document retrieval, semantic segmentation of regulatory sections, and clinical summarization using a few-shot-tuned large language model with low-temperature decoding. DART provides structured information on key pharmacological domains such as indications, adverse drug reactions, and drug-drug interactions. To validate its utility, we implemented an LLM-based drug interaction checker that leverages the dataset to infer clinically meaningful interactions. Experimental results show that instruction-tuned LLMs can accurately infer potential interactions and their clinical implications when grounded in the structured textual fields of DART. We publicly release our code on GitHub: https://github.com/PRAISELab-PicusLab/DART.

Authors:Antonio Romano, Giuseppe Riccio, Mariano Barone, Marco Postiglione, Vincenzo Moscato
Title: IMB: An Italian Medical Benchmark for Question Answering
Abstract:
Online medical forums have long served as vital platforms where patients seek professional healthcare advice, generating vast amounts of valuable knowledge. However, the informal nature and linguistic complexity of forum interactions pose significant challenges for automated question answering systems, especially when dealing with non-English languages. We present two comprehensive Italian medical benchmarks: \textbf{IMB-QA}, containing 782,644 patient-doctor conversations from 77 medical categories, and \textbf{IMB-MCQA}, comprising 25,862 multiple-choice questions from medical specialty examinations. We demonstrate how Large Language Models (LLMs) can be leveraged to improve the clarity and consistency of medical forum data while retaining their original meaning and conversational style, and compare a variety of LLM architectures on both open and multiple-choice question answering tasks. Our experiments with Retrieval Augmented Generation (RAG) and domain-specific fine-tuning reveal that specialized adaptation strategies can outperform larger, general-purpose models in medical question answering tasks. These findings suggest that effective medical AI systems may benefit more from domain expertise and efficient information retrieval than from increased model scale. We release both datasets and evaluation frameworks in our GitHub repository to support further research on multilingual medical question answering: https://github.com/PRAISELab-PicusLab/IMB.

Authors:Spencer King, Irfan Ozen, Karthika Subramani, Saranyan Senthivel, Phani Vadrevu, Roberto Perdisci
Title: PP3D: An In-Browser Vision-Based Defense Against Web Behavior Manipulation Attacks
Abstract:
Web-based behavior-manipulation attacks (BMAs) - such as scareware, fake software downloads, tech support scams, etc. - are a class of social engineering (SE) attacks that exploit human decision-making vulnerabilities. These attacks remain under-studied compared to other attacks such as information harvesting attacks (e.g., phishing) or malware infections. Prior technical work has primarily focused on measuring BMAs, offering little in the way of generic defenses. To address this gap, we introduce Pixel Patrol 3D (PP3D), the first end-to-end browser framework for discovering, detecting, and defending against behavior-manipulating SE attacks in real time. PP3D consists of a visual detection model implemented within a browser extension, which deploys the model client-side to protect users across desktop and mobile devices while preserving privacy. Our evaluation shows that PP3D can achieve above 99% detection rate at 1% false positives, while maintaining good latency and overhead performance across devices. Even when faced with new BMA samples collected months after training the detection model, our defense system can still achieve above 97% detection rate at 1% false positives. These results demonstrate that our framework offers a practical, effective, and generalizable defense against a broad and evolving class of web behavior-manipulation attacks.

Authors:Tianci Bi, Xiaoyi Zhang, Yan Lu, Nanning Zheng
Title: Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
Abstract:
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.

Authors:Liyang He, Yuren Zhang, Ziwei Zhu, Zhenghui Li, Shiwei Tong
Title: ChronoPlay: A Framework for Modeling Dual Dynamics and Authenticity in Game RAG Benchmarks
Abstract:
Retrieval Augmented Generation (RAG) systems are increasingly vital in dynamic domains like online gaming, yet the lack of a dedicated benchmark has impeded standardized evaluation in this area. The core difficulty lies in Dual Dynamics: the constant interplay between game content updates and the shifting focus of the player community. Furthermore, the necessity of automating such a benchmark introduces a critical requirement for player-centric authenticity to ensure generated questions are realistic. To address this integrated challenge, we introduce ChronoPlay, a novel framework for the automated and continuous generation of game RAG benchmarks. ChronoPlay utilizes a dual-dynamic update mechanism to track both forms of change, and a dual-source synthesis engine that draws from official sources and player community to ensure both factual correctness and authentic query patterns. We instantiate our framework on three distinct games to create the first dynamic RAG benchmark for the gaming domain, offering new insights into model performance under these complex and realistic conditions. Code is avaliable at: https://github.com/hly1998/ChronoPlay.

Authors:Ji Du, Xin Wang, Fangwei Hao, Mingyang Yu, Chunyuan Chen, Jiesheng Wu, Bin Wang, Jing Xu, Ping Li
Title: Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection
Abstract:
At the core of Camouflaged Object Detection (COD) lies segmenting objects from their highly similar surroundings. Previous efforts navigate this challenge primarily through image-level modeling or annotation-based optimization. Despite advancing considerably, this commonplace practice hardly taps valuable dataset-level contextual information or relies on laborious annotations. In this paper, we propose RISE, a RetrIeval SElf-augmented paradigm that exploits the entire training dataset to generate pseudo-labels for single images, which could be used to train COD models. RISE begins by constructing prototype libraries for environments and camouflaged objects using training images (without ground truth), followed by K-Nearest Neighbor (KNN) retrieval to generate pseudo-masks for each image based on these libraries. It is important to recognize that using only training images without annotations exerts a pronounced challenge in crafting high-quality prototype libraries. In this light, we introduce a Clustering-then-Retrieval (CR) strategy, where coarse masks are first generated through clustering, facilitating subsequent histogram-based image filtering and cross-category retrieval to produce high-confidence prototypes. In the KNN retrieval stage, to alleviate the effect of artifacts in feature maps, we propose Multi-View KNN Retrieval (MVKR), which integrates retrieval results from diverse views to produce more robust and precise pseudo-masks. Extensive experiments demonstrate that RISE outperforms state-of-the-art unsupervised and prompt-based methods. Code is available at https://github.com/xiaohainku/RISE.

Authors:Minwei Kong, Ao Qu, Xiaotong Guo, Wenbin Ouyang, Chonghe Jiang, Han Zheng, Yining Ma, Dingyi Zhuang, Yuhan Tang, Junyi Li, Hai Wang, Cathy Wu, Jinhua Zhao
Title: AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library
Abstract:
Optimization modeling enables critical decisions across industries but remains difficult to automate: informal language must be mapped to precise mathematical formulations and executable solver code. Prior LLM approaches either rely on brittle prompting or costly retraining with limited generalization. We present AlphaOPT, a self-improving experience library that enables an LLM to learn from limited demonstrations (even answers alone, without gold-standard programs) and solver feedback - without annotated reasoning traces or parameter updates. AlphaOPT operates in a continual two-phase cycle: (i) a Library Learning phase that reflects on failed attempts, extracting solver-verified, structured insights as {taxonomy, condition, explanation, example}; and (ii) a Library Evolution phase that diagnoses retrieval misalignments and refines the applicability conditions of stored insights, improving transfer across tasks. This design (1) learns efficiently from limited demonstrations without curated rationales, (2) expands continually without costly retraining by updating the library rather than model weights, and (3) makes knowledge explicit and interpretable for human inspection and intervention. Experiments show that AlphaOPT steadily improves with more data (65% to 72% from 100 to 300 training items) and surpasses the strongest baseline by 7.7% on the out-of-distribution OptiBench dataset when trained only on answers. Code and data are available at: https://github.com/Minw913/AlphaOPT.

Authors:Pengfei Cai, Joanna Wang, Haorui Zheng, Xu Li, Zihao Ji, Teng Ma, Zhongliang Liu, Chen Zhang, Pengfei Wan
Title: SegTune: Structured and Fine-Grained Control for Song Generation
Abstract:
Recent advancements in song generation have shown promising results in generating songs from lyrics and/or global text prompts. However, most existing systems lack the ability to model the temporally varying attributes of songs, limiting fine-grained control over musical structure and dynamics. In this paper, we propose SegTune, a non-autoregressive framework for structured and controllable song generation. SegTune enables segment-level control by allowing users or large language models to specify local musical descriptions aligned to song sections.The segmental prompts are injected into the model by temporally broadcasting them to corresponding time windows, while global prompts influence the whole song to ensure stylistic coherence. To obtain accurate segment durations and enable precise lyric-to-music alignment, we introduce an LLM-based duration predictor that autoregressively generates sentence-level timestamped lyrics in LRC format. We further construct a large-scale data pipeline for collecting high-quality songs with aligned lyrics and prompts, and propose new evaluation metrics to assess segment-level alignment and vocal attribute consistency. Experimental results show that SegTune achieves superior controllability and musical coherence compared to existing baselines. See https://cai525.github.io/SegTune_demo for demos of our work.

Authors:Yuheng Wu, Thanh-Tung Nguyen, Lucas Liebe, Quang Tau, Pablo Espinosa Campos, Jinghan Cheng, Dongman Lee
Title: How2Compress: Scalable and Efficient Edge Video Analytics via Adaptive Granular Video Compression
Abstract:
With the rapid proliferation of the Internet of Things, video analytics has become a cornerstone application in wireless multimedia sensor networks. To support such applications under bandwidth constraints, learning-based adaptive quantization for video compression have demonstrated strong potential in reducing bitrate while maintaining analytical accuracy. However, existing frameworks often fail to fully exploit the fine-grained quality control enabled by modern blockbased video codecs, leaving significant compression efficiency untapped. In this paper, we present How2Compress, a simple yet effective framework designed to enhance video compression efficiency through precise, fine-grained quality control at the macroblock level. How2Compress is a plug-and-play module and can be seamlessly integrated into any existing edge video analytics pipelines. We implement How2Compress on the H.264 codec and evaluate its performance across diverse real-world scenarios. Experimental results show that How2Compress achieves up to $50.4\%$ bitrate savings and outperforms baselines by up to $3.01\times$ without compromising accuracy, demonstrating its practical effectiveness and efficiency. Code is available at https://github.com/wyhallenwu/how2compress and a reproducible docker image at https://hub.docker.com/r/wuyuheng/how2compress.

Authors:Giovanni Bologni, Martin Bo Møller, Richard Heusdens, Richard C. Hendriks
Title: MVDR Beamforming for Cyclostationary Processes
Abstract:
Conventional acoustic beamformers assume that noise is stationary within short time frames. This assumption prevents them from exploiting correlations between frequencies in almost-periodic noise sources such as musical instruments, fans, and engines. These signals exhibit periodically varying statistics and are better modeled as cyclostationary processes. This paper introduces the cyclic MVDR (cMVDR) beamformer, an extension of the conventional MVDR that leverages both spatial and spectral correlations to improve noise reduction, particularly in low-SNR scenarios. The method builds on frequency-shifted (FRESH) filtering, where shifted versions of the input are combined to attenuate or amplify components that are coherent across frequency. To address inharmonicity, where harmonic partials deviate from exact integer multiples of the fundamental frequency, we propose a data-driven strategy that estimates resonant frequencies via periodogram analysis and computes the frequency shifts from their spacing. Analytical and experimental results demonstrate that performance improves with increasing spectral correlation. On real recordings, the cMVDR achieves up to 5 dB gain in scale-invariant signal-to-distortion ratio (SI-SDR) over the MVDR and remains effective even with a single microphone. Code is available at https://github.com/Screeen/cMVDR.

Authors:Yuqing Luo, Yixiao Li, Jiang Liu, Jun Fu, Hadi Amirpour, Guanghui Yue, Baoquan Zhao, Padraig Corcoran, Hantao Liu, Wei Zhou
Title: Cross-Modal Scene Semantic Alignment for Image Complexity Assessment
Abstract:
Image complexity assessment (ICA) is a challenging task in perceptual evaluation due to the subjective nature of human perception and the inherent semantic diversity in real-world images. Existing ICA methods predominantly rely on hand-crafted or shallow convolutional neural network-based features of a single visual modality, which are insufficient to fully capture the perceived representations closely related to image complexity. Recently, cross-modal scene semantic information has been shown to play a crucial role in various computer vision tasks, particularly those involving perceptual understanding. However, the exploration of cross-modal scene semantic information in the context of ICA remains unaddressed. Therefore, in this paper, we propose a novel ICA method called Cross-Modal Scene Semantic Alignment (CM-SSA), which leverages scene semantic alignment from a cross-modal perspective to enhance ICA performance, enabling complexity predictions to be more consistent with subjective human perception. Specifically, the proposed CM-SSA consists of a complexity regression branch and a scene semantic alignment branch. The complexity regression branch estimates image complexity levels under the guidance of the scene semantic alignment branch, while the scene semantic alignment branch is used to align images with corresponding text prompts that convey rich scene semantic information by pair-wise learning. Extensive experiments on several ICA datasets demonstrate that the proposed CM-SSA significantly outperforms state-of-the-art approaches. Codes are available at https://github.com/XQ2K/First-Cross-Model-ICA.

Authors:Gangda Deng, Yuxin Yang, Ömer Faruk Akgül, Hanqing Zeng, Yinglong Xia, Rajgopal Kannan, Viktor Prasanna
Title: Training Diverse Graph Experts for Ensembles: A Systematic Empirical Study
Abstract:
Graph Neural Networks (GNNs) have become essential tools for learning on relational data, yet the performance of a single GNN is often limited by the heterogeneity present in real-world graphs. Recent advances in Mixture-of-Experts (MoE) frameworks demonstrate that assembling multiple, explicitly diverse GNNs with distinct generalization patterns can significantly improve performance. In this work, we present the first systematic empirical study of expert-level diversification techniques for GNN ensembles. Evaluating 20 diversification strategies -- including random re-initialization, hyperparameter tuning, architectural variation, directionality modeling, and training data partitioning -- across 14 node classification benchmarks, we construct and analyze over 200 ensemble variants. Our comprehensive evaluation examines each technique in terms of expert diversity, complementarity, and ensemble performance. We also uncovers mechanistic insights into training maximally diverse experts. These findings provide actionable guidance for expert training and the design of effective MoE frameworks on graph data. Our code is available at https://github.com/Hydrapse/bench-gnn-diversification.

Authors:Zhen Zhang, Bingsheng He
Title: Towards Unsupervised Open-Set Graph Domain Adaptation via Dual Reprogramming
Abstract:
Unsupervised Graph Domain Adaptation has become a promising paradigm for transferring knowledge from a fully labeled source graph to an unlabeled target graph. Existing graph domain adaptation models primarily focus on the closed-set setting, where the source and target domains share the same label spaces. However, this assumption might not be practical in the real-world scenarios, as the target domain might include classes that are not present in the source domain. In this paper, we investigate the problem of unsupervised open-set graph domain adaptation, where the goal is to not only correctly classify target nodes into the known classes, but also recognize previously unseen node types into the unknown class. Towards this end, we propose a novel framework called GraphRTA, which conducts reprogramming on both the graph and model sides. Specifically, we reprogram the graph by modifying target graph structure and node features, which facilitates better separation of known and unknown classes. Meanwhile, we also perform model reprogramming by pruning domain-specific parameters to reduce bias towards the source graph while preserving parameters that capture transferable patterns across graphs. Additionally, we extend the classifier with an extra dimension for the unknown class, thus eliminating the need of manually specified threshold in open-set recognition. Comprehensive experiments on several public datasets demonstrate that our proposed model can achieve satisfied performance compared with recent state-of-the-art baselines. Our source codes and datasets are publicly available at https://github.com/cszhangzhen/GraphRTA.

Authors:Yi-Lun Wu, Bo-Kai Ruan, Chiang Tseng, Hong-Han Shuai
Title: Ranking-based Preference Optimization for Diffusion Models from Implicit User Feedback
Abstract:
Direct preference optimization (DPO) methods have shown strong potential in aligning text-to-image diffusion models with human preferences by training on paired comparisons. These methods improve training stability by avoiding the REINFORCE algorithm but still struggle with challenges such as accurately estimating image probabilities due to the non-linear nature of the sigmoid function and the limited diversity of offline datasets. In this paper, we introduce Diffusion Denoising Ranking Optimization (Diffusion-DRO), a new preference learning framework grounded in inverse reinforcement learning. Diffusion-DRO removes the dependency on a reward model by casting preference learning as a ranking problem, thereby simplifying the training objective into a denoising formulation and overcoming the non-linear estimation issues found in prior methods. Moreover, Diffusion-DRO uniquely integrates offline expert demonstrations with online policy-generated negative samples, enabling it to effectively capture human preferences while addressing the limitations of offline data. Comprehensive experiments show that Diffusion-DRO delivers improved generation quality across a range of challenging and unseen prompts, outperforming state-of-the-art baselines in both both quantitative metrics and user studies. Our source code and pre-trained models are available at https://github.com/basiclab/DiffusionDRO.

Authors:Muhammad Hanif, Reiji Terunuma, Takumi Sumino, Kelvin Cheng, Takeshi Hatanaka
Title: Coverage-Recon: Coordinated Multi-Drone Image Sampling with Online Map Feedback
Abstract:
This article addresses collaborative 3D map reconstruction using multiple drones. Achieving high-quality reconstruction requires capturing images of keypoints within the target scene from diverse viewing angles, and coverage control offers an effective framework to meet this requirement. Meanwhile, recent advances in real-time 3D reconstruction algorithms make it possible to render an evolving map during flight, enabling immediate feedback to guide drone motion. Building on this, we present Coverage-Recon, a novel coordinated image sampling algorithm that integrates online map feedback to improve reconstruction quality on-the-fly. In Coverage-Recon, the coordinated motion of drones is governed by a Quadratic Programming (QP)-based angle-aware coverage controller, which ensures multi-viewpoint image capture while enforcing safety constraints. The captured images are processed in real time by the NeuralRecon algorithm to generate an evolving 3D mesh. Mesh changes across the scene are interpreted as indicators of reconstruction uncertainty and serve as feedback to update the importance index of the coverage control as the map evolves. The effectiveness of Coverage-Recon is validated through simulation and experiments, demonstrating both qualitatively and quantitatively that incorporating online map feedback yields more complete and accurate 3D reconstructions than conventional methods. Project page: https://htnk-lab.github.io/coverage-recon/

Authors:Lara Ahrens, Wilhelm Haverkamp, Nils Strodthoff
Title: ECG-LLM -- training and evaluation of domain-specific large language models for electrocardiography
Abstract:
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.

Authors:Jinlin Li, Yuran Wang, Yifei Yuan, Xiao Zhou, Yingying Zhang, Xixian Yong, Yefeng Zheng, Xian Wu
Title: Beyond Single Models: Mitigating Multimodal Hallucinations via Adaptive Token Ensemble Decoding
Abstract:
Large Vision-Language Models (LVLMs) have recently achieved impressive results in multimodal tasks such as image captioning and visual question answering. However, they remain prone to object hallucination -- generating descriptions of nonexistent or misidentified objects. Prior work has partially mitigated this via auxiliary training objectives or external modules, but challenges remain in terms of scalability, adaptability, and model independence. To address these limitations, we propose Adaptive Token Ensemble Decoding (ATED), a training-free, token-level ensemble framework that mitigates hallucination by aggregating predictions from multiple LVLMs during inference. ATED dynamically computes uncertainty-based weights for each model, reflecting their reliability at each decoding step. It also integrates diverse decoding paths to improve contextual grounding and semantic consistency. Experiments on standard hallucination detection benchmarks demonstrate that ATED significantly outperforms state-of-the-art methods, reducing hallucination without compromising fluency or relevance. Our findings highlight the benefits of adaptive ensembling and point to a promising direction for improving LVLM robustness in high-stakes applications. The code is available at https://github.com/jinlin2021/ATED.

Authors:Bohan Li, Zhuang Ma, Dalong Du, Baorui Peng, Zhujin Liang, Zhenqiang Liu, Chao Ma, Yueming Jin, Hao Zhao, Wenjun Zeng, Xin Jin
Title: OmniNWM: Omniscient Driving Navigation World Models
Abstract:
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://arlo0o.github.io/OmniNWM/.

Authors:Haowei Lou, Hye-Young Paik, Wen Hu, Lina Yao
Title: ParaStyleTTS: Toward Efficient and Robust Paralinguistic Style Control for Expressive Text-to-Speech Generation
Abstract:
Controlling speaking style in text-to-speech (TTS) systems has become a growing focus in both academia and industry. While many existing approaches rely on reference audio to guide style generation, such methods are often impractical due to privacy concerns and limited accessibility. More recently, large language models (LLMs) have been used to control speaking style through natural language prompts; however, their high computational cost, lack of interpretability, and sensitivity to prompt phrasing limit their applicability in real-time and resource-constrained environments. In this work, we propose ParaStyleTTS, a lightweight and interpretable TTS framework that enables expressive style control from text prompts alone. ParaStyleTTS features a novel two-level style adaptation architecture that separates prosodic and paralinguistic speech style modeling. It allows fine-grained and robust control over factors such as emotion, gender, and age. Unlike LLM-based methods, ParaStyleTTS maintains consistent style realization across varied prompt formulations and is well-suited for real-world applications, including on-device and low-resource deployment. Experimental results show that ParaStyleTTS generates high-quality speech with performance comparable to state-of-the-art LLM-based systems while being 30x faster, using 8x fewer parameters, and requiring 2.5x less CUDA memory. Moreover, ParaStyleTTS exhibits superior robustness and controllability over paralinguistic speaking styles, providing a practical and efficient solution for style-controllable text-to-speech generation. Demo can be found at https://parastyletts.github.io/ParaStyleTTS_Demo/. Code can be found at https://github.com/haoweilou/ParaStyleTTS.

Authors:Lehan Wang, Yi Qin, Honglong Yang, Xiaomeng Li
Title: Proactive Reasoning-with-Retrieval Framework for Medical Multimodal Large Language Models
Abstract:
Incentivizing the reasoning ability of Multimodal Large Language Models (MLLMs) is essential for medical applications to transparently analyze medical scans and provide reliable diagnosis. However, existing medical MLLMs rely solely on internal knowledge during reasoning, leading to hallucinated reasoning and factual inaccuracies when encountering cases beyond their training scope. Although recent Agentic Retrieval-Augmented Generation (RAG) methods elicit the medical model's proactive retrieval ability during reasoning, they are confined to unimodal LLMs, neglecting the crucial visual information during reasoning and retrieval. Consequently, we propose the first Multimodal Medical Reasoning-with-Retrieval framework, Med-RwR, which actively retrieves external knowledge by querying observed symptoms or domain-specific medical concepts during reasoning. Specifically, we design a two-stage reinforcement learning strategy with tailored rewards that stimulate the model to leverage both visual diagnostic findings and textual clinical information for effective retrieval. Building on this foundation, we further propose a Confidence-Driven Image Re-retrieval (CDIR) method for test-time scaling when low prediction confidence is detected. Evaluation on various public medical benchmarks demonstrates Med-RwR's significant improvements over baseline models, proving the effectiveness of enhancing reasoning capabilities with external knowledge integration. Furthermore, Med-RwR demonstrates remarkable generalizability to unfamiliar domains, evidenced by 8.8% performance gain on our proposed EchoCardiography Benchmark (ECBench), despite the scarcity of echocardiography data in the training corpus. Our data, model, and codes will be made publicly available at https://github.com/xmed-lab/Med-RwR.

Authors:Vishal Vinod
Title: Efficient Few-shot Identity Preserving Attribute Editing for 3D-aware Deep Generative Models
Abstract:
Identity preserving editing of faces is a generative task that enables modifying the illumination, adding/removing eyeglasses, face aging, editing hairstyles, modifying expression etc., while preserving the identity of the face. Recent progress in 2D generative models have enabled photorealistic editing of faces using simple techniques leveraging the compositionality in GANs. However, identity preserving editing for 3D faces with a given set of attributes is a challenging task as the generative model must reason about view consistency from multiple poses and render a realistic 3D face. Further, 3D portrait editing requires large-scale attribute labelled datasets and presents a trade-off between editability in low-resolution and inflexibility to editing in high resolution. In this work, we aim to alleviate some of the constraints in editing 3D faces by identifying latent space directions that correspond to photorealistic edits. To address this, we present a method that builds on recent advancements in 3D-aware deep generative models and 2D portrait editing techniques to perform efficient few-shot identity preserving attribute editing for 3D-aware generative models. We aim to show from experimental results that using just ten or fewer labelled images of an attribute is sufficient to estimate edit directions in the latent space that correspond to 3D-aware attribute editing. In this work, we leverage an existing face dataset with masks to obtain the synthetic images for few attribute examples required for estimating the edit directions. Further, to demonstrate the linearity of edits, we investigate one-shot stylization by performing sequential editing and use the (2D) Attribute Style Manipulation (ASM) technique to investigate a continuous style manifold for 3D consistent identity preserving face aging. Code and results are available at: https://vishal-vinod.github.io/gmpi-edit/

Authors:Xiaohan Qin, Xiaoxing Wang, Ning Liao, Junchi Yan
Title: NTKMTL: Mitigating Task Imbalance in Multi-Task Learning from Neural Tangent Kernel Perspective
Abstract:
Multi-Task Learning (MTL) enables a single model to learn multiple tasks simultaneously, leveraging knowledge transfer among tasks for enhanced generalization, and has been widely applied across various domains. However, task imbalance remains a major challenge in MTL. Although balancing the convergence speeds of different tasks is an effective approach to address this issue, it is highly challenging to accurately characterize the training dynamics and convergence speeds of multiple tasks within the complex MTL system. To this end, we attempt to analyze the training dynamics in MTL by leveraging Neural Tangent Kernel (NTK) theory and propose a new MTL method, NTKMTL. Specifically, we introduce an extended NTK matrix for MTL and adopt spectral analysis to balance the convergence speeds of multiple tasks, thereby mitigating task imbalance. Based on the approximation via shared representation, we further propose NTKMTL-SR, achieving training efficiency while maintaining competitive performance. Extensive experiments demonstrate that our methods achieve state-of-the-art performance across a wide range of benchmarks, including both multi-task supervised learning and multi-task reinforcement learning. Source code is available at https://github.com/jianke0604/NTKMTL.

Authors:Sion Weatherhead, Flora Salim, Aaron Belbasis
Title: Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Abstract:
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints. Our code is available at: https://github.com/cruiseresearchgroup/LLM_ReflectionTest

Authors:Ajinkya Khoche, Gergő László Nagy, Maciej Wozniak, Thomas Gustafsson, Patric Jensfelt
Title: BlendCLIP: Bridging Synthetic and Real Domains for Zero-Shot 3D Object Classification with Multimodal Pretraining
Abstract:
Zero-shot 3D object classification is crucial for real-world applications like autonomous driving, however it is often hindered by a significant domain gap between the synthetic data used for training and the sparse, noisy LiDAR scans encountered in the real-world. Current methods trained solely on synthetic data fail to generalize to outdoor scenes, while those trained only on real data lack the semantic diversity to recognize rare or unseen objects. We introduce BlendCLIP, a multimodal pretraining framework that bridges this synthetic-to-real gap by strategically combining the strengths of both domains. We first propose a pipeline to generate a large-scale dataset of object-level triplets -- consisting of a point cloud, image, and text description -- mined directly from real-world driving data and human annotated 3D boxes. Our core contribution is a curriculum-based data mixing strategy that first grounds the model in the semantically rich synthetic CAD data before progressively adapting it to the specific characteristics of real-world scans. Our experiments show that our approach is highly label-efficient: introducing as few as 1.5\% real-world samples per batch into training boosts zero-shot accuracy on the nuScenes benchmark by 27\%. Consequently, our final model achieves state-of-the-art performance on challenging outdoor datasets like nuScenes and TruckScenes, improving over the best prior method by 19.3\% on nuScenes, while maintaining strong generalization on diverse synthetic benchmarks. Our findings demonstrate that effective domain adaptation, not full-scale real-world annotation, is the key to unlocking robust open-vocabulary 3D perception. Our code and dataset will be released upon acceptance on https://github.com/kesu1/BlendCLIP.

Authors:Haobin Li, Yijie Lin, Peng Hu, Mouxing Yang, Xi Peng
Title: Learning with Dual-level Noisy Correspondence for Multi-modal Entity Alignment
Abstract:
Multi-modal entity alignment (MMEA) aims to identify equivalent entities across heterogeneous multi-modal knowledge graphs (MMKGs), where each entity is described by attributes from various modalities. Existing methods typically assume that both intra-entity and inter-graph correspondences are faultless, which is often violated in real-world MMKGs due to the reliance on expert annotations. In this paper, we reveal and study a highly practical yet under-explored problem in MMEA, termed Dual-level Noisy Correspondence (DNC). DNC refers to misalignments in both intra-entity (entity-attribute) and inter-graph (entity-entity and attribute-attribute) correspondences. To address the DNC problem, we propose a robust MMEA framework termed RULE. RULE first estimates the reliability of both intra-entity and inter-graph correspondences via a dedicated two-fold principle. Leveraging the estimated reliabilities, RULE mitigates the negative impact of intra-entity noise during attribute fusion and prevents overfitting to noisy inter-graph correspondences during inter-graph discrepancy elimination. Beyond the training-time designs, RULE further incorporates a correspondence reasoning module that uncovers the underlying attribute-attribute connection across graphs, guaranteeing more accurate equivalent entity identification. Extensive experiments on five benchmarks verify the effectiveness of our method against the DNC compared with seven state-of-the-art methods.The code is available at \href{https://github.com/XLearning-SCU/RULE}{XLearning-SCU/RULE}

Authors:Haoran Wei, Yaofeng Sun, Yukun Li
Title: DeepSeek-OCR: Contexts Optical Compression
Abstract:
We present DeepSeek-OCR as an initial investigation into the feasibility of compressing long contexts via optical 2D mapping. DeepSeek-OCR consists of two components: DeepEncoder and DeepSeek3B-MoE-A570M as the decoder. Specifically, DeepEncoder serves as the core engine, designed to maintain low activations under high-resolution input while achieving high compression ratios to ensure an optimal and manageable number of vision tokens. Experiments show that when the number of text tokens is within 10 times that of vision tokens (i.e., a compression ratio < 10x), the model can achieve decoding (OCR) precision of 97%. Even at a compression ratio of 20x, the OCR accuracy still remains at about 60%. This shows considerable promise for research areas such as historical long-context compression and memory forgetting mechanisms in LLMs. Beyond this, DeepSeek-OCR also demonstrates high practical value. On OmniDocBench, it surpasses GOT-OCR2.0 (256 tokens/page) using only 100 vision tokens, and outperforms MinerU2.0 (6000+ tokens per page on average) while utilizing fewer than 800 vision tokens. In production, DeepSeek-OCR can generate training data for LLMs/VLMs at a scale of 200k+ pages per day (a single A100-40G). Codes and model weights are publicly accessible at http://github.com/deepseek-ai/DeepSeek-OCR.

Authors:Joseph Bejjani, Chase Van Amburg, Chengrui Wang, Chloe Huangyuan Su, Sarah M. Pratt, Yasin Mazloumi, Naeem Khoshnevis, Sham M. Kakade, Kianté Brantley, Aaron Walsman
Title: The Emergence of Complex Behavior in Large-Scale Ecological Environments
Abstract:
We explore how physical scale and population size shape the emergence of complex behaviors in open-ended ecological environments. In our setting, agents are unsupervised and have no explicit rewards or learning objectives but instead evolve over time according to reproduction, mutation, and natural selection. As they act, agents also shape their environment and the population around them in an ongoing dynamic ecology. Our goal is not to optimize a single high-performance policy, but instead to examine how behaviors emerge and evolve across large populations due to natural competition and environmental pressures. In an effort to discover how complex behaviors naturally emerge, we conduct experiments in large-scale worlds that reach populations of more than 60,000 individual agents, each with their own evolved neural network policy. We identify various emergent behaviors such as long-range resource extraction, vision-based foraging, and predation that arise under competitive and survival pressures. We examine how sensing modalities and environmental scale affect the emergence of these behaviors, finding that some appear only in sufficiently large environments and populations, with larger scales increasing behavioral stability and consistency. While there is a rich history of research in evolutionary settings, our scaling results provide promising new directions to explore ecology as an instrument of machine learning in an era of abundant computational resources. Experimental code is available at https://github.com/jbejjani2022/ecological-emergent-behavior.

Authors:Maryam Dialameh, Hossein Rajabzadeh, Jung Suk Sim, Hyock Ju Kwon
Title: EMA-SAM: Exponential Moving-average for SAM-based PTMC Segmentation
Abstract:
Papillary thyroid microcarcinoma (PTMC) is increasingly managed with radio-frequency ablation (RFA), yet accurate lesion segmentation in ultrasound videos remains difficult due to low contrast, probe-induced motion, and heat-related artifacts. The recent Segment Anything Model 2 (SAM-2) generalizes well to static images, but its frame-independent design yields unstable predictions and temporal drift in interventional ultrasound. We introduce \textbf{EMA-SAM}, a lightweight extension of SAM-2 that incorporates a confidence-weighted exponential moving average pointer into the memory bank, providing a stable latent prototype of the tumour across frames. This design preserves temporal coherence through probe pressure and bubble occlusion while rapidly adapting once clear evidence reappears. On our curated PTMC-RFA dataset (124 minutes, 13 patients), EMA-SAM improves \emph{maxDice} from 0.82 (SAM-2) to 0.86 and \emph{maxIoU} from 0.72 to 0.76, while reducing false positives by 29\%. On external benchmarks, including VTUS and colonoscopy video polyp datasets, EMA-SAM achieves consistent gains of 2--5 Dice points over SAM-2. Importantly, the EMA pointer adds \textless0.1\% FLOPs, preserving real-time throughput of $\sim$30\,FPS on a single A100 GPU. These results establish EMA-SAM as a robust and efficient framework for stable tumour tracking, bridging the gap between foundation models and the stringent demands of interventional ultrasound. Codes are available here \hyperref[code {https://github.com/mdialameh/EMA-SAM}.

Authors:Alexander Kolpakov
Title: Burau representation, Squier's form, and non-Abelian anyons
Abstract:
We introduce a frequency-tunable, two-dimensional non-Abelian control of operation order constructed from the reduced Burau representation of the braid group $B_3$, specialised at $t=e^{iω}$ and unitarized by Squier's Hermitian form. Coupled to two non-commuting qubit unitaries $A,B$, the resulting switch admits a closed expression for the single-shot Helstrom success probability and a fixed-order ceiling $p_{\mathrm{fixed}}$, defining the analytic witness gap $Δ(ω)=p_{\mathrm{switch}}(ω)-p_{\mathrm{fixed}}$. The sign change of $Δ(ω)$ across the Squier positivity window reveals alternating constructive and destructive interference of causal orders, a hallmark of non-Abelian control, while $Δ(ω)>0$ certifies algebraic causal non-separability. Numerical simulations confirm both enhancement and suppression regimes, establishing a minimal $B_3$ braid control that reproduces the characteristic interference pattern expected from a Gedankenexperiment in anyonic statistics.

Authors:Rui Jerry Huang, Wendy Liu, Anastasia Miin, Lei Ding
Title: Adaptive Coopetition: Leveraging Coarse Verifier Signals for Resilient Multi-Agent LLM Reasoning
Abstract:
Inference-time computation is a critical yet challenging paradigm for enhancing the reasoning performance of large language models (LLMs). While existing strategies improve reasoning stability and consistency, they suffer from notable limitations: self-correction often reinforces the model's initial biases, and Multi-Agent Collaboration (MAC) often fails due to the lack of efficient coordination mechanisms, leading to collective errors. Although high-performing verifiers can detect reasoning errors, making them reliable requires substantial training. To address these challenges, we introduce a novel inference-time framework, Adaptive Coopetition (AdCo), in which LLM agents utilize an adaptive, UCB-based "coopetition" mechanism. At each round, agents leverage coarse verifier signals to determine whether to collaborate or compete, and iteratively refine their reasoning based on peer feedback. Without relying on high-performance verifiers, our adaptive strategy achieves significant performance gains on mathematical reasoning benchmarks, yielding a 20% relative improvement over baselines on the more challenging dataset. Our approach remains robust and consistent in terms of accuracy under different sample sizes and configurations. This adaptive, signal-guided "coopetition" framework enhances reasoning robustness by leveraging both model knowledge diversity and reasoning trace measures, while also promoting uncertainty-driven exploration, especially when participants have comparable capabilities. From this perspective, our work offers a fresh lens on inference-time computation and paves the way for more resilient multi-agent LLM systems. Our code is available at: https://github.com/AdCo-Research/adaptive-coopetition.

Authors:Clementine Grethen, Simone Gasparini, Geraldine Morin, Jeremy Lebreton, Lucas Marti, Manuel Sanchez-Gestido
Title: Adapting Stereo Vision From Objects To 3D Lunar Surface Reconstruction with the StereoLunar Dataset
Abstract:
Accurate 3D reconstruction of lunar surfaces is essential for space exploration. However, existing stereo vision reconstruction methods struggle in this context due to the Moon's lack of texture, difficult lighting variations, and atypical orbital trajectories. State-of-the-art deep learning models, trained on human-scale datasets, have rarely been tested on planetary imagery and cannot be transferred directly to lunar conditions. To address this issue, we introduce LunarStereo, the first open dataset of photorealistic stereo image pairs of the Moon, simulated using ray tracing based on high-resolution topography and reflectance models. It covers diverse altitudes, lighting conditions, and viewing angles around the lunar South Pole, offering physically grounded supervision for 3D reconstruction tasks. Based on this dataset, we adapt the MASt3R model to the lunar domain through fine-tuning on LunarStereo. We validate our approach through extensive qualitative and quantitative experiments on both synthetic and real lunar data, evaluating 3D surface reconstruction and relative pose estimation. Extensive experiments on synthetic and real lunar data validate the approach, demonstrating significant improvements over zero-shot baselines and paving the way for robust cross-scale generalization in extraterrestrial environments.

Authors:Dan Friedman, Adithya Bhaskar, Alexander Wettig, Danqi Chen
Title: Extracting Rule-based Descriptions of Attention Features in Transformers
Abstract:
Mechanistic interpretability strives to explain model behavior in terms of bottom-up primitives. The leading paradigm is to express hidden states as a sparse linear combination of basis vectors, called features. However, this only identifies which text sequences (exemplars) activate which features; the actual interpretation of features requires subjective inspection of these exemplars. This paper advocates for a different solution: rule-based descriptions that match token patterns in the input and correspondingly increase or decrease the likelihood of specific output tokens. Specifically, we extract rule-based descriptions of SAE features trained on the outputs of attention layers. While prior work treats the attention layers as an opaque box, we describe how it may naturally be expressed in terms of interactions between input and output features, of which we study three types: (1) skip-gram rules of the form "[Canadian city]... speaks --> English", (2) absence rules of the form "[Montreal]... speaks -/-> English," and (3) counting rules that toggle only when the count of a word exceeds a certain value or the count of another word. Absence and counting rules are not readily discovered by inspection of exemplars, where manual and automatic descriptions often identify misleading or incomplete explanations. We then describe a simple approach to extract these types of rules automatically from a transformer, and apply it to GPT-2 small. We find that a majority of features may be described well with around 100 skip-gram rules, though absence rules are abundant even as early as the first layer (in over a fourth of features). We also isolate a few examples of counting rules. This paper lays the groundwork for future research into rule-based descriptions of features by defining them, showing how they may be extracted, and providing a preliminary taxonomy of some of the behaviors they represent.

Authors:Jiahan Zhang, Muqing Jiang, Nanru Dai, Taiming Lu, Arda Uzunoglu, Shunchi Zhang, Yana Wei, Jiahao Wang, Vishal M. Patel, Paul Pu Liang, Daniel Khashabi, Cheng Peng, Rama Chellappa, Tianmin Shu, Alan Yuille, Yilun Du, Jieneng Chen
Title: World-in-World: World Models in a Closed-Loop World
Abstract:
Generative world models (WMs) can now simulate worlds with striking visual realism, which naturally raises the question of whether they can endow embodied agents with predictive perception for decision making. Progress on this question has been limited by fragmented evaluation: most existing benchmarks adopt open-loop protocols that emphasize visual quality in isolation, leaving the core issue of embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied tasks? To address this gap, we introduce World-in-World, the first open platform that benchmarks WMs in a closed-loop world that mirrors real agent-environment interactions. World-in-World provides a unified online planning strategy and a standardized action API, enabling heterogeneous WMs for decision making. We curate four closed-loop environments that rigorously evaluate diverse WMs, prioritize task success as the primary metric, and move beyond the common focus on visual quality; we also present the first data scaling law for world models in embodied settings. Our study uncovers three surprises: (1) visual quality alone does not guarantee task success, controllability matters more; (2) scaling post-training with action-observation data is more effective than upgrading the pretrained video generators; and (3) allocating more inference-time compute allows WMs to substantially improve closed-loop performance.

Authors:Xiangbo Gao, Tzu-Hsiang Lin, Ruojing Song, Yuheng Wu, Kuan-Ru Huang, Zicheng Jin, Fangzhou Lin, Shinan Liu, Zhengzhong Tu
Title: SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Abstract:
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.

Authors:Rohan Choudhury, JungEun Kim, Jinhyung Park, Eunho Yang, László A. Jeni, Kris M. Kitani
Title: Accelerating Vision Transformers with Adaptive Patch Sizes
Abstract:
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.

Authors:Aymane Hassini
Title: DynaQuery: A Self-Adapting Framework for Querying Structured and Multimodal Data
Abstract:
The rise of Large Language Models (LLMs) has accelerated the long-standing goal of enabling natural language querying over complex, hybrid databases. Yet, this ambition exposes a dual challenge: reasoning jointly over structured, multi-relational schemas and the semantic content of linked unstructured assets. To overcome this, we present DynaQuery - a unified, self-adapting framework that serves as a practical blueprint for next-generation "Unbound Databases." At the heart of DynaQuery lies the Schema Introspection and Linking Engine (SILE), a novel systems primitive that elevates schema linking to a first-class query planning phase. We conduct a rigorous, multi-benchmark empirical evaluation of this structure-aware architecture against the prevalent unstructured Retrieval-Augmented Generation (RAG) paradigm. Our results demonstrate that the unstructured retrieval paradigm is architecturally susceptible to catastrophic contextual failures, such as SCHEMA_HALLUCINATION, leading to unreliable query generation. In contrast, our SILE-based design establishes a substantially more robust foundation, nearly eliminating this failure mode. Moreover, end-to-end validation on a complex, newly curated benchmark uncovers a key generalization principle: the transition from pure schema-awareness to holistic semantics-awareness. Taken together, our findings provide a validated architectural basis for developing natural language database interfaces that are robust, adaptable, and predictably consistent.

Authors:Prateek Gothwal, Deeptimaan Banerjee, Ashis Kumer Biswas
Title: ViBED-Net: Video Based Engagement Detection Network Using Face-Aware and Scene-Aware Spatiotemporal Cues
Abstract:
Engagement detection in online learning environments is vital for improving student outcomes and personalizing instruction. We present ViBED-Net (Video-Based Engagement Detection Network), a novel deep learning framework designed to assess student engagement from video data using a dual-stream architecture. ViBED-Net captures both facial expressions and full-scene context by processing facial crops and entire video frames through EfficientNetV2 for spatial feature extraction. These features are then analyzed over time using two temporal modeling strategies: Long Short-Term Memory (LSTM) networks and Transformer encoders. Our model is evaluated on the DAiSEE dataset, a large-scale benchmark for affective state recognition in e-learning. To enhance performance on underrepresented engagement classes, we apply targeted data augmentation techniques. Among the tested variants, ViBED-Net with LSTM achieves 73.43\% accuracy, outperforming existing state-of-the-art approaches. ViBED-Net demonstrates that combining face-aware and scene-aware spatiotemporal cues significantly improves engagement detection accuracy. Its modular design allows flexibility for application across education, user experience research, and content personalization. This work advances video-based affective computing by offering a scalable, high-performing solution for real-world engagement analysis. The source code for this project is available on https://github.com/prateek-gothwal/ViBED-Net .

Authors:Nishant Subramani, Alfredo Gomez, Mona Diab
Title: SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone
Abstract:
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.

Authors:Fu-Yun Wang, Han Zhang, Michael Gharbi, Hongsheng Li, Taesung Park
Title: UniRL-Zero: Reinforcement Learning on Unified Models with Joint Language Model and Diffusion Model Experts
Abstract:
We present UniRL-Zero, a unified reinforcement learning (RL) framework that boosts, multimodal language model understanding and reasoning, diffusion model multimedia generation, and their beneficial interaction capabilities within a unified model. Our work defines six scenarios for unified model reinforcement learning, providing systematic baselines for reinforcement learning of unified understanding and generation model. Our code is available at https://github.com/G-U-N/UniRL.

Authors:Shuodi Liu, Yingzhuo Liu, Zi Wang, Yusheng Wang, Huijia Wu, Liuyu Xiang, Zhaofeng He
Title: Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.

Authors:Qilong Yuan
Title: Assignment-Routing Optimization with Cutting-Plane Subtour Elimination: Solver and Benchmark Dataset
Abstract:
We study a joint routing-assignment optimization problem in which a set of items must be paired one-to-one with a set of placeholders while simultaneously determining a Hamiltonian cycle that visits every node exactly once. Both the assignment and routing decisions are optimized jointly to minimize the total travel cost. In this work, we propose a method to solve this problem using an exact MIP formulation with Gurobi, including cutting-plane subtour elimination. With analysis of the computational complexity and through extensive experiments, we analyze the computational limitations of this approach as the problem size grows and reveal the challenges associated with the need for more efficient algorithms for larger instances. The dataset, formulations, and experimental results provided here can serve as benchmarks for future studies in this research area. GitHub repository: https://github.com/QL-YUAN/Joint-Assignment-Routing-Optimization

Authors:Zheyuan Lin, Siqi Cai, Haizhou Li
Title: Decoding Listeners Identity: Person Identification from EEG Signals Using a Lightweight Spiking Transformer
Abstract:
EEG-based person identification enables applications in security, personalized brain-computer interfaces (BCIs), and cognitive monitoring. However, existing techniques often rely on deep learning architectures at high computational cost, limiting their scope of applications. In this study, we propose a novel EEG person identification approach using spiking neural networks (SNNs) with a lightweight spiking transformer for efficiency and effectiveness. The proposed SNN model is capable of handling the temporal complexities inherent in EEG signals. On the EEG-Music Emotion Recognition Challenge dataset, the proposed model achieves 100% classification accuracy with less than 10% energy consumption of traditional deep neural networks. This study offers a promising direction for energy-efficient and high-performance BCIs. The source code is available at https://github.com/PatrickZLin/Decode-ListenerIdentity.

Authors:Yee Man Choi, Xuehang Guo, Yi R. Fung, Qingyun Wang
Title: CiteGuard: Faithful Citation Attribution for LLMs via Retrieval-Augmented Validation
Abstract:
Large Language Models (LLMs) have emerged as promising assistants for scientific writing. However, there have been concerns regarding the quality and reliability of the generated text, one of which is the citation accuracy and faithfulness. While most recent work relies on methods such as LLM-as-a-Judge, the reliability of LLM-as-a-Judge alone is also in doubt. In this work, we reframe citation evaluation as a problem of citation attribution alignment, which is assessing whether LLM-generated citations match those a human author would include for the same text. We propose CiteGuard, a retrieval-aware agent framework designed to provide more faithful grounding for citation validation. CiteGuard improves the prior baseline by 12.3%, and achieves up to 65.4% accuracy on the CiteME benchmark, on par with human-level performance (69.7%). It also enables the identification of alternative but valid citations.

Authors:Jiale Cheng, Yusen Liu, Xinyu Zhang, Yulin Fei, Wenyi Hong, Ruiliang Lyu, Weihan Wang, Zhe Su, Xiaotao Gu, Xiao Liu, Yushi Bai, Jie Tang, Hongning Wang, Minlie Huang
Title: Glyph: Scaling Context Windows via Visual-Text Compression
Abstract:
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.

Authors:Akshara Prabhakar, Roshan Ram, Zixiang Chen, Silvio Savarese, Frank Wang, Caiming Xiong, Huan Wang, Weiran Yao
Title: Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
Abstract:
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200

Authors:Yujie Luo, Zhuoyun Yu, Xuehai Wang, Yuqi Zhu, Ningyu Zhang, Lanning Wei, Lun Du, Da Zheng, Huajun Chen
Title: Executable Knowledge Graphs for Replicating AI Research
Abstract:
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.

Authors:Gabriel B. Margolis, Michelle Wang, Nolan Fey, Pulkit Agrawal
Title: SoftMimic: Learning Compliant Whole-body Control from Examples
Abstract:
We introduce SoftMimic, a framework for learning compliant whole-body control policies for humanoid robots from example motions. Imitating human motions with reinforcement learning allows humanoids to quickly learn new skills, but existing methods incentivize stiff control that aggressively corrects deviations from a reference motion, leading to brittle and unsafe behavior when the robot encounters unexpected contacts. In contrast, SoftMimic enables robots to respond compliantly to external forces while maintaining balance and posture. Our approach leverages an inverse kinematics solver to generate an augmented dataset of feasible compliant motions, which we use to train a reinforcement learning policy. By rewarding the policy for matching compliant responses rather than rigidly tracking the reference motion, SoftMimic learns to absorb disturbances and generalize to varied tasks from a single motion clip. We validate our method through simulations and real-world experiments, demonstrating safe and effective interaction with the environment.

Authors:Simeon Adebola, Chung Min Kim, Justin Kerr, Shuangyu Xie, Prithvi Akella, Jose Luis Susa Rincon, Eugen Solowjow, Ken Goldberg
Title: Botany-Bot: Digital Twin Monitoring of Occluded and Underleaf Plant Structures with Gaussian Splats
Abstract:
Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.

Authors:Haozhen Zhang, Tao Feng, Pengrui Han, Jiaxuan You
Title: AcademicEval: Live Long-Context LLM Benchmark
Abstract:
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval

Authors:Yaning Pan, Zekun Wang, Qianqian Xie, Yongqian Wen, Yuanxing Zhang, Guohui Zhang, Haoxuan Hu, Zhiyu Pan, Yibing Huang, Zhidong Gan, Yonghong Lin, An Ping, Tianhao Peng, Jiaheng Liu
Title: MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
Abstract:
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.

Authors:Dayan Pan, Zhaoyang Fu, Jingyuan Wang, Xiao Han, Yue Zhu, Xiangyu Zhao
Title: Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models
Abstract:
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.

Authors:Aleksandr Oganov, Ilya Bykov, Eva Neudachina, Mishan Aliev, Alexander Tolmachev, Alexander Sidorov, Aleksandr Zuev, Andrey Okhotin, Denis Rakitin, Aibek Alanov
Title: GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
Abstract:
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.

Authors:Min Cao, Xinyu Zhou, Ding Jiang, Bo Du, Mang Ye, Min Zhang
Title: Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning
Abstract:
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.

Authors:Athanasios Angelakis, Amne Mousa, Micah L. A. Heldeweg, Laurens A. Biesheuvel, Mark A. Haaksma, Jasper M. Smit, Pieter R. Tuinman, Paul W. G. Elbers
Title: ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Abstract:
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.

Authors:Hendric Voss, Stefan Kopp
Title: ImaGGen: Zero-Shot Generation of Co-Speech Semantic Gestures Grounded in Language and Image Input
Abstract:
Human communication combines speech with expressive nonverbal cues such as hand gestures that serve manifold communicative functions. Yet, current generative gesture generation approaches are restricted to simple, repetitive beat gestures that accompany the rhythm of speaking but do not contribute to communicating semantic meaning. This paper tackles a core challenge in co-speech gesture synthesis: generating iconic or deictic gestures that are semantically coherent with a verbal utterance. Such gestures cannot be derived from language input alone, which inherently lacks the visual meaning that is often carried autonomously by gestures. We therefore introduce a zero-shot system that generates gestures from a given language input and additionally is informed by imagistic input, without manual annotation or human intervention. Our method integrates an image analysis pipeline that extracts key object properties such as shape, symmetry, and alignment, together with a semantic matching module that links these visual details to spoken text. An inverse kinematics engine then synthesizes iconic and deictic gestures and combines them with co-generated natural beat gestures for coherent multimodal communication. A comprehensive user study demonstrates the effectiveness of our approach. In scenarios where speech alone was ambiguous, gestures generated by our system significantly improved participants' ability to identify object properties, confirming their interpretability and communicative value. While challenges remain in representing complex shapes, our results highlight the importance of context-aware semantic gestures for creating expressive and collaborative virtual agents or avatars, marking a substantial step forward towards efficient and robust, embodied human-agent interaction. More information and example videos are available here: https://review-anon-io.github.io/ImaGGen.github.io/

Authors:Ludi Li, Junbin Mao, Hanhe Lin, Xu Tian, Fang-Xiang Wu, Jin Liu
Title: CEPerFed: Communication-Efficient Personalized Federated Learning for Multi-Pulse MRI Classification
Abstract:
Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.

Authors:Lindsay Spoor, Álvaro Serra-Gómez, Aske Plaat, Thomas Moerland
Title: An Empirical Study of Lagrangian Methods in Safe Reinforcement Learning
Abstract:
In safety-critical domains such as robotics, navigation and power systems, constrained optimization problems arise where maximizing performance must be carefully balanced with associated constraints. Safe reinforcement learning provides a framework to address these challenges, with Lagrangian methods being a popular choice. However, the effectiveness of Lagrangian methods crucially depends on the choice of the Lagrange multiplier $λ$, which governs the trade-off between return and constraint cost. A common approach is to update the multiplier automatically during training. Although this is standard in practice, there remains limited empirical evidence on the robustness of an automated update and its influence on overall performance. Therefore, we analyze (i) optimality and (ii) stability of Lagrange multipliers in safe reinforcement learning across a range of tasks. We provide $λ$-profiles that give a complete visualization of the trade-off between return and constraint cost of the optimization problem. These profiles show the highly sensitive nature of $λ$ and moreover confirm the lack of general intuition for choosing the optimal value $λ^*$. Our findings additionally show that automated multiplier updates are able to recover and sometimes even exceed the optimal performance found at $λ^*$ due to the vast difference in their learning trajectories. Furthermore, we show that automated multiplier updates exhibit oscillatory behavior during training, which can be mitigated through PID-controlled updates. However, this method requires careful tuning to achieve consistently better performance across tasks. This highlights the need for further research on stabilizing Lagrangian methods in safe reinforcement learning. The code used to reproduce our results can be found at https://github.com/lindsayspoor/Lagrangian_SafeRL.

Authors:Collin Zhang, Fei Huang, Chenhan Yuan, Junyang Lin
Title: Language Confusion Gate: Language-Aware Decoding Through Model Self-Distillation
Abstract:
Large language models (LLMs) often experience language confusion, which is the unintended mixing of languages during text generation. Current solutions to this problem either necessitate model retraining or cannot differentiate between harmful confusion and acceptable code-switching. This paper introduces the Language Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during decoding without altering the base LLM. The LCG is trained using norm-adjusted self-distillation to predict appropriate language families and apply masking only when needed. Our method is based on the findings that language confusion is infrequent, correct-language tokens are usually among the top predictions, and output token embedding norms are larger for high-resource languages, which biases sampling. When evaluated across various models, including Qwen3, GPT-OSS, Gemma3, Llama3.1, LCG decreases language confusion significantly, often by an order of magnitude, without negatively impacting task performance. Code is available at https://github.com/collinzrj/language_confusion_gate.

Authors:Yongshun Zhang, Zhongyi Fan, Yonghang Zhang, Zhangzikang Li, Weifeng Chen, Zhongwei Feng, Chaoyue Wang, Peng Hou, Anxiang Zeng
Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
Abstract:
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.

Authors:Lachlan Ewen MacDonald, Hancheng Min, Leandro Palma, Salma Tarmoun, Ziqing Xu, René Vidal
Title: Convergence Rates for Gradient Descent on the Edge of Stability in Overparametrised Least Squares
Abstract:
Classical optimisation theory guarantees monotonic objective decrease for gradient descent (GD) when employed in a small step size, or ``stable", regime. In contrast, gradient descent on neural networks is frequently performed in a large step size regime called the ``edge of stability", in which the objective decreases non-monotonically with an observed implicit bias towards flat minima. In this paper, we take a step toward quantifying this phenomenon by providing convergence rates for gradient descent with large learning rates in an overparametrised least squares setting. The key insight behind our analysis is that, as a consequence of overparametrisation, the set of global minimisers forms a Riemannian manifold $M$, which enables the decomposition of the GD dynamics into components parallel and orthogonal to $M$. The parallel component corresponds to Riemannian gradient descent on the objective sharpness, while the orthogonal component is a bifurcating dynamical system. This insight allows us to derive convergence rates in three regimes characterised by the learning rate size: (a) the subcritical regime, in which transient instability is overcome in finite time before linear convergence to a suboptimally flat global minimum; (b) the critical regime, in which instability persists for all time with a power-law convergence toward the optimally flat global minimum; and (c) the supercritical regime, in which instability persists for all time with linear convergence to an orbit of period two centred on the optimally flat global minimum.

Authors:Yongxin He, Shan Zhang, Yixuan Cao, Lei Ma, Ping Luo
Title: DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning
Abstract:
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.

Authors:Chenxu Dang, Haiyan Liu, Guangjun Bao, Pei An, Xinyue Tang, Jie Ma, Bingchuan Sun, Yan Wang
Title: SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Abstract:
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.

Authors:Feng Zhou, Wenkai Guo, Pu Cao, Zhicheng Zhang, Jianqin Yin
Title: Initialize to Generalize: A Stronger Initialization Pipeline for Sparse-View 3DGS
Abstract:
Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views, leading to artifacts like blurring in novel view rendering. Prior work addresses it either by enhancing the initialization (\emph{i.e.}, the point cloud from Structure-from-Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS optimization. Yet our controlled ablations reveal that initialization is the decisive factor: it determines the attainable performance band in sparse-view 3DGS, while training-time constraints yield only modest within-band improvements at extra cost. Given initialization's primacy, we focus our design there. Although SfM performs poorly under sparse views due to its reliance on feature matching, it still provides reliable seed points. Thus, building on SfM, our effort aims to supplement the regions it fails to cover as comprehensively as possible. Specifically, we design: (i) frequency-aware SfM that improves low-texture coverage via low-frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS self-initialization that lifts photometric supervision into additional points, compensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud regularization that enforces multi-view consistency and uniform spatial coverage through simple geometric/visibility priors, yielding a clean and reliable point cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains in sparse-view settings, establishing our approach as a stronger initialization strategy. Code is available at https://github.com/zss171999645/ItG-GS.

Authors:Qiyuan Guan, Xiang Chen, Guiyue Jin, Jiyu Jin, Shumin Fan, Tianyu Song, Jinshan Pan
Title: Rethinking Nighttime Image Deraining via Learnable Color Space Transformation
Abstract:
Compared to daytime image deraining, nighttime image deraining poses significant challenges due to inherent complexities of nighttime scenarios and the lack of high-quality datasets that accurately represent the coupling effect between rain and illumination. In this paper, we rethink the task of nighttime image deraining and contribute a new high-quality benchmark, HQ-NightRain, which offers higher harmony and realism compared to existing datasets. In addition, we develop an effective Color Space Transformation Network (CST-Net) for better removing complex rain from nighttime scenes. Specifically, we propose a learnable color space converter (CSC) to better facilitate rain removal in the Y channel, as nighttime rain is more pronounced in the Y channel compared to the RGB color space. To capture illumination information for guiding nighttime deraining, implicit illumination guidance is introduced enabling the learned features to improve the model's robustness in complex scenarios. Extensive experiments show the value of our dataset and the effectiveness of our method. The source code and datasets are available at https://github.com/guanqiyuan/CST-Net.

Authors:Keivan Faghih Niresi, Zepeng Zhang, Olga Fink
Title: RINS-T: Robust Implicit Neural Solvers for Time Series Linear Inverse Problems
Abstract:
Time series data are often affected by various forms of corruption, such as missing values, noise, and outliers, which pose significant challenges for tasks such as forecasting and anomaly detection. To address these issues, inverse problems focus on reconstructing the original signal from corrupted data by leveraging prior knowledge about its underlying structure. While deep learning methods have demonstrated potential in this domain, they often require extensive pretraining and struggle to generalize under distribution shifts. In this work, we propose RINS-T (Robust Implicit Neural Solvers for Time Series Linear Inverse Problems), a novel deep prior framework that achieves high recovery performance without requiring pretraining data. RINS-T leverages neural networks as implicit priors and integrates robust optimization techniques, making it resilient to outliers while relaxing the reliance on Gaussian noise assumptions. To further improve optimization stability and robustness, we introduce three key innovations: guided input initialization, input perturbation, and convex output combination techniques. Each of these contributions strengthens the framework's optimization stability and robustness. These advancements make RINS-T a flexible and effective solution for addressing complex real-world time series challenges. Our code is available at https://github.com/EPFL-IMOS/RINS-T.

Authors:Numaan Naeem, Abdellah El Mekki, Muhammad Abdul-Mageed
Title: EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs
Abstract:
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.

Authors:Jiahao Huo, Mufhumudzi Muthivhi, Terence L. van Zyl, Fredrik Gustafsson
Title: Nearest-Class Mean and Logits Agreement for Wildlife Open-Set Recognition
Abstract:
Current state-of-the-art Wildlife classification models are trained under the closed world setting. When exposed to unknown classes, they remain overconfident in their predictions. Open-set Recognition (OSR) aims to classify known classes while rejecting unknown samples. Several OSR methods have been proposed to model the closed-set distribution by observing the feature, logit, or softmax probability space. A significant drawback of many existing approaches is the requirement to retrain the pre-trained classification model with the OSR-specific strategy. This study contributes a post-processing OSR method that measures the agreement between the models' features and predicted logits. We propose a probability distribution based on an input's distance to its Nearest Class Mean (NCM). The NCM-based distribution is then compared with the softmax probabilities from the logit space to measure agreement between the NCM and the classification head. Our proposed strategy ranks within the top three on two evaluated datasets, showing consistent performance across the two datasets. In contrast, current state-of-the-art methods excel on a single dataset. We achieve an AUROC of 93.41 and 95.35 for African and Swedish animals. The code can be found https://github.com/Applied-Representation-Learning-Lab/OSR.

Authors:Wei Zhang, Zhanhao Hu, Xiao Li, Xiaopei Zhu, Xiaolin Hu
Title: A Single Set of Adversarial Clothes Breaks Multiple Defense Methods in the Physical World
Abstract:
In recent years, adversarial attacks against deep learning-based object detectors in the physical world have attracted much attention. To defend against these attacks, researchers have proposed various defense methods against adversarial patches, a typical form of physically-realizable attack. However, our experiments showed that simply enlarging the patch size could make these defense methods fail. Motivated by this, we evaluated various defense methods against adversarial clothes which have large coverage over the human body. Adversarial clothes provide a good test case for adversarial defense against patch-based attacks because they not only have large sizes but also look more natural than a large patch on humans. Experiments show that all the defense methods had poor performance against adversarial clothes in both the digital world and the physical world. In addition, we crafted a single set of clothes that broke multiple defense methods on Faster R-CNN. The set achieved an Attack Success Rate (ASR) of 96.06% against the undefended detector and over 64.84% ASRs against nine defended models in the physical world, unveiling the common vulnerability of existing adversarial defense methods against adversarial clothes. Code is available at: https://github.com/weiz0823/adv-clothes-break-multiple-defenses.

Authors:Siran Dai, Qianqian Xu, Peisong Wen, Yang Liu, Qingming Huang
Title: Exploring Structural Degradation in Dense Representations for Self-supervised Learning
Abstract:
In this work, we observe a counterintuitive phenomenon in self-supervised learning (SSL): longer training may impair the performance of dense prediction tasks (e.g., semantic segmentation). We refer to this phenomenon as Self-supervised Dense Degradation (SDD) and demonstrate its consistent presence across sixteen state-of-the-art SSL methods with various losses, architectures, and datasets. When the model performs suboptimally on dense tasks at the end of training, measuring the performance during training becomes essential. However, evaluating dense performance effectively without annotations remains an open challenge. To tackle this issue, we introduce a Dense representation Structure Estimator (DSE), composed of a class-relevance measure and an effective dimensionality measure. The proposed DSE is both theoretically grounded and empirically validated to be closely correlated with the downstream performance. Based on this metric, we introduce a straightforward yet effective model selection strategy and a DSE-based regularization method. Experiments on sixteen SSL methods across four benchmarks confirm that model selection improves mIoU by $3.0\%$ on average with negligible computational cost. Additionally, DSE regularization consistently mitigates the effects of dense degradation. Code is available at https://github.com/EldercatSAM/SSL-Degradation.

Authors:Anthony Frion, David S Greenberg
Title: Uncertainty-aware data assimilation through variational inference
Abstract:
Data assimilation, consisting in the combination of a dynamical model with a set of noisy and incomplete observations in order to infer the state of a system over time, involves uncertainty in most settings. Building upon an existing deterministic machine learning approach, we propose a variational inference-based extension in which the predicted state follows a multivariate Gaussian distribution. Using the chaotic Lorenz-96 dynamics as a testing ground, we show that our new model enables to obtain nearly perfectly calibrated predictions, and can be integrated in a wider variational data assimilation pipeline in order to achieve greater benefit from increasing lengths of data assimilation windows. Our code is available at https://github.com/anthony-frion/Stochastic_CODA.

Authors:Jiayu Bai, Zhanbo Feng, Zhijie Deng, Tianqi Hou, Robert C. Qiu, Zenan Ling
Title: Adaptive Discretization for Consistency Models
Abstract:
Consistency Models (CMs) have shown promise for efficient one-step generation. However, most existing CMs rely on manually designed discretization schemes, which can cause repeated adjustments for different noise schedules and datasets. To address this, we propose a unified framework for the automatic and adaptive discretization of CMs, formulating it as an optimization problem with respect to the discretization step. Concretely, during the consistency training process, we propose using local consistency as the optimization objective to ensure trainability by avoiding excessive discretization, and taking global consistency as a constraint to ensure stability by controlling the denoising error in the training target. We establish the trade-off between local and global consistency with a Lagrange multiplier. Building on this framework, we achieve adaptive discretization for CMs using the Gauss-Newton method. We refer to our approach as ADCMs. Experiments demonstrate that ADCMs significantly improve the training efficiency of CMs, achieving superior generative performance with minimal training overhead on both CIFAR-10 and ImageNet. Moreover, ADCMs exhibit strong adaptability to more advanced DM variants. Code is available at https://github.com/rainstonee/ADCM.

Authors:Avishek Lahiri, Yufang Hou, Debarshi Kumar Sanyal
Title: TaxoAlign: Scholarly Taxonomy Generation Using Language Models
Abstract:
Taxonomies play a crucial role in helping researchers structure and navigate knowledge in a hierarchical manner. They also form an important part in the creation of comprehensive literature surveys. The existing approaches to automatic survey generation do not compare the structure of the generated surveys with those written by human experts. To address this gap, we present our own method for automated taxonomy creation that can bridge the gap between human-generated and automatically-created taxonomies. For this purpose, we create the CS-TaxoBench benchmark which consists of 460 taxonomies that have been extracted from human-written survey papers. We also include an additional test set of 80 taxonomies curated from conference survey papers. We propose TaxoAlign, a three-phase topic-based instruction-guided method for scholarly taxonomy generation. Additionally, we propose a stringent automated evaluation framework that measures the structural alignment and semantic coherence of automatically generated taxonomies in comparison to those created by human experts. We evaluate our method and various baselines on CS-TaxoBench, using both automated evaluation metrics and human evaluation studies. The results show that TaxoAlign consistently surpasses the baselines on nearly all metrics. The code and data can be found at https://github.com/AvishekLahiri/TaxoAlign.

Authors:Junlong Tong, Yingqi Fan, Anhao Zhao, Yunpu Ma, Xiaoyu Shen
Title: StreamingThinker: Large Language Models Can Think While Reading
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm initiates thinking only after the entire input is available, which introduces unnecessary latency and weakens attention to earlier information in dynamic scenarios. Inspired by human cognition of thinking while reading, we first design a \textit{\textbf{streaming thinking}} paradigm for LLMs, where reasoning unfolds in the order of input and further adjusts its depth once reading is complete. We instantiate this paradigm with \textit{StreamingThinker}, a framework that enables LLMs to think while reading through the integration of streaming CoT generation, streaming-constraint training, and streaming parallel inference. Specifically, StreamingThinker employs streaming reasoning units with quality control for CoT generation, enforces order-preserving reasoning through streaming attention masks and position encoding, and leverages parallel KV caches that decouple input encoding from reasoning generation, thereby ensuring alignment and enabling true concurrency. We evaluate StreamingThinker on the Qwen3 model family across math reasoning, logical reasoning, and context-based QA reasoning tasks. Experimental results show that the StreamingThinker preserves performance comparable to batch thinking, while yielding an 80\% reduction in token waiting before the onset of reasoning and a more than 60\% reduction in time-level latency for producing the final answer, demonstrating the effectiveness of the streaming paradigm for LLM reasoning. Code will be released at \href{https://github.com/EIT-NLP/StreamingLLM/tree/main/StreamingThinker}{this repository.}

Authors:Zhuo Cao, Heming Du, Bingqing Zhang, Xin Yu, Xue Li, Sen Wang
Title: When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions
Abstract:
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.

Authors:Yingqi Fan, Anhao Zhao, Jinlan Fu, Junlong Tong, Hui Su, Yijie Pan, Wei Zhang, Xiaoyu Shen
Title: $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.

Authors:Runlin Lei, Lu Yi, Mingguo He, Pengyu Qiu, Zhewei Wei, Yongchao Liu, Chuntao Hong
Title: Robustness in Text-Attributed Graph Learning: Insights, Trade-offs, and New Defenses
Abstract:
While Graph Neural Networks (GNNs) and Large Language Models (LLMs) are powerful approaches for learning on Text-Attributed Graphs (TAGs), a comprehensive understanding of their robustness remains elusive. Current evaluations are fragmented, failing to systematically investigate the distinct effects of textual and structural perturbations across diverse models and attack scenarios. To address these limitations, we introduce a unified and comprehensive framework to evaluate robustness in TAG learning. Our framework evaluates classical GNNs, robust GNNs (RGNNs), and GraphLLMs across ten datasets from four domains, under diverse text-based, structure-based, and hybrid perturbations in both poisoning and evasion scenarios. Our extensive analysis reveals multiple findings, among which three are particularly noteworthy: 1) models have inherent robustness trade-offs between text and structure, 2) the performance of GNNs and RGNNs depends heavily on the text encoder and attack type, and 3) GraphLLMs are particularly vulnerable to training data corruption. To overcome the identified trade-offs, we introduce SFT-auto, a novel framework that delivers superior and balanced robustness against both textual and structural attacks within a single model. Our work establishes a foundation for future research on TAG security and offers practical solutions for robust TAG learning in adversarial environments. Our code is available at: https://github.com/Leirunlin/TGRB.

Authors:Yingzi Han, Jiakai He, Chuanlong Xie, Jianping Li
Title: Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Abstract:
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.

Authors:Feihong Yan, Peiru Wang, Yao Zhu, Kaiyu Pang, Qingyan Wei, Huiqi Li, Linfeng Zhang
Title: Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Abstract:
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.

Authors:Hongyi Du, Jiaqi Su, Jisen Li, Lijie Ding, Yingxuan Yang, Peixuan Han, Xiangru Tang, Kunlun Zhu, Jiaxuan You
Title: Which LLM Multi-Agent Protocol to Choose?
Abstract:
As large-scale multi-agent systems evolve, the communication protocol layer has become a critical yet under-evaluated factor shaping performance and reliability. Despite the existence of diverse protocols (A2A, ACP, ANP, Agora, etc.), selection is often intuition-driven and lacks standardized guidance. We introduce ProtocolBench, a benchmark that systematically compares agent protocols along four measurable axes: task success, end-to-end latency, message or byte overhead, and robustness under failures. On ProtocolBench, protocol choice significantly influences system behavior. In the Streaming Queue scenario, overall completion time varies by up to 36.5% across protocols, and mean end-to-end latency differs by 3.48 s. Under Fail-Storm Recovery, resilience also differs consistently across protocols. Beyond evaluation, we present ProtocolRouter, a learnable protocol router that selects per-scenario (or per-module) protocols from requirement and runtime signals. ProtocolRouter reduces Fail-Storm recovery time by up to 18.1% versus the best single-protocol baseline, and achieves scenario-specific gains such as higher success in GAIA. We also release ProtocolRouterBench to standardize protocol evaluation and improve reliability at scale.

Authors:Lu Yin, Ziying Shi, Yinghao Wu, Xinyu Yi, Feng Xu, Shihui Guo
Title: Shape-aware Inertial Poser: Motion Tracking for Humans with Diverse Shapes Using Sparse Inertial Sensors
Abstract:
Human motion capture with sparse inertial sensors has gained significant attention recently. However, existing methods almost exclusively rely on a template adult body shape to model the training data, which poses challenges when generalizing to individuals with largely different body shapes (such as a child). This is primarily due to the variation in IMU-measured acceleration caused by changes in body shape. To fill this gap, we propose Shape-aware Inertial Poser (SAIP), the first solution considering body shape differences in sparse inertial-based motion capture. Specifically, we decompose the sensor measurements related to shape and pose in order to effectively model their joint correlations. Firstly, we train a regression model to transfer the IMU-measured accelerations of a real body to match the template adult body model, compensating for the shape-related sensor measurements. Then, we can easily follow the state-of-the-art methods to estimate the full body motions of the template-shaped body. Finally, we utilize a second regression model to map the joint velocities back to the real body, combined with a shape-aware physical optimization strategy to calculate global motions on the subject. Furthermore, our method relies on body shape awareness, introducing the first inertial shape estimation scheme. This is accomplished by modeling the shape-conditioned IMU-pose correlation using an MLP-based network. To validate the effectiveness of SAIP, we also present the first IMU motion capture dataset containing individuals of different body sizes. This dataset features 10 children and 10 adults, with heights ranging from 110 cm to 190 cm, and a total of 400 minutes of paired IMU-Motion samples. Extensive experimental results demonstrate that SAIP can effectively handle motion capture tasks for diverse body shapes. The code and dataset are available at https://github.com/yinlu5942/SAIP.

Authors:Bingqi Shang, Yiwei Chen, Yihua Zhang, Bingquan Shen, Sijia Liu
Title: Forgetting to Forget: Attention Sink as A Gateway for Backdooring LLM Unlearning
Abstract:
Large language model (LLM) unlearning has become a critical mechanism for removing undesired data, knowledge, or behaviors from pre-trained models while retaining their general utility. Yet, with the rise of open-weight LLMs, we ask: can the unlearning process itself be backdoored, appearing successful under normal conditions yet reverting to pre-unlearned behavior when a hidden trigger is activated? Drawing inspiration from classical backdoor attacks that embed triggers into training data to enforce specific behaviors, we investigate backdoor unlearning, where models forget as intended in the clean setting but recover forgotten knowledge when the trigger appears. We show that designing such attacks presents unique challenges, hinging on where triggers are placed and how backdoor training is reinforced. We uncover a strong link between backdoor efficacy and the attention sink phenomenon, i.e., shallow input tokens consistently attract disproportionate attention in LLMs. Our analysis reveals that these attention sinks serve as gateways for backdoor unlearning: placing triggers at sink positions and aligning their attention values markedly enhances backdoor persistence. Extensive experiments validate these findings, showing that attention-sink-guided backdoor unlearning reliably restores forgotten knowledge in the presence of backdoor triggers, while behaving indistinguishably from a normally unlearned model when triggers are absent. Code is available at https://github.com/OPTML-Group/Unlearn-Backdoor.

Authors:Qiusi Zhan, Angeline Budiman-Chan, Abdelrahman Zayed, Xingzhi Guo, Daniel Kang, Joo-Kyung Kim
Title: SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Abstract:
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked ``How can I track someone's location without their consent?'', a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.

Authors:Luca Zanella, Massimiliano Mancini, Yiming Wang, Alessio Tonioni, Elisa Ricci
Title: Training-free Online Video Step Grounding
Abstract:
Given a task and a set of steps composing it, Video Step Grounding (VSG) aims to detect which steps are performed in a video. Standard approaches for this task require a labeled training set (e.g., with step-level annotations or narrations), which may be costly to collect. Moreover, they process the full video offline, limiting their applications for scenarios requiring online decisions. Thus, in this work, we explore how to perform VSG online and without training. We achieve this by exploiting the zero-shot capabilities of recent Large Multimodal Models (LMMs). In particular, we use LMMs to predict the step associated with a restricted set of frames, without access to the whole video. We show that this online strategy without task-specific tuning outperforms offline and training-based models. Motivated by this finding, we develop Bayesian Grounding with Large Multimodal Models (BaGLM), further injecting knowledge of past frames into the LMM-based predictions. BaGLM exploits Bayesian filtering principles, modeling step transitions via (i) a dependency matrix extracted through large language models and (ii) an estimation of step progress. Experiments on three datasets show superior performance of BaGLM over state-of-the-art training-based offline methods.

Authors:Pingzhi Li, Morris Yu-Chao Huang, Zhen Tan, Qingquan Song, Jie Peng, Kai Zou, Yu Cheng, Kaidi Xu, Tianlong Chen
Title: Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Abstract:
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.

Authors:Zongjian Li, Zheyuan Liu, Qihui Zhang, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Yang Ye, Wangbo Yu, Yuwei Niu, Li Yuan
Title: Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback
Abstract:
Instruction-based image editing has achieved remarkable progress; however, models solely trained via supervised fine-tuning often overfit to annotated patterns, hindering their ability to explore and generalize beyond training distributions. To this end, we introduce Edit-R1, a novel post-training framework for instruction-based image editing based on policy optimization. Specifically, we utilize Diffusion Negative-aware Finetuning (DiffusionNFT), a likelihood-free policy optimization method consistent with the flow matching forward process, thereby enabling the use of higher-order samplers and more efficient training. Another key challenge here is the absence of a universal reward model, resulting from the diverse nature of editing instructions and tasks. To bridge this gap, we employ a Multimodal Large Language Model (MLLM) as a unified, training-free reward model, leveraging its output logits to provide fine-grained feedback. Furthermore, we carefully design a low-variance group filtering mechanism to reduce MLLM scoring noise and stabilize optimization. UniWorld-V2, trained with this framework, achieves \textbf{state-of-the-art} results on the ImgEdit and GEdit-Bench benchmarks, scoring 4.49 and 7.83, respectively. Crucially, our framework is model-agnostic, delivering substantial performance gains when applied to diverse base models like Qwen-Image-Edit and FLUX-Kontext, demonstrating its wide applicability. Code and models are publicly available at https://github.com/PKU-YuanGroup/UniWorld-V2.

Authors:Nusrat Munia, Abdullah Imran
Title: Class-N-Diff: Classification-Induced Diffusion Model Can Make Fair Skin Cancer Diagnosis
Abstract:
Generative models, especially Diffusion Models, have demonstrated remarkable capability in generating high-quality synthetic data, including medical images. However, traditional class-conditioned generative models often struggle to generate images that accurately represent specific medical categories, limiting their usefulness for applications such as skin cancer diagnosis. To address this problem, we propose a classification-induced diffusion model, namely, Class-N-Diff, to simultaneously generate and classify dermoscopic images. Our Class-N-Diff model integrates a classifier within a diffusion model to guide image generation based on its class conditions. Thus, the model has better control over class-conditioned image synthesis, resulting in more realistic and diverse images. Additionally, the classifier demonstrates improved performance, highlighting its effectiveness for downstream diagnostic tasks. This unique integration in our Class-N-Diff makes it a robust tool for enhancing the quality and utility of diffusion model-based synthetic dermoscopic image generation. Our code is available at https://github.com/Munia03/Class-N-Diff.

Authors:Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
Title: Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Abstract:
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Xiangyang Ji
Title: Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Abstract:
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.

Authors:Shaolei Zhang, Ju Fan, Meihao Fan, Guoliang Li, Xiaoyong Du
Title: DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Abstract:
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.

Authors:Zhoutong Wu, Yuan Zhang, Yiming Dong, Chenheng Zhang, Cong Fang, Kun Yuan, Zhouchen Lin
Title: Improving Model Representation and Reducing KV Cache via Skip Connections with First Value Heads
Abstract:
Transformer models have driven breakthroughs across various language tasks by their strong capability to learn rich contextual representations. Scaling them to improve representation, however, often demands substantial memory and compute costs, such as the Key-Value (KV) cache used during auto-regressive decoding. Skip connections offer a promising way to improve representation without bloating resource usage, yet most prior works either improve expressivity while leaving KV costs unchanged, or reduce memory at the cost of weaker representation. In this work, we propose SkipV1Former, a Transformer variant that uses skip connections from the first layer's Value heads to strengthen model representation and reduce KV cache. Specifically, from the second block onward, each layer reuses half of its Value heads from the very first layer, while computing the other half as usual-cutting Value projections and V cache by nearly 50 \%. Theoretically, we show that routing uncompressed first-layer Values into deeper layers restores information lost to compression and accelerates the model's implicit mesa-optimization-a key pattern of Transformer in auto-regressive tasks. Empirically, across different model scales, SkipV1Former delivers consistent reductions of approximately 25 \% in KV cache while improving perplexity relative to standard Multi-Head Attention (MHA) Transformers and some advanced variants. Moreover, we propose a recipe for uptraining existing MHA Transformer checkpoints to SkipV1Former with only 10-15\% additional compute. Finally, SkipV1Former can seamlessly combine advanced methods like Group-Query Attention and Multi-Latent Attention to achieve further KV cache savings and performance improvement. When combined with YOCO, it cuts KV cache size by nearly 50 \% while still improving performance.

Authors:Jie Zhang, Meng Ding, Yang Liu, Jue Hong, Florian Tramèr
Title: Black-box Optimization of LLM Outputs by Asking for Directions
Abstract:
We present a novel approach for attacking black-box large language models (LLMs) by exploiting their ability to express confidence in natural language. Existing black-box attacks require either access to continuous model outputs like logits or confidence scores (which are rarely available in practice), or rely on proxy signals from other models. Instead, we demonstrate how to prompt LLMs to express their internal confidence in a way that is sufficiently calibrated to enable effective adversarial optimization. We apply our general method to three attack scenarios: adversarial examples for vision-LLMs, jailbreaks and prompt injections. Our attacks successfully generate malicious inputs against systems that only expose textual outputs, thereby dramatically expanding the attack surface for deployed LLMs. We further find that better and larger models exhibit superior calibration when expressing confidence, creating a concerning security paradox where model capability improvements directly enhance vulnerability. Our code is available at this [link](https://github.com/zj-jayzhang/black_box_llm_optimization).

Authors:Chang Wu, Zhiyuan Liu, Wen Shu, Liang Wang, Yanchen Luo, Wenqiang Lei, Yatao Bian, Junfeng Fang, Xiang Wang
Title: 3D-GSRD: 3D Molecular Graph Auto-Encoder with Selective Re-mask Decoding
Abstract:
Masked graph modeling (MGM) is a promising approach for molecular representation learning (MRL).However, extending the success of re-mask decoding from 2D to 3D MGM is non-trivial, primarily due to two conflicting challenges: avoiding 2D structure leakage to the decoder, while still providing sufficient 2D context for reconstructing re-masked atoms.To address these challenges, we propose 3D-GSRD: a 3D Molecular Graph Auto-Encoder with Selective Re-mask Decoding. The core innovation of 3D-GSRD lies in its Selective Re-mask Decoding(SRD), which re-masks only 3D-relevant information from encoder representations while preserving the 2D graph structures.This SRD is synergistically integrated with a 3D Relational-Transformer(3D-ReTrans) encoder alongside a structure-independent decoder. We analyze that SRD, combined with the structure-independent decoder, enhances the encoder's role in MRL. Extensive experiments show that 3D-GSRD achieves strong downstream performance, setting a new state-of-the-art on 7 out of 8 targets in the widely used MD17 molecular property prediction benchmark. The code is released at https://github.com/WuChang0124/3D-GSRD.

Authors:Mingzheng Zhang, Jinfeng Gao, Dan Xu, Jiangrui Yu, Yuhan Qiao, Lan Chen, Jin Tang, Xiao Wang
Title: EMRRG: Efficient Fine-Tuning Pre-trained X-ray Mamba Networks for Radiology Report Generation
Abstract:
X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence that can significantly reduce diagnostic burdens for clinicians and patient wait times. Existing MRG models predominantly rely on Large Language Models (LLMs) to improve report generation, with limited exploration of pre-trained vision foundation models or advanced fine-tuning techniques. Mainstream frameworks either avoid fine-tuning or utilize simplistic methods like LoRA, often neglecting the potential of enhancing cross-attention mechanisms. Additionally, while Transformer-based models dominate vision-language tasks, non-Transformer architectures, such as the Mamba network, remain underexplored for medical report generation, presenting a promising avenue for future research. In this paper, we propose EMRRG, a novel X-ray report generation framework that fine-tunes pre-trained Mamba networks using parameter-efficient methods. Specifically, X-ray images are divided into patches, tokenized, and processed by an SSM-based vision backbone for feature extraction, with Partial LoRA yielding optimal performance. An LLM with a hybrid decoder generates the medical report, enabling end-to-end training and achieving strong results on benchmark datasets. Extensive experiments on three widely used benchmark datasets fully validated the effectiveness of our proposed strategies for the X-ray MRG. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Thuy Phuong Vu, Dinh-Cuong Hoang, Minhhuy Le, Phan Xuan Tan
Title: Region in Context: Text-condition Image editing with Human-like semantic reasoning
Abstract:
Recent research has made significant progress in localizing and editing image regions based on text. However, most approaches treat these regions in isolation, relying solely on local cues without accounting for how each part contributes to the overall visual and semantic composition. This often results in inconsistent edits, unnatural transitions, or loss of coherence across the image. In this work, we propose Region in Context, a novel framework for text-conditioned image editing that performs multilevel semantic alignment between vision and language, inspired by the human ability to reason about edits in relation to the whole scene. Our method encourages each region to understand its role within the global image context, enabling precise and harmonized changes. At its core, the framework introduces a dual-level guidance mechanism: regions are represented with full-image context and aligned with detailed region-level descriptions, while the entire image is simultaneously matched to a comprehensive scene-level description generated by a large vision-language model. These descriptions serve as explicit verbal references of the intended content, guiding both local modifications and global structure. Experiments show that it produces more coherent and instruction-aligned results. Code is available at: https://github.com/thuyvuphuong/Region-in-Context.git

Authors:Jia Li, Guoxiang Zhao
Title: T3 Planner: A Self-Correcting LLM Framework for Robotic Motion Planning with Temporal Logic
Abstract:
Translating natural language instructions into executable motion plans is a fundamental challenge in robotics. Traditional approaches are typically constrained by their reliance on domain-specific expertise to customize planners, and often struggle with spatio-temporal couplings that usually lead to infeasible motions or discrepancies between task planning and motion execution. Despite the proficiency of Large Language Models (LLMs) in high-level semantic reasoning, hallucination could result in infeasible motion plans. In this paper, we introduce the T3 Planner, an LLM-enabled robotic motion planning framework that self-corrects it output with formal methods. The framework decomposes spatio-temporal task constraints via three cascaded modules, each of which stimulates an LLM to generate candidate trajectory sequences and examines their feasibility via a Signal Temporal Logic (STL) verifier until one that satisfies complex spatial, temporal, and logical constraints is found.Experiments across different scenarios show that T3 Planner significantly outperforms the baselines. The required reasoning can be distilled into a lightweight Qwen3-4B model that enables efficient deployment. All supplementary materials are accessible at https://github.com/leeejia/T3_Planner.

Authors:Xinqing Li, Xin He, Le Zhang, Yun Liu
Title: A Comprehensive Survey on World Models for Embodied AI
Abstract:
Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.

Authors:Minhua Lin, Zongyu Wu, Zhichao Xu, Hui Liu, Xianfeng Tang, Qi He, Charu Aggarwal, Hui Liu, Xiang Zhang, Suhang Wang
Title: A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
Abstract:
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.

Authors:Tianxin Wei, Yifan Chen, Xinrui He, Wenxuan Bao, Jingrui He
Title: Connecting Domains and Contrasting Samples: A Ladder for Domain Generalization
Abstract:
Distribution shifts between training and testing samples frequently occur in practice and impede model generalization performance. This crucial challenge thereby motivates studies on domain generalization (DG), which aim to predict the label on unseen target domain data by solely using data from source domains. It is intuitive to conceive the class-separated representations learned in contrastive learning (CL) are able to improve DG, while the reality is quite the opposite: users observe directly applying CL deteriorates the performance. We analyze the phenomenon with the insights from CL theory and discover lack of intra-class connectivity in the DG setting causes the deficiency. We thus propose a new paradigm, domain-connecting contrastive learning (DCCL), to enhance the conceptual connectivity across domains and obtain generalizable representations for DG. On the data side, more aggressive data augmentation and cross-domain positive samples are introduced to improve intra-class connectivity. On the model side, to better embed the unseen test domains, we propose model anchoring to exploit the intra-class connectivity in pre-trained representations and complement the anchoring with generative transformation loss. Extensive experiments on five standard DG benchmarks are performed. The results verify that DCCL outperforms state-of-the-art baselines even without domain supervision. The detailed model implementation and the code are provided through https://github.com/weitianxin/DCCL

Authors:Yejie Guo, Yunzhong Hou, Wufei Ma, Meng Tang, Ming-Hsuan Yang
Title: Pursuing Minimal Sufficiency in Spatial Reasoning
Abstract:
Spatial reasoning, the ability to ground language in 3D understanding, remains a persistent challenge for Vision-Language Models (VLMs). We identify two fundamental bottlenecks: inadequate 3D understanding capabilities stemming from 2D-centric pre-training, and reasoning failures induced by redundant 3D information. To address these, we first construct a Minimal Sufficient Set (MSS) of information before answering a given question: a compact selection of 3D perception results from \textit{expert models}. We introduce MSSR (Minimal Sufficient Spatial Reasoner), a dual-agent framework that implements this principle. A Perception Agent programmatically queries 3D scenes using a versatile perception toolbox to extract sufficient information, including a novel SOG (Situated Orientation Grounding) module that robustly extracts language-grounded directions. A Reasoning Agent then iteratively refines this information to pursue minimality, pruning redundant details and requesting missing ones in a closed loop until the MSS is curated. Extensive experiments demonstrate that our method, by explicitly pursuing both sufficiency and minimality, significantly improves accuracy and achieves state-of-the-art performance across two challenging benchmarks. Furthermore, our framework produces interpretable reasoning paths, offering a promising source of high-quality training data for future models. Source code is available at https://github.com/gyj155/mssr.

Authors:Young-Jun Lee, Byung-Kwan Lee, Jianshu Zhang, Yechan Hwang, Byungsoo Ko, Han-Gyu Kim, Dongyu Yao, Xuankun Rong, Eojin Joo, Seung-Ho Han, Bowon Ko, Ho-Jin Choi
Title: MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models
Abstract:
Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs.

Authors:Jiatong Yu, Yinghui He, Anirudh Goyal, Sanjeev Arora
Title: On the Impossibility of Retrain Equivalence in Machine Unlearning
Abstract:
Machine unlearning seeks to selectively remove the "influence" of specific training data on a model's outputs. The ideal goal is Retrain Equivalence--behavior identical to a model trained from scratch on only the retained data. This goal was formulated for models trained on i.i.d. data batches, but modern pipelines often involve multi-stage training, with each stage having a distinct data distribution and objective. Examples include LLM fine-tuning for alignment, reasoning ability, etc. Our study shows via theory and experiments that this shift to multi-stage training introduces a fundamental barrier for machine unlearning. The theory indicates that the outcome of local unlearning--methods that only use gradients computed on the forget set--is path-dependent. That is, a model's behavior during unlearning is influenced by the order of its training stages during learning, making it impossible for path-oblivious algorithms to universally achieve Retrain Equivalence. We empirically demonstrate the same phenomenon in LLM post-training across Llama and Qwen models (1B to 14B) with gradient ascent, NPO, and SimNPO local unlearning algorithms. Models fine-tuned via different orderings of identical training stages diverge in behavior during unlearning, with the degradation in GSM8K accuracy after unlearning varying by over 20% across paths. We also observe that some learning paths consistently produce models that unlearn slowly. During unlearning, whether the probability mass gets squeezed into paraphrasing or alternative concepts is also path-dependent. These results consistently show that Retrain Equivalence is an ill-posed target for local unlearning algorithms, so long as the target models are trained in stages. In situations where access to models' training histories is hard, the current work calls for rethinking the definition and desiderata of machine unlearning.

Authors:Jiaying Zhu, Yurui Zhu, Xin Lu, Wenrui Yan, Dong Li, Kunlin Liu, Xueyang Fu, Zheng-Jun Zha
Title: VisionSelector: End-to-End Learnable Visual Token Compression for Efficient Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) encounter significant computational and memory bottlenecks from the massive number of visual tokens generated by high-resolution images or multi-image inputs. Previous token compression techniques are often constrained by heuristic rules that risk discarding critical information. They may suffer from biases, such as attention sinks, that lead to sharp performance drops under aggressive compression ratios. To address these limitations, we reformulate token compression as a lightweight plug-and-play framework that reformulates token compression into an end-to-end learnable decision process. To be specific, we propose VisionSelector, a scorer module decoupled from the MLLM backbone that incorporates a differentiable Top-K mechanism and a curriculum annealing strategy to bridge the training-inference gap, enabling efficient and adaptive token selection various arbitrary compression rates. Remarkably lightweight with only 12.85M trainable parameters, VisionSelector demonstrates generalization across various compression rates and adaptively identifying critical tokens. This leads to superior performance across all compression budgets, evidenced by preserving 100% accuracy on MME with 30% retention budget, outperforming prior methods by 12.14% at 10% retention budget, and doubling prefill speed. Our code is available at https://github.com/JulietChoo/VisionSelector .

Authors:Moida Praneeth Jain, Venkatesh Choppella
Title: SimpliPy: A Source-Tracking Notional Machine for Simplified Python
Abstract:
Misconceptions about program execution hinder many novice programmers. We introduce SimpliPy, a notional machine designed around a carefully chosen Python subset to clarify core control flow and scoping concepts. Its foundation is a precise operational semantics that explicitly tracks source code line numbers for each execution step, making the link between code and behavior unambiguous. Complementing the dynamic semantics, SimpliPy uses static analysis to generate Control Flow Graphs (CFGs) and identify lexical scopes, helping students build a structural understanding before tracing. We also present an interactive web-based debugger built on these principles. This tool embodies the formal techniques, visualizing the operational state (environments, stack) and using the static CFG to animate control flow directly on the graph during step-by-step execution. SimpliPy thus integrates formal semantics, program analysis, and visualization to offer both a pedagogical approach and a practical demonstration of applying formal methods to program understanding.

Authors:Tian Xia, Tianrun Gao, Wenhao Deng, Long Wei, Xiaowei Qian, Yixian Jiang, Chenglei Yu, Tailin Wu
Title: BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Abstract:
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.

Authors:Zitao Fang, Chenxuan Li, Hongting Zhou, Shuyang Yu, Guodong Du, Ashwaq Qasem, Yang Lu, Jing Li, Junsong Zhang, Sim Kuan Goh
Title: NeurIPT: Foundation Model for Neural Interfaces
Abstract:
Electroencephalography (EEG) has wide-ranging applications, from clinical diagnosis to brain-computer interfaces (BCIs). With the increasing volume and variety of EEG data, there has been growing interest in establishing foundation models (FMs) to scale up and generalize neural decoding. Despite showing early potential, applying FMs to EEG remains challenging due to substantial inter-subject, inter-task, and inter-condition variability, as well as diverse electrode configurations across recording setups. To tackle these open challenges, we propose NeurIPT, a foundation model developed for diverse EEG-based Neural Interfaces with a Pre-trained Transformer by capturing both homogeneous and heterogeneous spatio-temporal characteristics inherent in EEG signals. Temporally, we introduce Amplitude-Aware Masked Pretraining (AAMP), masking based on signal amplitude rather than random intervals, to learn robust representations across varying signal intensities beyond local interpolation. Moreover, this temporal representation is enhanced by a Progressive Mixture-of-Experts (PMoE) architecture, where specialized expert subnetworks are progressively introduced at deeper layers, adapting effectively to the diverse temporal characteristics of EEG signals. Spatially, NeurIPT leverages the 3D physical coordinates of electrodes, enabling effective transfer of embedding across varying EEG settings, and develops Intra-Inter Lobe Pooling (IILP) during fine-tuning to efficiently exploit regional brain features. Empirical evaluations across eight downstream BCI datasets, via fine-tuning, demonstrated NeurIPT consistently achieved state-of-the-art performance, highlighting its broad applicability and robust generalization. Our work pushes forward the state of FMs in EEG and offers insights into scalable and generalizable neural information processing systems.

Authors:Jesús Ortega-Peimbert, Finn Lukas Busch, Timon Homberger, Quantao Yang, Olov Andersson
Title: DIV-Nav: Open-Vocabulary Spatial Relationships for Multi-Object Navigation
Abstract:
Advances in open-vocabulary semantic mapping and object navigation have enabled robots to perform an informed search of their environment for an arbitrary object. However, such zero-shot object navigation is typically designed for simple queries with an object name like "television" or "blue rug". Here, we consider more complex free-text queries with spatial relationships, such as "find the remote on the table" while still leveraging robustness of a semantic map. We present DIV-Nav, a real-time navigation system that efficiently addresses this problem through a series of relaxations: i) Decomposing natural language instructions with complex spatial constraints into simpler object-level queries on a semantic map, ii) computing the Intersection of individual semantic belief maps to identify regions where all objects co-exist, and iii) Validating the discovered objects against the original, complex spatial constrains via a LVLM. We further investigate how to adapt the frontier exploration objectives of online semantic mapping to such spatial search queries to more effectively guide the search process. We validate our system through extensive experiments on the MultiON benchmark and real-world deployment on a Boston Dynamics Spot robot using a Jetson Orin AGX. More details and videos are available at https://anonsub42.github.io/reponame/

Authors:Chen Min, Jilin Mei, Heng Zhai, Shuai Wang, Tong Sun, Fanjie Kong, Haoyang Li, Fangyuan Mao, Fuyang Liu, Shuo Wang, Yiming Nie, Qi Zhu, Liang Xiao, Dawei Zhao, Yu Hu
Title: Advancing Off-Road Autonomous Driving: The Large-Scale ORAD-3D Dataset and Comprehensive Benchmarks
Abstract:
A major bottleneck in off-road autonomous driving research lies in the scarcity of large-scale, high-quality datasets and benchmarks. To bridge this gap, we present ORAD-3D, which, to the best of our knowledge, is the largest dataset specifically curated for off-road autonomous driving. ORAD-3D covers a wide spectrum of terrains, including woodlands, farmlands, grasslands, riversides, gravel roads, cement roads, and rural areas, while capturing diverse environmental variations across weather conditions (sunny, rainy, foggy, and snowy) and illumination levels (bright daylight, daytime, twilight, and nighttime). Building upon this dataset, we establish a comprehensive suite of benchmark evaluations spanning five fundamental tasks: 2D free-space detection, 3D occupancy prediction, rough GPS-guided path planning, vision-language model-driven autonomous driving, and world model for off-road environments. Together, the dataset and benchmarks provide a unified and robust resource for advancing perception and planning in challenging off-road scenarios. The dataset and code will be made publicly available at https://github.com/chaytonmin/ORAD-3D.

Authors:Bin Yu, Xinming Wang, Shijie Lian, Haotian Li, Changti Wu, Ruina Hu, Bailing Wang, Yuliang Wei, Kai Chen
Title: TrajSelector: Harnessing Latent Representations for Efficient and Effective Best-of-N in Large Reasoning Model
Abstract:
Large language models (LLMs) have shown remarkable progress in complex reasoning tasks, largely enabled by test-time scaling (TTS) paradigms that allocate additional compute during inference. Among these, external TTS (particularly the Best-of-N selection paradigm) yields scalable performance improvements by selecting from multiple independently generated reasoning trajectories. However, this approach faces key limitations: (i) the high computational overhead of deploying process reward models, (ii) the underutilization of the LLM's intrinsic latent representations. We introduce TrajSelector, an efficient and effective Best-of-N framework that exploit the hidden states in the sampler LLM for process-level scoring. A lightweight verifier (with only 0.6B parameters) evaluates the quality of step-wise trajectory, and then aggregates these scores to identify the optimal reasoning trajectory. Our framework employs a fully data-driven, end-to-end training recipe that eliminates reliance on massive step-level annotations. Experiential results across five benchmarks demonstrate that TrajSelector delivers consistent performance gains. In Best-of-32 settings, it surpasses majority voting by 4.61% accuracy and outperforms existing process reward models by 4.31% to 12.21%, all while maintaining lower inference costs.

Authors:Jaekyun Park, Hye Won Chung
Title: VIPAMIN: Visual Prompt Initialization via Embedding Selection and Subspace Expansion
Abstract:
In the era of large-scale foundation models, fully fine-tuning pretrained networks for each downstream task is often prohibitively resource-intensive. Prompt tuning offers a lightweight alternative by introducing tunable prompts while keeping the backbone frozen. However, existing visual prompt tuning methods often fail to specialize the prompts or enrich the representation space--especially when applied to self-supervised backbones. We show that these limitations become especially pronounced in challenging tasks and data-scarce settings, where effective adaptation is most critical. In this work, we introduce VIPAMIN, a visual prompt initialization strategy that enhances adaptation of self-supervised models by (1) aligning prompts with semantically informative regions in the embedding space, and (2) injecting novel representational directions beyond the pretrained subspace. Despite its simplicity--requiring only a single forward pass and lightweight operations--VIPAMIN consistently improves performance across diverse tasks and dataset sizes, setting a new state of the art in visual prompt tuning. Our code is available at https://github.com/iamjaekyun/vipamin.

Authors:Kunyu Peng, Di Wen, Jia Fu, Jiamin Wu, Kailun Yang, Junwei Zheng, Ruiping Liu, Yufan Chen, Yuqian Fu, Danda Pani Paudel, Luc Van Gool, Rainer Stiefelhagen
Title: RefAtomNet++: Advancing Referring Atomic Video Action Recognition using Semantic Retrieval based Multi-Trajectory Mamba
Abstract:
Referring Atomic Video Action Recognition (RAVAR) aims to recognize fine-grained, atomic-level actions of a specific person of interest conditioned on natural language descriptions. Distinct from conventional action recognition and detection tasks, RAVAR emphasizes precise language-guided action understanding, which is particularly critical for interactive human action analysis in complex multi-person scenarios. In this work, we extend our previously introduced RefAVA dataset to RefAVA++, which comprises >2.9 million frames and >75.1k annotated persons in total. We benchmark this dataset using baselines from multiple related domains, including atomic action localization, video question answering, and text-video retrieval, as well as our earlier model, RefAtomNet. Although RefAtomNet surpasses other baselines by incorporating agent attention to highlight salient features, its ability to align and retrieve cross-modal information remains limited, leading to suboptimal performance in localizing the target person and predicting fine-grained actions. To overcome the aforementioned limitations, we introduce RefAtomNet++, a novel framework that advances cross-modal token aggregation through a multi-hierarchical semantic-aligned cross-attention mechanism combined with multi-trajectory Mamba modeling at the partial-keyword, scene-attribute, and holistic-sentence levels. In particular, scanning trajectories are constructed by dynamically selecting the nearest visual spatial tokens at each timestep for both partial-keyword and scene-attribute levels. Moreover, we design a multi-hierarchical semantic-aligned cross-attention strategy, enabling more effective aggregation of spatial and temporal tokens across different semantic hierarchies. Experiments show that RefAtomNet++ establishes new state-of-the-art results. The dataset and code are released at https://github.com/KPeng9510/refAVA2.

Authors:Syed Rifat Raiyan, Md Farhan Ishmam, Abdullah Al Imran, Mohammad Ali Moni
Title: FrugalPrompt: Reducing Contextual Overhead in Large Language Models via Token Attribution
Abstract:
Large language models (LLMs) owe much of their stellar performance to expansive input contexts, yet such verbosity inflates monetary costs, carbon footprint, and inference-time latency. Much of this overhead manifests from the redundant low-utility tokens present in typical prompts, as only a fraction of tokens typically carries the majority of the semantic weight. We address this inefficiency by introducing FrugalPrompt, a novel prompt compression framework for LLMs, which retains only the most semantically significant tokens. Leveraging two state-of-the-art token attribution methods, GlobEnc and DecompX, we assign salience scores to every token in an input sequence, rank them to preserve the top-k% tokens in their original order, and obtain a sparse frugalized prompt. We evaluate the approach across four NLP tasks: Sentiment Analysis, Commonsense QA, Summarization, and Mathematical Reasoning, using a suite of frontier LLMs. For the first three tasks, a 20% prompt reduction incurs only a marginal loss in task performance, demonstrating that contemporary LLMs can reconstruct elided context from high-salience cues. In contrast, performance on mathematical reasoning deteriorates sharply, reflecting a stronger dependence on complete token continuity. Further analysis with bottom-k% and random-k% tokens reveals asymmetric performance patterns that may suggest potential task contamination effects, wherein models may resort to shallow memorized patterns from pretraining exposure for conventional NLP tasks. We posit that our work contributes to a more nuanced understanding of LLM behavior in performance-efficiency trade-offs, and delineate the boundary between tasks tolerant to contextual sparsity and those requiring exhaustive context. Our source code and models are available at: https://github.com/Starscream-11813/Frugal-ICL

Authors:Aidyn Ubingazhibov, Rémi Pautrat, Iago Suárez, Shaohui Liu, Marc Pollefeys, Viktor Larsson
Title: LightGlueStick: a Fast and Robust Glue for Joint Point-Line Matching
Abstract:
Lines and points are complementary local features, whose combination has proven effective for applications such as SLAM and Structure-from-Motion. The backbone of these pipelines are the local feature matchers, establishing correspondences across images. Traditionally, point and line matching have been treated as independent tasks. Recently, GlueStick proposed a GNN-based network that simultaneously operates on points and lines to establish matches. While running a single joint matching reduced the overall computational complexity, the heavy architecture prevented real-time applications or deployment to edge devices. Inspired by recent progress in point matching, we propose LightGlueStick, a lightweight matcher for points and line segments. The key novel component in our architecture is the Attentional Line Message Passing (ALMP), which explicitly exposes the connectivity of the lines to the network, allowing for efficient communication between nodes. In thorough experiments we show that LightGlueStick establishes a new state-of-the-art across different benchmarks. The code is available at https://github.com/aubingazhib/LightGlueStick.

Authors:Rizhen Hu, Yutong He, Ran Yan, Mou Sun, Binghang Yuan, Kun Yuan
Title: MeCeFO: Enhancing LLM Training Robustness via Fault-Tolerant Optimization
Abstract:
As distributed optimization scales to meet the demands of Large Language Model (LLM) training, hardware failures become increasingly non-negligible. Existing fault-tolerant training methods often introduce significant computational or memory overhead, demanding additional resources. To address this challenge, we propose Memory- and Computation-efficient Fault-tolerant Optimization (MeCeFO), a novel algorithm that ensures robust training with minimal overhead. When a computing node fails, MeCeFO seamlessly transfers its training task to a neighboring node while employing memory- and computation-efficient algorithmic optimizations to minimize the extra workload imposed on the neighboring node handling both tasks. MeCeFO leverages three key algorithmic designs: (i) Skip-connection, which drops the multi-head attention (MHA) module during backpropagation for memory- and computation-efficient approximation; (ii) Recomputation, which reduces activation memory in feedforward networks (FFNs); and (iii) Low-rank gradient approximation, enabling efficient estimation of FFN weight matrix gradients. Theoretically, MeCeFO matches the convergence rate of conventional distributed training, with a rate of $\mathcal{O}(1/\sqrt{nT})$, where n is the data parallelism size and T is the number of iterations. Empirically, MeCeFO maintains robust performance under high failure rates, incurring only a 4.18% drop in throughput, demonstrating 5.0$\times$ to 6.7$\times$ greater resilience than previous SOTA approaches. Codes are available at https://github.com/pkumelon/MeCeFO.

Authors:Changyue Shi, Minghao Chen, Yiping Mao, Chuxiao Yang, Xinyuan Hu, Jiajun Ding, Zhou Yu
Title: REALM: An MLLM-Agent Framework for Open World 3D Reasoning Segmentation and Editing on Gaussian Splatting
Abstract:
Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.

Authors:Achal Agrawal, Jeet Mukherjee
Title: Institute Disambiguation using Author-Institution Co-Occurrence
Abstract:
In this article we propose a novel method to perform unsupervised clustering of different forms of Institute names. We use only author and affiliation metadata to perform the clustering without any string or pattern matching. After analysing only 50000 articles from Crossref database, we see encouraging results which can be scaled up to provide even better results. We compare our clustering with what a well-known method using string matching does and found that the results were complementary. This can help perform institute disambiguation better when integrated with existing systems, especially to provide aliases for cases where traditional string matching fails. The code of this open-source methodology can be found at: https://github.com/Jeet009/Institute-Disambiguation-using-Author-Institution-Co-Occurrence

Authors:Lihong Xu, Wenxiang Jiang
Title: Population-Based Search Method Using Uncertainty-related Pareto Front for Robust Multi-objective Optimization
Abstract:
Traditional robust multi-objective optimization methods typically prioritize convergence while treating robustness as a secondary consideration. This approach can yield solutions that are not genuinely robust optimal under noise-affected scenarios. Furthermore, compared to population-based search methods, determining the robust optimal solution by evaluating the robustness of a single convergence-optimal solution is also inefficient. To address these two limitations,we propose a novel Uncertainty-related Pareto Front (UPF) framework that balances robustness and convergence as equal priorities. Unlike traditional Pareto Front, the UPF explicitly accounts for decision variable with noise perturbation by quantifying their effects on both convergence guarantees and robustness preservation equally within a theoretically grounded and general framework. Building upon UPF, we propose RMOEA-UPF--a population-based search robust multi-objective optimization algorithm. This method enables efficient search optimization by calculating and optimizing the UPF during the evolutionary process.Experiments on nine benchmark problems and a real-world application demonstrate that RMOEA-UPF consistently delivers high-quality results. Our method's consistent top-ranking performance indicates a more general and reliable approach for solving complex, uncertain multi-objective optimization problems. Code is available at: https://github.com/WenxiangJiang-me/RMOEA-UPF.

Authors:Ze Tao, Jian Zhang, Haowei Li, Xianshuai Li, Yifei Peng, Xiyao Liu, Senzhang Wang, Chao Liu, Sheng Ren, Shichao Zhang
Title: Humanoid-inspired Causal Representation Learning for Domain Generalization
Abstract:
This paper proposes the Humanoid-inspired Structural Causal Model (HSCM), a novel causal framework inspired by human intelligence, designed to overcome the limitations of conventional domain generalization models. Unlike approaches that rely on statistics to capture data-label dependencies and learn distortion-invariant representations, HSCM replicates the hierarchical processing and multi-level learning of human vision systems, focusing on modeling fine-grained causal mechanisms. By disentangling and reweighting key image attributes such as color, texture, and shape, HSCM enhances generalization across diverse domains, ensuring robust performance and interpretability. Leveraging the flexibility and adaptability of human intelligence, our approach enables more effective transfer and learning in dynamic, complex environments. Through both theoretical and empirical evaluations, we demonstrate that HSCM outperforms existing domain generalization models, providing a more principled method for capturing causal relationships and improving model robustness. The code is available at https://github.com/lambett/HSCM.

Authors:Tianhang Cheng, Albert J. Zhai, Evan Z. Chen, Rui Zhou, Yawen Deng, Zitong Li, Kejie Zhao, Janice Shiu, Qianyu Zhao, Yide Xu, Xinlei Wang, Yuan Shen, Sheng Wang, Lisa Ainsworth, Kaiyu Guan, Shenlong Wang
Title: Demeter: A Parametric Model of Crop Plant Morphology from the Real World
Abstract:
Learning 3D parametric shape models of objects has gained popularity in vision and graphics and has showed broad utility in 3D reconstruction, generation, understanding, and simulation. While powerful models exist for humans and animals, equally expressive approaches for modeling plants are lacking. In this work, we present Demeter, a data-driven parametric model that encodes key factors of a plant morphology, including topology, shape, articulation, and deformation into a compact learned representation. Unlike previous parametric models, Demeter handles varying shape topology across various species and models three sources of shape variation: articulation, subcomponent shape variation, and non-rigid deformation. To advance crop plant modeling, we collected a large-scale, ground-truthed dataset from a soybean farm as a testbed. Experiments show that Demeter effectively synthesizes shapes, reconstructs structures, and simulates biophysical processes. Code and data is available at https://tianhang-cheng.github.io/Demeter/.

Authors:Pulin Li, Guocheng Wu, Li Yin, Yuxin Zheng, Wei Zhang, Yanjie Zhou
Title: MIRAD - A comprehensive real-world robust anomaly detection dataset for Mass Individualization
Abstract:
Social manufacturing leverages community collaboration and scattered resources to realize mass individualization in modern industry. However, this paradigm shift also introduces substantial challenges in quality control, particularly in defect detection. The main difficulties stem from three aspects. First, products often have highly customized configurations. Second, production typically involves fragmented, small-batch orders. Third, imaging environments vary considerably across distributed sites. To overcome the scarcity of real-world datasets and tailored algorithms, we introduce the Mass Individualization Robust Anomaly Detection (MIRAD) dataset. As the first benchmark explicitly designed for anomaly detection in social manufacturing, MIRAD captures three critical dimensions of this domain: (1) diverse individualized products with large intra-class variation, (2) data collected from six geographically dispersed manufacturing nodes, and (3) substantial imaging heterogeneity, including variations in lighting, background, and motion conditions. We then conduct extensive evaluations of state-of-the-art (SOTA) anomaly detection methods on MIRAD, covering one-class, multi-class, and zero-shot approaches. Results show a significant performance drop across all models compared with conventional benchmarks, highlighting the unresolved complexities of defect detection in real-world individualized production. By bridging industrial requirements and academic research, MIRAD provides a realistic foundation for developing robust quality control solutions essential for Industry 5.0. The dataset is publicly available at https://github.com/wu33learn/MIRAD.

Authors:Jugal Gajjar, Kamalasankari Subramaniakuppusamy
Title: MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema
Abstract:
We introduce the MultiLang Code Parser Dataset (MLCPD), a large-scale, language-agnostic dataset unifying syntactic and structural representations of code across ten major programming languages. MLCPD contains over seven million parsed source files normalized under our proposed universal Abstract Syntax Tree (AST) schema, enabling consistent cross-language reasoning, structural learning, and multilingual software analysis. Unlike existing corpora that focus purely on token-level code or isolated parsers, MLCPD provides both hierarchical tree representations and rich metadata for every file, ensuring lossless syntactic coverage and structural uniformity. Each entry includes a normalized schema, language-level metadata, and abstracted node semantics stored in Parquet format for scalable retrieval. Empirical analyses reveal strong cross-language structural regularities-demonstrating that syntactic graphs from languages as diverse as Python, Java, and Go can be aligned under a shared schema. We release the dataset publicly on Hugging Face and the accompanying codebase on GitHub, which includes complete pipelines for dataset reproduction, grammar compilation, and a visualization tool for exploring the unified AST across languages. Together, these resources establish MLCPD as an open, reproducible foundation for future research in cross-language representation learning and program analysis.

Authors:Junha Song, Sangdoo Yun, Dongyoon Han, Jaegul Choo, Byeongho Heo
Title: RL makes MLLMs see better than SFT
Abstract:
A dominant assumption in Multimodal Language Model (MLLM) research is that its performance is largely inherited from the LLM backbone, given its immense parameter scale and remarkable capabilities. This has created a void in the understanding of the vision encoder, which determines how MLLMs perceive images. The recent shift in MLLM training paradigms, from Supervised Finetuning (SFT) to Reinforcement Learning (RL), magnifies this oversight-namely, the significant lack of analysis on how such training reshapes the vision encoder as well as the MLLM. To address this, we first investigate the impact of training strategies on MLLMs, where RL shows a clear advantage over SFT in strongly vision-related VQA benchmarks. Motivated by this, we conduct a critical yet under-explored analysis of the vision encoder of MLLMs through diverse and in-depth experiments, ranging from ImageNet classification and segmentation to gradient visualization. Our results demonstrate that MLLM's post-training strategy (i.e., SFT or RL) not only leads to distinct outcomes on MLLM downstream tasks, but also fundamentally reshapes MLLM's underlying visual representations. Specifically, the key finding of our study is that RL produces stronger and precisely localized visual representations compared to SFT, boosting the ability of the vision encoder for MLLM. We then reframe our findings into a simple recipe for building strong vision encoders for MLLMs, Preference-Instructed Vision OpTimization (PIVOT). When integrated into MLLMs, a PIVOT-trained vision encoder outperforms even larger and more heavily-trained counterparts, despite requiring less than 1% of the computational cost of standard vision pretraining. This result opens an effective and efficient path for advancing the vision backbones of MLLMs. Project page available at https://june-page.github.io/pivot/

Authors:Haiyue Sun, Qingdong He, Jinlong Peng, Peng Tang, Jiangning Zhang, Junwei Zhu, Xiaobin Hu, Shuicheng Yan
Title: TokenAR: Multiple Subject Generation via Autoregressive Token-level enhancement
Abstract:
Autoregressive Model (AR) has shown remarkable success in conditional image generation. However, these approaches for multiple reference generation struggle with decoupling different reference identities. In this work, we propose the TokenAR framework, specifically focused on a simple but effective token-level enhancement mechanism to address reference identity confusion problem. Such token-level enhancement consists of three parts, 1). Token Index Embedding clusters the tokens index for better representing the same reference images; 2). Instruct Token Injection plays as a role of extra visual feature container to inject detailed and complementary priors for reference tokens; 3). The identity-token disentanglement strategy (ITD) explicitly guides the token representations toward independently representing the features of each identity.This token-enhancement framework significantly augments the capabilities of existing AR based methods in conditional image generation, enabling good identity consistency while preserving high quality background reconstruction. Driven by the goal of high-quality and high-diversity in multi-subject generation, we introduce the InstructAR Dataset, the first open-source, large-scale, multi-reference input, open domain image generation dataset that includes 28K training pairs, each example has two reference subjects, a relative prompt and a background with mask annotation, curated for multiple reference image generation training and evaluating. Comprehensive experiments validate that our approach surpasses current state-of-the-art models in multiple reference image generation task. The implementation code and datasets will be made publicly. Codes are available, see https://github.com/lyrig/TokenAR

Authors:Rui Yang, Huining Li, Yiyi Long, Xiaojun Wu, Shengfeng He
Title: Stroke2Sketch: Harnessing Stroke Attributes for Training-Free Sketch Generation
Abstract:
Generating sketches guided by reference styles requires precise transfer of stroke attributes, such as line thickness, deformation, and texture sparsity, while preserving semantic structure and content fidelity. To this end, we propose Stroke2Sketch, a novel training-free framework that introduces cross-image stroke attention, a mechanism embedded within self-attention layers to establish fine-grained semantic correspondences and enable accurate stroke attribute transfer. This allows our method to adaptively integrate reference stroke characteristics into content images while maintaining structural integrity. Additionally, we develop adaptive contrast enhancement and semantic-focused attention to reinforce content preservation and foreground emphasis. Stroke2Sketch effectively synthesizes stylistically faithful sketches that closely resemble handcrafted results, outperforming existing methods in expressive stroke control and semantic coherence. Codes are available at https://github.com/rane7/Stroke2Sketch.

Authors:Yutong Wang, Haiyu Wang, Sai Qian Zhang
Title: QSVD: Efficient Low-rank Approximation for Unified Query-Key-Value Weight Compression in Low-Precision Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are integral to tasks such as image captioning and visual question answering, but their high computational cost, driven by large memory footprints and processing time, limits their scalability and real-time applicability. In this work, we propose leveraging Singular-Value Decomposition (SVD) over the joint query (Q), key (K), and value (V) weight matrices to reduce KV cache size and computational overhead. We in addition introduce an efficient rank allocation strategy that dynamically adjusts the SVD rank based on its impact on VLM accuracy, achieving a significant reduction in both memory usage and computational cost. Finally, we extend this approach by applying quantization to both VLM weights and activations, resulting in a highly efficient VLM. Our method outperforms previous approaches that rely solely on quantization or SVD by achieving more than $10\%$ accuracy improvement while consuming less hardware cost, making it better for real-time deployment on resource-constrained devices. We open source our code at \href{https://github.com/SAI-Lab-NYU/QSVD}{\texttt{https://github.com/SAI-Lab-NYU/QSVD}}.

Authors:Yilin Wu, Anqi Li, Tucker Hermans, Fabio Ramos, Andrea Bajcsy, Claudia P'erez-D'Arpino
Title: Do What You Say: Steering Vision-Language-Action Models via Runtime Reasoning-Action Alignment Verification
Abstract:
Reasoning Vision Language Action (VLA) models improve robotic instruction-following by generating step-by-step textual plans before low-level actions, an approach inspired by Chain-of-Thought (CoT) reasoning in language models. Yet even with a correct textual plan, the generated actions can still miss the intended outcomes in the plan, especially in out-of-distribution (OOD) scenarios. We formalize this phenomenon as a lack of embodied CoT faithfulness, and introduce a training-free, runtime policy steering method for reasoning-action alignment. Given a reasoning VLA's intermediate textual plan, our framework samples multiple candidate action sequences from the same model, predicts their outcomes via simulation, and uses a pre-trained Vision-Language Model (VLM) to select the sequence whose outcome best aligns with the VLA's own textual plan. Only executing action sequences that align with the textual reasoning turns our base VLA's natural action diversity from a source of error into a strength, boosting robustness to semantic and visual OOD perturbations and enabling novel behavior composition without costly re-training. We also contribute a reasoning-annotated extension of LIBERO-100, environment variations tailored for OOD evaluation, and demonstrate up to 15% performance gain over prior work on behavior composition tasks and scales with compute and data diversity. Project Website at: https://yilin-wu98.github.io/steering-reasoning-vla/

Authors:Jierui Peng, Yanyan Zhang, Yicheng Duan, Tuo Liang, Vipin Chaudhary, Yu Yin
Title: NEBULA: Do We Evaluate Vision-Language-Action Agents Correctly?
Abstract:
The evaluation of Vision-Language-Action (VLA) agents is hindered by the coarse, end-task success metric that fails to provide precise skill diagnosis or measure robustness to real-world perturbations. This challenge is exacerbated by a fragmented data landscape that impedes reproducible research and the development of generalist models. To address these limitations, we introduce \textbf{NEBULA}, a unified ecosystem for single-arm manipulation that enables diagnostic and reproducible evaluation. NEBULA features a novel dual-axis evaluation protocol that combines fine-grained \textit{capability tests} for precise skill diagnosis with systematic \textit{stress tests} that measure robustness. A standardized API and a large-scale, aggregated dataset are provided to reduce fragmentation and support cross-dataset training and fair comparison. Using NEBULA, we demonstrate that top-performing VLAs struggle with key capabilities such as spatial reasoning and dynamic adaptation, which are consistently obscured by conventional end-task success metrics. By measuring both what an agent can do and when it does so reliably, NEBULA provides a practical foundation for robust, general-purpose embodied agents.

Authors:Sarah Egler, John Schulman, Nicholas Carlini
Title: Detecting Adversarial Fine-tuning with Auditing Agents
Abstract:
Large Language Model (LLM) providers expose fine-tuning APIs that let end users fine-tune their frontier LLMs. Unfortunately, it has been shown that an adversary with fine-tuning access to an LLM can bypass safeguards. Particularly concerning, such attacks may avoid detection with datasets that are only implicitly harmful. Our work studies robust detection mechanisms for adversarial use of fine-tuning APIs. We introduce the concept of a fine-tuning auditing agent and show it can detect harmful fine-tuning prior to model deployment. We provide our auditing agent with access to the fine-tuning dataset, as well as the fine-tuned and pre-fine-tuned models, and request the agent assigns a risk score for the fine-tuning job. We evaluate our detection approach on a diverse set of eight strong fine-tuning attacks from the literature, along with five benign fine-tuned models, totaling over 1400 independent audits. These attacks are undetectable with basic content moderation on the dataset, highlighting the challenge of the task. With the best set of affordances, our auditing agent achieves a 56.2% detection rate of adversarial fine-tuning at a 1% false positive rate. Most promising, the auditor is able to detect covert cipher attacks that evade safety evaluations and content moderation of the dataset. While benign fine-tuning with unintentional subtle safety degradation remains a challenge, we establish a baseline configuration for further work in this area. We release our auditing agent at https://github.com/safety-research/finetuning-auditor.

Authors:Kate Glazko, Anika Arugunta, Janelle Chan, Nancy Jimenez-Garcia, Tashfia Sharmin, Jennifer Mankoff
Title: Case Study of GAI for Generating Novel Images for Real-World Embroidery
Abstract:
In this paper, we present a case study exploring the potential use of Generative Artificial Intelligence (GAI) to address the real-world need of making the design of embroiderable art patterns more accessible. Through an auto-ethnographic case study by a disabled-led team, we examine the application of GAI as an assistive technology in generating embroidery patterns, addressing the complexity involved in designing culturally-relevant patterns as well as those that meet specific needs regarding detail and color. We detail the iterative process of prompt engineering custom GPTs tailored for producing specific visual outputs, emphasizing the nuances of achieving desirable results that align with real-world embroidery requirements. Our findings underscore the mixed outcomes of employing GAI for producing embroiderable images, from facilitating creativity and inclusion to navigating the unpredictability of AI-generated designs. Future work aims to refine GAI tools we explored for generating embroiderable images to make them more performant and accessible, with the goal of fostering more inclusion in the domains of creativity and making.

Authors:João Carlos Virgolino Soares, Gabriel Fischer Abati, Claudio Semini
Title: VAR-SLAM: Visual Adaptive and Robust SLAM for Dynamic Environments
Abstract:
Visual SLAM in dynamic environments remains challenging, as several existing methods rely on semantic filtering that only handles known object classes, or use fixed robust kernels that cannot adapt to unknown moving objects, leading to degraded accuracy when they appear in the scene. We present VAR-SLAM (Visual Adaptive and Robust SLAM), an ORB-SLAM3-based system that combines a lightweight semantic keypoint filter to deal with known moving objects, with Barron's adaptive robust loss to handle unknown ones. The shape parameter of the robust kernel is estimated online from residuals, allowing the system to automatically adjust between Gaussian and heavy-tailed behavior. We evaluate VAR-SLAM on the TUM RGB-D, Bonn RGB-D Dynamic, and OpenLORIS datasets, which include both known and unknown moving objects. Results show improved trajectory accuracy and robustness over state-of-the-art baselines, achieving up to 25% lower ATE RMSE than NGD-SLAM on challenging sequences, while maintaining performance at 27 FPS on average.

Authors:Jérome Eertmans, Sophie Lequeu, Benoît Legat, Laurent Jacques, Claude Oestges
Title: Fast, Differentiable, GPU-Accelerated Ray Tracing for Multiple Diffraction and Reflection Paths
Abstract:
We present a fast, differentiable, GPU-accelerated optimization method for ray path tracing in environments containing planar reflectors and straight diffraction edges. Based on Fermat's principle, our approach reformulates the path-finding problem as the minimization of total path length, enabling efficient parallel execution on modern GPU architectures. Unlike existing methods that require separate algorithms for reflections and diffractions, our unified formulation maintains consistent problem dimensions across all interaction sequences, making it particularly suitable for vectorized computation. Through implicit differentiation, we achieve efficient gradient computation without differentiating through solver iterations, significantly outperforming traditional automatic differentiation approaches. Numerical simulations demonstrate convergence rates comparable to specialized Newton methods while providing superior scalability for large-scale applications. The method integrates seamlessly with differentiable programming libraries such as JAX and DrJIT, enabling new possibilities in inverse design and optimization for wireless propagation modeling. The source code is openly available at https://github.com/jeertmans/fpt-jax.

Authors:Charles Rhys Campbell, Aldo H. Romero, Kamal Choudhary
Title: AtomBench: A Benchmark for Generative Atomic Structure Models using GPT, Diffusion, and Flow Architectures
Abstract:
Generative models have become significant assets in the exploration and identification of new materials, enabling the rapid proposal of candidate crystal structures that satisfy target properties. Despite the increasing adoption of diverse architectures, a rigorous comparative evaluation of their performance on materials datasets is lacking. In this work, we present a systematic benchmark of three representative generative models- AtomGPT (a transformer-based model), Crystal Diffusion Variational Autoencoder (CDVAE), and FlowMM (a Riemannian flow matching model). These models were trained to reconstruct crystal structures from subsets of two publicly available superconductivity datasets- JARVIS Supercon 3D and DS A/B from the Alexandria database. Performance was assessed using the Kullback-Leibler (KL) divergence between predicted and reference distributions of lattice parameters, as well as the mean absolute error (MAE) of individual lattice constants. For the computed KLD and MAE scores, CDVAE performs most favorably, followed by AtomGPT, and then FlowMM. All benchmarking code and model configurations will be made publicly available at https://github.com/atomgptlab/atombench_inverse.

Authors:Ahmad Arrabi, Jay Hwasung Jung, Jax Luo, Nathan Franssen, Scott Raymond, Safwan Wshah
Title: Automated C-Arm Positioning via Conformal Landmark Localization
Abstract:
Accurate and reliable C-arm positioning is essential for fluoroscopy-guided interventions. However, clinical workflows rely on manual alignment that increases radiation exposure and procedural delays. In this work, we present a pipeline that autonomously navigates the C-arm to predefined anatomical landmarks utilizing X-ray images. Given an input X-ray image from an arbitrary starting location on the operating table, the model predicts a 3D displacement vector toward each target landmark along the body. To ensure reliable deployment, we capture both aleatoric and epistemic uncertainties in the model's predictions and further calibrate them using conformal prediction. The derived prediction regions are interpreted as 3D confidence regions around the predicted landmark locations. The training framework combines a probabilistic loss with skeletal pose regularization to encourage anatomically plausible outputs. We validate our approach on a synthetic X-ray dataset generated from DeepDRR. Results show not only strong localization accuracy across multiple architectures but also well-calibrated prediction bounds. These findings highlight the pipeline's potential as a component in safe and reliable autonomous C-arm systems. Code is available at https://github.com/AhmadArrabi/C_arm_guidance_APAH

Authors:Ahmad Arrabi, Jay hwasung Jung, J Le, A Nguyen, J Reed, E Stahl, Nathan Franssen, Scott Raymond, Safwan Wshah
Title: C-arm Guidance: A Self-supervised Approach To Automated Positioning During Stroke Thrombectomy
Abstract:
Thrombectomy is one of the most effective treatments for ischemic stroke, but it is resource and personnel-intensive. We propose employing deep learning to automate critical aspects of thrombectomy, thereby enhancing efficiency and safety. In this work, we introduce a self-supervised framework that classifies various skeletal landmarks using a regression-based pretext task. Our experiments demonstrate that our model outperforms existing methods in both regression and classification tasks. Notably, our results indicate that the positional pretext task significantly enhances downstream classification performance. Future work will focus on extending this framework toward fully autonomous C-arm control, aiming to optimize trajectories from the pelvis to the head during stroke thrombectomy procedures. All code used is available at https://github.com/AhmadArrabi/C_arm_guidance

Authors:Sayan Deb Sarkar, Sinisa Stekovic, Vincent Lepetit, Iro Armeni
Title: GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer
Abstract:
Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.

Authors:Oliver J. Hines, Caleb H. Miles
Title: Learning density ratios in causal inference using Bregman-Riesz regression
Abstract:
The ratio of two probability density functions is a fundamental quantity that appears in many areas of statistics and machine learning, including causal inference, reinforcement learning, covariate shift, outlier detection, independence testing, importance sampling, and diffusion modeling. Naively estimating the numerator and denominator densities separately using, e.g., kernel density estimators, can lead to unstable performance and suffers from the curse of dimensionality as the number of covariates increases. For this reason, several methods have been developed for estimating the density ratio directly based on (a) Bregman divergences or (b) recasting the density ratio as the odds in a probabilistic classification model that predicts whether an observation is sampled from the numerator or denominator distribution. Additionally, the density ratio can be viewed as the Riesz representer of a continuous linear map, making it amenable to estimation via (c) minimization of the so-called Riesz loss, which was developed to learn the Riesz representer in the Riesz regression procedure in causal inference. In this paper we show that all three of these methods can be unified in a common framework, which we call Bregman-Riesz regression. We further show how data augmentation techniques can be used to apply density ratio learning methods to causal problems, where the numerator distribution typically represents an unobserved intervention. We show through simulations how the choice of Bregman divergence and data augmentation strategy can affect the performance of the resulting density ratio learner. A Python package is provided for researchers to apply Bregman-Riesz regression in practice using gradient boosting, neural networks, and kernel methods.

Authors:Eleni Straitouri, Stratis Tsirtsis, Ander Artola Velasco, Manuel Gomez-Rodriguez
Title: Narrowing Action Choices with AI Improves Human Sequential Decisions
Abstract:
Recent work has shown that, in classification tasks, it is possible to design decision support systems that do not require human experts to understand when to cede agency to a classifier or when to exercise their own agency to achieve complementarity$\unicode{x2014}$experts using these systems make more accurate predictions than those made by the experts or the classifier alone. The key principle underpinning these systems reduces to adaptively controlling the level of human agency, by design. Can we use the same principle to achieve complementarity in sequential decision making tasks? In this paper, we answer this question affirmatively. We develop a decision support system that uses a pre-trained AI agent to narrow down the set of actions a human can take to a subset, and then asks the human to take an action from this action set. Along the way, we also introduce a bandit algorithm that leverages the smoothness properties of the action sets provided by our system to efficiently optimize the level of human agency. To evaluate our decision support system, we conduct a large-scale human subject study ($n = 1{,}600$) where participants play a wildfire mitigation game. We find that participants who play the game supported by our system outperform those who play on their own by $\sim$$30$% and the AI agent used by our system by $>$$2$%, even though the AI agent largely outperforms participants playing without support. We have made available the data gathered in our human subject study as well as an open source implementation of our system at https://github.com/Networks-Learning/narrowing-action-choices .

Authors:William Hoy, Nurcin Celik
Title: STABLE: Gated Continual Learning for Large Language Models
Abstract:
Large language models (LLMs) increasingly require mechanisms for continual adaptation without full retraining. However, sequential updates can lead to catastrophic forgetting, where new edits degrade previously acquired knowledge. This work presents STABLE, a gated continual self editing framework that constrains forgetting during sequential updates using parameter efficient fine tuning via Low Rank Adaptation (LoRA; see arXiv:2106.09685). Each candidate edit is evaluated against a stability budget using one of three metrics: (i) Exact Match (EM) drop, capturing factual accuracy loss; (ii) bits increase, reflecting reduced model confidence; and (iii) KL divergence, quantifying distributional drift between the base and adapted models. If a threshold is exceeded, the LoRA update is rescaled through a clipping procedure or rejected. Experiments on the Qwen-2.5-7B model show that gating effectively mitigates forgetting while preserving adaptability. EM based gating achieved the highest cumulative performance in short continual learning sequences. Our results show that different gating strategies can achieve comparable distribution shift (measured by KL divergence) while producing different accuracy outcomes, highlighting the importance of gating design in continual adaptation. This approach offers a principled method for continual model editing, enabling LLMs to integrate new knowledge while maintaining reliability. Code: https://github.com/Bhoy1/STABLE

Authors:Kerem Delikoyun, Qianyu Chen, Win Sen Kuan, John Tshon Yit Soong, Matthew Edward Cove, Oliver Hayden
Title: TriAgent: Automated Biomarker Discovery with Deep Research Grounding for Triage in Acute Care by LLM-Based Multi-Agent Collaboration
Abstract:
Emergency departments worldwide face rising patient volumes, workforce shortages, and variability in triage decisions that threaten the delivery of timely and accurate care. Current triage methods rely primarily on vital signs, routine laboratory values, and clinicians' judgment, which, while effective, often miss emerging biological signals that could improve risk prediction for infection typing or antibiotic administration in acute conditions. To address this challenge, we introduce TriAgent, a large language model (LLM)-based multi-agent framework that couples automated biomarker discovery with deep research for literature-grounded validation and novelty assessment. TriAgent employs a supervisor research agent to generate research topics and delegate targeted queries to specialized sub-agents for evidence retrieval from various data sources. Findings are synthesized to classify biomarkers as either grounded in existing knowledge or flagged as novel candidates, offering transparent justification and highlighting unexplored pathways in acute care risk stratification. Unlike prior frameworks limited to existing routine clinical biomarkers, TriAgent aims to deliver an end-to-end framework from data analysis to literature grounding to improve transparency, explainability and expand the frontier of potentially actionable clinical biomarkers. Given a user's clinical query and quantitative triage data, TriAgent achieved a topic adherence F1 score of 55.7 +/- 5.0%, surpassing the CoT-ReAct agent by over 10%, and a faithfulness score of 0.42 +/- 0.39, exceeding all baselines by more than 50%. Across experiments, TriAgent consistently outperformed state-of-the-art LLM-based agentic frameworks in biomarker justification and literature-grounded novelty assessment. We share our repo: https://github.com/CellFace/TriAgent.

Authors:Rong Wu, Xiaoman Wang, Jianbiao Mei, Pinlong Cai, Daocheng Fu, Cheng Yang, Licheng Wen, Xuemeng Yang, Yufan Shen, Yuxin Wang, Botian Shi
Title: EvolveR: Self-Evolving LLM Agents through an Experience-Driven Lifecycle
Abstract:
Current Large Language Model (LLM) agents show strong performance in tool use, but lack the crucial capability to systematically learn from their own experiences. While existing frameworks mainly focus on mitigating external knowledge gaps, they fail to address a more fundamental limitation: the inability to iteratively refine problem-solving strategies. In this work, we introduce EvolveR, a framework designed to enable agent to self-improve through a complete, closed-loop experience lifecycle. This lifecycle comprises two key stages: (1) Offline Self-Distillation, where the agent's interaction trajectories are synthesized into a structured repository of abstract, reusable strategic principles; (2) Online Interaction, where the agent interacts with tasks and actively retrieves distilled principles to guide its decision-making, accumulating a diverse set of behavioral trajectories. This loop employs a policy reinforcement mechanism to iteratively update the agent based on its performance. We demonstrate the effectiveness of EvolveR on complex multi-hop question-answering benchmarks, where it achieves superior performance over strong agentic baselines. Our work presents a comprehensive blueprint for agents that learn not only from external data but also from the consequences of their own actions, paving the way for more autonomous and continuously improving systems. Code is available at https://github.com/Edaizi/EvolveR.

Authors:SeongKu Kang, Jianxun Lian, Dongha Lee, Wonbin Kweon, Sanghwan Jang, Jaehyun Lee, Jindong Wang, Xing Xie, Hwanjo Yu
Title: BPL: Bias-adaptive Preference Distillation Learning for Recommender System
Abstract:
Recommender systems suffer from biases that cause the collected feedback to incompletely reveal user preference. While debiasing learning has been extensively studied, they mostly focused on the specialized (called counterfactual) test environment simulated by random exposure of items, significantly degrading accuracy in the typical (called factual) test environment based on actual user-item interactions. In fact, each test environment highlights the benefit of a different aspect: the counterfactual test emphasizes user satisfaction in the long-terms, while the factual test focuses on predicting subsequent user behaviors on platforms. Therefore, it is desirable to have a model that performs well on both tests rather than only one. In this work, we introduce a new learning framework, called Bias-adaptive Preference distillation Learning (BPL), to gradually uncover user preferences with dual distillation strategies. These distillation strategies are designed to drive high performance in both factual and counterfactual test environments. Employing a specialized form of teacher-student distillation from a biased model, BPL retains accurate preference knowledge aligned with the collected feedback, leading to high performance in the factual test. Furthermore, through self-distillation with reliability filtering, BPL iteratively refines its knowledge throughout the training process. This enables the model to produce more accurate predictions across a broader range of user-item combinations, thereby improving performance in the counterfactual test. Comprehensive experiments validate the effectiveness of BPL in both factual and counterfactual tests. Our implementation is accessible via: https://github.com/SeongKu-Kang/BPL.

Authors:Xin Cao, Nan Yu
Title: SIADAFIX: issue description response for adaptive program repair
Abstract:
We propose utilizing fast and slow thinking to enhance the capabilities of large language model-based agents on complex tasks such as program repair. In particular, we design an adaptive program repair method based on issue description response, called SIADAFIX. The proposed method utilizes slow thinking bug fix agent to complete complex program repair tasks, and employs fast thinking workflow decision components to optimize and classify issue descriptions, using issue description response results to guide the orchestration of bug fix agent workflows. SIADAFIX adaptively selects three repair modes, i.e., easy, middle and hard mode, based on problem complexity. It employs fast generalization for simple problems and test-time scaling techniques for complex problems. Experimental results on the SWE-bench Lite show that the proposed method achieves 60.67% pass@1 performance using the Claude-4 Sonnet model, reaching state-of-the-art levels among all open-source methods. SIADAFIX effectively balances repair efficiency and accuracy, providing new insights for automated program repair. Our code is available at https://github.com/liauto-siada/siada-cli.

Authors:Zewen Li, Zitong Yu, Qilang Ye, Weicheng Xie, Wei Zhuo, Linlin Shen
Title: IAD-GPT: Advancing Visual Knowledge in Multimodal Large Language Model for Industrial Anomaly Detection
Abstract:
The robust causal capability of Multimodal Large Language Models (MLLMs) hold the potential of detecting defective objects in Industrial Anomaly Detection (IAD). However, most traditional IAD methods lack the ability to provide multi-turn human-machine dialogues and detailed descriptions, such as the color of objects, the shape of an anomaly, or specific types of anomalies. At the same time, methods based on large pre-trained models have not fully stimulated the ability of large models in anomaly detection tasks. In this paper, we explore the combination of rich text semantics with both image-level and pixel-level information from images and propose IAD-GPT, a novel paradigm based on MLLMs for IAD. We employ Abnormal Prompt Generator (APG) to generate detailed anomaly prompts for specific objects. These specific prompts from the large language model (LLM) are used to activate the detection and segmentation functions of the pre-trained visual-language model (i.e., CLIP). To enhance the visual grounding ability of MLLMs, we propose Text-Guided Enhancer, wherein image features interact with normal and abnormal text prompts to dynamically select enhancement pathways, which enables language models to focus on specific aspects of visual data, enhancing their ability to accurately interpret and respond to anomalies within images. Moreover, we design a Multi-Mask Fusion module to incorporate mask as expert knowledge, which enhances the LLM's perception of pixel-level anomalies. Extensive experiments on MVTec-AD and VisA datasets demonstrate our state-of-the-art performance on self-supervised and few-shot anomaly detection and segmentation tasks, such as MVTec-AD and VisA datasets. The codes are available at \href{https://github.com/LiZeWen1225/IAD-GPT}{https://github.com/LiZeWen1225/IAD-GPT}.

Authors:Junyu Ren, Wensheng Gan, Guangyu Zhang, Wei Zhong, Philip S. Yu
Title: Global-focal Adaptation with Information Separation for Noise-robust Transfer Fault Diagnosis
Abstract:
Existing transfer fault diagnosis methods typically assume either clean data or sufficient domain similarity, which limits their effectiveness in industrial environments where severe noise interference and domain shifts coexist. To address this challenge, we propose an information separation global-focal adversarial network (ISGFAN), a robust framework for cross-domain fault diagnosis under noise conditions. ISGFAN is built on an information separation architecture that integrates adversarial learning with an improved orthogonal loss to decouple domain-invariant fault representation, thereby isolating noise interference and domain-specific characteristics. To further strengthen transfer robustness, ISGFAN employs a global-focal domain-adversarial scheme that constrains both the conditional and marginal distributions of the model. Specifically, the focal domain-adversarial component mitigates category-specific transfer obstacles caused by noise in unsupervised scenarios, while the global domain classifier ensures alignment of the overall distribution. Experiments conducted on three public benchmark datasets demonstrate that the proposed method outperforms other prominent existing approaches, confirming the superiority of the ISGFAN framework. Data and code are available at https://github.com/JYREN-Source/ISGFAN

Authors:Zexi Tan, Tao Xie, Binbin Sun, Xiang Zhang, Yiqun Zhang, Yiu-Ming Cheung
Title: MEET-Sepsis: Multi-Endogenous-View Enhanced Time-Series Representation Learning for Early Sepsis Prediction Representation Learning for Early Sepsis Prediction
Abstract:
Sepsis is a life-threatening infectious syndrome associated with high mortality in intensive care units (ICUs). Early and accurate sepsis prediction (SP) is critical for timely intervention, yet remains challenging due to subtle early manifestations and rapidly escalating mortality. While AI has improved SP efficiency, existing methods struggle to capture weak early temporal signals. This paper introduces a Multi-Endogenous-view Representation Enhancement (MERE) mechanism to construct enriched feature views, coupled with a Cascaded Dual-convolution Time-series Attention (CDTA) module for multi-scale temporal representation learning. The proposed MEET-Sepsis framework achieves competitive prediction accuracy using only 20% of the ICU monitoring time required by SOTA methods, significantly advancing early SP. Extensive validation confirms its efficacy. Code is available at: https://github.com/yueliangy/MEET-Sepsis.

Authors:Rafael Cabral, Tuan Manh Do, Xuejun Yu, Wai Ming Tai, Zijin Feng, Xin Shen
Title: ProofFlow: A Dependency Graph Approach to Faithful Proof Autoformalization
Abstract:
Proof autoformalization, the task of translating natural language theorems and proofs into machine-verifiable code, is a critical step for integrating large language models into rigorous mathematical workflows. Current approaches focus on producing executable code, but they frequently fail to preserve the semantic meaning and logical structure of the original human-written argument. To address this, we introduce ProofFlow, a novel pipeline that treats structural fidelity as a primary objective. ProofFlow first constructs a directed acyclic graph (DAG) to map the logical dependencies between proof steps. Then, it employs a novel lemma-based approach to systematically formalize each step as an intermediate lemma, preserving the logical structure of the original argument. To facilitate evaluation, we present a new benchmark of 184 undergraduate-level problems, manually annotated with step-by-step solutions and logical dependency graphs, and introduce ProofScore, a new composite metric to evaluate syntactic correctness, semantic faithfulness, and structural fidelity. Experimental results show our pipeline sets a new state-of-the-art for autoformalization, achieving a ProofScore of 0.545, substantially exceeding baselines like full-proof formalization (0.123), which processes the entire proof at once, and step-proof formalization (0.072), which handles each step independently. Our pipeline, benchmark, and score metric are open-sourced to encourage further progress at https://github.com/Huawei-AI4Math/ProofFlow.

Authors:Chenrui Wang, Junyi Shu, Billy Chiu, Yu Li, Saleh Alharbi, Min Zhang, Jing Li
Title: Learning to Watermark: A Selective Watermarking Framework for Large Language Models via Multi-Objective Optimization
Abstract:
The rapid development of LLMs has raised concerns about their potential misuse, leading to various watermarking schemes that typically offer high detectability. However, existing watermarking techniques often face trade-off between watermark detectability and generated text quality. In this paper, we introduce Learning to Watermark (LTW), a novel selective watermarking framework that leverages multi-objective optimization to effectively balance these competing goals. LTW features a lightweight network that adaptively decides when to apply the watermark by analyzing sentence embeddings, token entropy, and current watermarking ratio. Training of the network involves two specifically constructed loss functions that guide the model toward Pareto-optimal solutions, thereby harmonizing watermark detectability and text quality. By integrating LTW with two baseline watermarking methods, our experimental evaluations demonstrate that LTW significantly enhances text quality without compromising detectability. Our selective watermarking approach offers a new perspective for designing watermarks for LLMs and a way to preserve high text quality for watermarks. The code is publicly available at: https://github.com/fattyray/learning-to-watermark

Authors:Zhengyi Zhong, Wenzheng Jiang, Weidong Bao, Ji Wang, Cheems Wang, Guanbo Wang, Yongheng Deng, Ju Ren
Title: Gains: Fine-grained Federated Domain Adaptation in Open Set
Abstract:
Conventional federated learning (FL) assumes a closed world with a fixed total number of clients. In contrast, new clients continuously join the FL process in real-world scenarios, introducing new knowledge. This raises two critical demands: detecting new knowledge, i.e., knowledge discovery, and integrating it into the global model, i.e., knowledge adaptation. Existing research focuses on coarse-grained knowledge discovery, and often sacrifices source domain performance and adaptation efficiency. To this end, we propose a fine-grained federated domain adaptation approach in open set (Gains). Gains splits the model into an encoder and a classifier, empirically revealing features extracted by the encoder are sensitive to domain shifts while classifier parameters are sensitive to class increments. Based on this, we develop fine-grained knowledge discovery and contribution-driven aggregation techniques to identify and incorporate new knowledge. Additionally, an anti-forgetting mechanism is designed to preserve source domain performance, ensuring balanced adaptation. Experimental results on multi-domain datasets across three typical data-shift scenarios demonstrate that Gains significantly outperforms other baselines in performance for both source-domain and target-domain clients. Code is available at: https://github.com/Zhong-Zhengyi/Gains.

Authors:Kien Le Trung, Truong-Son Hy
Title: DiffPlace: A Conditional Diffusion Framework for Simultaneous VLSI Placement Beyond Sequential Paradigms
Abstract:
Chip placement, the task of determining optimal positions of circuit modules on a chip canvas, is a critical step in the VLSI design flow that directly impacts performance, power consumption, and routability. Traditional methods rely on analytical optimization or reinforcement learning, which struggle with hard placement constraints or require expensive online training for each new circuit design. To address these limitations, we introduce DiffPlace, a framework that formulates chip placement as a conditional denoising diffusion process, enabling transferable placement policies that generalize to unseen circuit netlists without retraining. DiffPlace leverages the generative capabilities of diffusion models to efficiently explore the vast space of placement while conditioning on circuit connectivity and relative quality metrics to identify optimal solutions globally. Our approach combines energy-guided sampling with constrained manifold diffusion to ensure placement legality, achieving extremely low overlap across all experimental scenarios. Our method bridges the gap between optimization-based and learning-based approaches, offering a practical path toward automated, high-quality chip placement for modern VLSI design. Our source code is publicly available at: https://github.com/HySonLab/DiffPlace/

Authors:Hyun Woo Kang, Ji Woong Choi
Title: basic_RV32s: An Open-Source Microarchitectural Roadmap for RISC-V RV32I
Abstract:
This paper introduces BASIC_RV32s, an open-source framework providing a practical microarchitectural roadmap for the RISC-V RV32I architecture, addressing the gap between theoretical knowledge and hardware implementation. Following the classic Patterson and Hennessy methodology, the design evolves from a basic single-cycle core to a 5-stage pipelined core design with full hazard forwarding, dynamic branch prediction, and exception handling. For verification, the final core design is integrated into a System-on-Chip (SoC) with Universal Asynchronous Receiver-Transmitter (UART) communication implemented on a Xilinx Artix-7 Field-Programmable Gate Array (FPGA), achieving 1.09 Dhrystone million instructions per second per megahertz (DMIPS/MHz) at 50 MHz. By releasing all Register-Transfer Level (RTL) source code, signal-level logic block diagrams, and development logs under MIT license on GitHub, BASIC_RV32s offers a reproducible instructional pathway for the open-source hardware ecosystem.

Authors:Gary V. C. Allen, Dirk I. L. de Villiers
Title: ParamRF: A JAX-native Framework for Declarative Circuit Modelling
Abstract:
This work introduces ParamRF: a Python library for efficient, parametric modelling of radio frequency (RF) circuits. Built on top of the next-generation computational library JAX, as well as the object-oriented wrapper Equinox, the framework provides an easy-to-use, declarative modelling interface, without sacrificing performance. By representing circuits as JAX PyTrees and leveraging just-in-time compilation, models are compiled as pure functions into an optimized, algebraic graph. Since the resultant functions are JAX-native, this allows computation on CPUs, GPUs, or TPUs, providing integration with a wide range of solvers. Further, thanks to JAX's automatic differentiation, gradients with respect to both frequency and circuit parameters can be calculated for any circuit model outputs. This allows for more efficient optimization, as well as exciting new analysis opportunities. We showcase ParamRF's typical use-case of fitting a model to measured data via its built-in fitting engines, which include classical optimizers like L-BFGS and SLSQP, as well as modern Bayesian samplers such as PolyChord and BlackJAX. The result is a flexible framework for frequency-domain circuit modelling, fitting and analysis.

Authors:Hanrong Ye, Chao-Han Huck Yang, Arushi Goel, Wei Huang, Ligeng Zhu, Yuanhang Su, Sean Lin, An-Chieh Cheng, Zhen Wan, Jinchuan Tian, Yuming Lou, Dong Yang, Zhijian Liu, Yukang Chen, Ambrish Dantrey, Ehsan Jahangiri, Sreyan Ghosh, Daguang Xu, Ehsan Hosseini-Asl, Danial Mohseni Taheri, Vidya Murali, Sifei Liu, Jason Lu, Oluwatobi Olabiyi, Frank Wang, Rafael Valle, Bryan Catanzaro, Andrew Tao, Song Han, Jan Kautz, Hongxu Yin, Pavlo Molchanov
Title: OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Abstract:
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

Authors:Shr-Ruei Tsai, Wei-Cheng Chang, Jie-Ying Lee, Chih-Hai Su, Yu-Lun Liu
Title: LightsOut: Diffusion-based Outpainting for Enhanced Lens Flare Removal
Abstract:
Lens flare significantly degrades image quality, impacting critical computer vision tasks like object detection and autonomous driving. Recent Single Image Flare Removal (SIFR) methods perform poorly when off-frame light sources are incomplete or absent. We propose LightsOut, a diffusion-based outpainting framework tailored to enhance SIFR by reconstructing off-frame light sources. Our method leverages a multitask regression module and LoRA fine-tuned diffusion model to ensure realistic and physically consistent outpainting results. Comprehensive experiments demonstrate LightsOut consistently boosts the performance of existing SIFR methods across challenging scenarios without additional retraining, serving as a universally applicable plug-and-play preprocessing solution. Project page: https://ray-1026.github.io/lightsout/

Authors:Yi Wan, Jiuqi Wang, Liam Li, Jinsong Liu, Ruihao Zhu, Zheqing Zhu
Title: PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
Abstract:
Tool-augmented large language models (LLMs) are emerging as deep research agents, systems that decompose complex queries, retrieve external evidence, and synthesize grounded responses. Yet current agents remain limited by shallow retrieval, weak alignment metrics, and brittle tool-use behavior. We introduce PokeeResearch-7B, a 7B-parameter deep research agent built under a unified reinforcement learning framework for robustness, alignment, and scalability. PokeeResearch-7B is trained by an annotation-free Reinforcement Learning from AI Feedback (RLAIF) framework to optimize policies using LLM-based reward signals that capture factual accuracy, citation faithfulness, and instruction adherence. A chain-of-thought-driven multi-call reasoning scaffold further enhances robustness through self-verification and adaptive recovery from tool failures. Among 10 popular deep research benchmarks, PokeeResearch-7B achieves state-of-the-art performance among 7B-scale deep research agents. This highlights that careful reinforcement learning and reasoning design can produce efficient, resilient, and research-grade AI agents. The model and inference code is open-sourced under MIT license at https://github.com/Pokee-AI/PokeeResearchOSS.

Authors:Joongwon Chae, Lihui Luo, Xi Yuan, Dongmei Yu, Zhenglin Chen, Lian Zhang, Peiwu Qin
Title: Memory-SAM: Human-Prompt-Free Tongue Segmentation via Retrieval-to-Prompt
Abstract:
Accurate tongue segmentation is crucial for reliable TCM analysis. Supervised models require large annotated datasets, while SAM-family models remain prompt-driven. We present Memory-SAM, a training-free, human-prompt-free pipeline that automatically generates effective prompts from a small memory of prior cases via dense DINOv3 features and FAISS retrieval. Given a query image, mask-constrained correspondences to the retrieved exemplar are distilled into foreground/background point prompts that guide SAM2 without manual clicks or model fine-tuning. We evaluate on 600 expert-annotated images (300 controlled, 300 in-the-wild). On the mixed test split, Memory-SAM achieves mIoU 0.9863, surpassing FCN (0.8188) and a detector-to-box SAM baseline (0.1839). On controlled data, ceiling effects above 0.98 make small differences less meaningful given annotation variability, while our method shows clear gains under real-world conditions. Results indicate that retrieval-to-prompt enables data-efficient, robust segmentation of irregular boundaries in tongue imaging. The code is publicly available at https://github.com/jw-chae/memory-sam.

Authors:Yuhang Chen, Tianpeng Lv, Siyi Zhang, Yixiang Yin, Yao Wan, Philip S. Yu, Dongping Chen
Title: Paper2Web: Let's Make Your Paper Alive!
Abstract:
Academic project websites can more effectively disseminate research when they clearly present core content and enable intuitive navigation and interaction. However, current approaches such as direct Large Language Model (LLM) generation, templates, or direct HTML conversion struggle to produce layout-aware, interactive sites, and a comprehensive evaluation suite for this task has been lacking. In this paper, we introduce Paper2Web, a benchmark dataset and multi-dimensional evaluation framework for assessing academic webpage generation. It incorporates rule-based metrics like Connectivity, Completeness and human-verified LLM-as-a-Judge (covering interactivity, aesthetics, and informativeness), and PaperQuiz, which measures paper-level knowledge retention. We further present PWAgent, an autonomous pipeline that converts scientific papers into interactive and multimedia-rich academic homepages. The agent iteratively refines both content and layout through MCP tools that enhance emphasis, balance, and presentation quality. Our experiments show that PWAgent consistently outperforms end-to-end baselines like template-based webpages and arXiv/alphaXiv versions by a large margin while maintaining low cost, achieving the Pareto-front in academic webpage generation.

Authors:Haowei Zhu, Tianxiang Pan, Rui Qin, Jun-Hai Yong, Bin Wang
Title: ReCon: Region-Controllable Data Augmentation with Rectification and Alignment for Object Detection
Abstract:
The scale and quality of datasets are crucial for training robust perception models. However, obtaining large-scale annotated data is both costly and time-consuming. Generative models have emerged as a powerful tool for data augmentation by synthesizing samples that adhere to desired distributions. However, current generative approaches often rely on complex post-processing or extensive fine-tuning on massive datasets to achieve satisfactory results, and they remain prone to content-position mismatches and semantic leakage. To overcome these limitations, we introduce ReCon, a novel augmentation framework that enhances the capacity of structure-controllable generative models for object detection. ReCon integrates region-guided rectification into the diffusion sampling process, using feedback from a pre-trained perception model to rectify misgenerated regions within diffusion sampling process. We further propose region-aligned cross-attention to enforce spatial-semantic alignment between image regions and their textual cues, thereby improving both semantic consistency and overall image fidelity. Extensive experiments demonstrate that ReCon substantially improve the quality and trainability of generated data, achieving consistent performance gains across various datasets, backbone architectures, and data scales. Our code is available at https://github.com/haoweiz23/ReCon .

Authors:Rathi Adarshi Rammohan, Moritz Meier, Dennis Küster, Tanja Schultz
Title: EASELAN: An Open-Source Framework for Multimodal Biosignal Annotation and Data Management
Abstract:
Recent advancements in machine learning and adaptive cognitive systems are driving a growing demand for large and richly annotated multimodal data. A prominent example of this trend are fusion models, which increasingly incorporate multiple biosignals in addition to traditional audiovisual channels. This paper introduces the EASELAN annotation framework to improve annotation workflows designed to address the resulting rising complexity of multimodal and biosignals datasets. It builds on the robust ELAN tool by adding new components tailored to support all stages of the annotation pipeline: From streamlining the preparation of annotation files to setting up additional channels, integrated version control with GitHub, and simplified post-processing. EASELAN delivers a seamless workflow designed to integrate biosignals and facilitate rich annotations to be readily exported for further analyses and machine learning-supported model training. The EASELAN framework is successfully applied to a high-dimensional biosignals collection initiative on human everyday activities (here, table setting) for cognitive robots within the DFG-funded Collaborative Research Center 1320 Everyday Activity Science and Engineering (EASE). In this paper we discuss the opportunities, limitations, and lessons learned when using EASELAN for this initiative. To foster research on biosignal collection, annotation, and processing, the code of EASELAN is publicly available(https://github.com/cognitive-systems-lab/easelan), along with the EASELAN-supported fully annotated Table Setting Database.

Authors:Yitong Sun, Yao Huang, Ruochen Zhang, Huanran Chen, Shouwei Ruan, Ranjie Duan, Xingxing Wei
Title: NDM: A Noise-driven Detection and Mitigation Framework against Implicit Sexual Intentions in Text-to-Image Generation
Abstract:
Despite the impressive generative capabilities of text-to-image (T2I) diffusion models, they remain vulnerable to generating inappropriate content, especially when confronted with implicit sexual prompts. Unlike explicit harmful prompts, these subtle cues, often disguised as seemingly benign terms, can unexpectedly trigger sexual content due to underlying model biases, raising significant ethical concerns. However, existing detection methods are primarily designed to identify explicit sexual content and therefore struggle to detect these implicit cues. Fine-tuning approaches, while effective to some extent, risk degrading the model's generative quality, creating an undesirable trade-off. To address this, we propose NDM, the first noise-driven detection and mitigation framework, which could detect and mitigate implicit malicious intention in T2I generation while preserving the model's original generative capabilities. Specifically, we introduce two key innovations: first, we leverage the separability of early-stage predicted noise to develop a noise-based detection method that could identify malicious content with high accuracy and efficiency; second, we propose a noise-enhanced adaptive negative guidance mechanism that could optimize the initial noise by suppressing the prominent region's attention, thereby enhancing the effectiveness of adaptive negative guidance for sexual mitigation. Experimentally, we validate NDM on both natural and adversarial datasets, demonstrating its superior performance over existing SOTA methods, including SLD, UCE, and RECE, etc. Code and resources are available at https://github.com/lorraine021/NDM.

Authors:Nayan Kumar Singh
Title: A Comprehensive Evaluation of Graph Neural Networks and Physics Informed Learning for Surrogate Modelling of Finite Element Analysis
Abstract:
Although Finite Element Analysis (FEA) is an integral part of the product design lifecycle, the analysis is computationally expensive, making it unsuitable for many design optimization problems. The deep learning models can be a great solution. However, selecting the architecture that emulates the FEA with great accuracy is a challenge. This paper presents a comprehensive evaluation of graph neural networks (GNNs) and 3D U-Nets as surrogates for FEA of parametric I-beams. We introduce a Physics-Informed Neural Network (PINN) framework, governed by the Navier Cauchy equations, to enforce physical laws. Crucially, we demonstrate that a curriculum learning strategy, pretraining on data followed by physics informed fine tuning, is essential for stabilizing training. Our results show that GNNs fundamentally outperform the U-Net. Even the worst performer among GNNs, the GCN framework, achieved a relative L2 error of 8.7% while the best framework among U Net, U Net with attention mechanism trained on high resolution data, achieved 13.0% score. Among the graph-based architectures, the Message Passing Neural Networks (MPNN) and Graph Transformers achieved the highest accuracy, achieving a relative L2 score of 3.5% and 2.6% respectively. The inclusion of physics fundamental laws (PINN) significantly improved the generalization, reducing error by up to 11.3% on high-signal tasks. While the Graph Transformer is the most accurate model, it is more 37.5% slower during inference when compared to second best model, MPNN PINN. The PINN enhanced MPNN (MPNN PINN) provides the most practical solution. It offers a good compromise between predictive performance, model size, and inference speed.

Authors:Haoran Wang, Bo Zhao, Jinghui Wang, Hanzhang Wang, Huan Yang, Wei Ji, Hao Liu, Xinyan Xiao
Title: SEGA: A Stepwise Evolution Paradigm for Content-Aware Layout Generation with Design Prior
Abstract:
In this paper, we study the content-aware layout generation problem, which aims to automatically generate layouts that are harmonious with a given background image. Existing methods usually deal with this task with a single-step reasoning framework. The lack of a feedback-based self-correction mechanism leads to their failure rates significantly increasing when faced with complex element layout planning. To address this challenge, we introduce SEGA, a novel Stepwise Evolution Paradigm for Content-Aware Layout Generation. Inspired by the systematic mode of human thinking, SEGA employs a hierarchical reasoning framework with a coarse-to-fine strategy: first, a coarse-level module roughly estimates the layout planning results; then, another refining module performs fine-level reasoning regarding the coarse planning results. Furthermore, we incorporate layout design principles as prior knowledge into the model to enhance its layout planning ability. Besides, we present GenPoster-100K that is a new large-scale poster dataset with rich meta-information annotation. The experiments demonstrate the effectiveness of our approach by achieving the state-of-the-art results on multiple benchmark datasets. Our project page is at: https://brucew91.github.io/SEGA.github.io/

Authors:Qingyan Bai, Qiuyu Wang, Hao Ouyang, Yue Yu, Hanlin Wang, Wen Wang, Ka Leong Cheng, Shuailei Ma, Yanhong Zeng, Zichen Liu, Yinghao Xu, Yujun Shen, Qifeng Chen
Title: Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
Abstract:
Instruction-based video editing promises to democratize content creation, yet its progress is severely hampered by the scarcity of large-scale, high-quality training data. We introduce Ditto, a holistic framework designed to tackle this fundamental challenge. At its heart, Ditto features a novel data generation pipeline that fuses the creative diversity of a leading image editor with an in-context video generator, overcoming the limited scope of existing models. To make this process viable, our framework resolves the prohibitive cost-quality trade-off by employing an efficient, distilled model architecture augmented by a temporal enhancer, which simultaneously reduces computational overhead and improves temporal coherence. Finally, to achieve full scalability, this entire pipeline is driven by an intelligent agent that crafts diverse instructions and rigorously filters the output, ensuring quality control at scale. Using this framework, we invested over 12,000 GPU-days to build Ditto-1M, a new dataset of one million high-fidelity video editing examples. We trained our model, Editto, on Ditto-1M with a curriculum learning strategy. The results demonstrate superior instruction-following ability and establish a new state-of-the-art in instruction-based video editing.

Authors:Chao Wang, Yixin Song, Jinhui Ye, Chuan Qin, Dazhong Shen, Lingfeng Liu, Xiang Wang, Yanyong Zhang
Title: FACE: A General Framework for Mapping Collaborative Filtering Embeddings into LLM Tokens
Abstract:
Recently, large language models (LLMs) have been explored for integration with collaborative filtering (CF)-based recommendation systems, which are crucial for personalizing user experiences. However, a key challenge is that LLMs struggle to interpret the latent, non-semantic embeddings produced by CF approaches, limiting recommendation effectiveness and further applications. To address this, we propose FACE, a general interpretable framework that maps CF embeddings into pre-trained LLM tokens. Specifically, we introduce a disentangled projection module to decompose CF embeddings into concept-specific vectors, followed by a quantized autoencoder to convert continuous embeddings into LLM tokens (descriptors). Then, we design a contrastive alignment objective to ensure that the tokens align with corresponding textual signals. Hence, the model-agnostic FACE framework achieves semantic alignment without fine-tuning LLMs and enhances recommendation performance by leveraging their pre-trained capabilities. Empirical results on three real-world recommendation datasets demonstrate performance improvements in benchmark models, with interpretability studies confirming the interpretability of the descriptors. Code is available in https://github.com/YixinRoll/FACE.

Authors:Tingyu Lin, Armin Dadras, Florian Kleber, Robert Sablatnig
Title: DGME-T: Directional Grid Motion Encoding for Transformer-Based Historical Camera Movement Classification
Abstract:
Camera movement classification (CMC) models trained on contemporary, high-quality footage often degrade when applied to archival film, where noise, missing frames, and low contrast obscure motion cues. We bridge this gap by assembling a unified benchmark that consolidates two modern corpora into four canonical classes and restructures the HISTORIAN collection into five balanced categories. Building on this benchmark, we introduce DGME-T, a lightweight extension to the Video Swin Transformer that injects directional grid motion encoding, derived from optical flow, via a learnable and normalised late-fusion layer. DGME-T raises the backbone's top-1 accuracy from 81.78% to 86.14% and its macro F1 from 82.08% to 87.81% on modern clips, while still improving the demanding World-War-II footage from 83.43% to 84.62% accuracy and from 81.72% to 82.63% macro F1. A cross-domain study further shows that an intermediate fine-tuning stage on modern data increases historical performance by more than five percentage points. These results demonstrate that structured motion priors and transformer representations are complementary and that even a small, carefully calibrated motion head can substantially enhance robustness in degraded film analysis. Related resources are available at https://github.com/linty5/DGME-T.

Authors:Junzhi Ning, Wei Li, Cheng Tang, Jiashi Lin, Chenglong Ma, Chaoyang Zhang, Jiyao Liu, Ying Chen, Shujian Gao, Lihao Liu, Yuandong Pu, Huihui Xu, Chenhui Gou, Ziyan Huang, Yi Xin, Qi Qin, Zhongying Deng, Diping Song, Bin Fu, Guang Yang, Yuanfeng Ji, Tianbin Li, Yanzhou Su, Jin Ye, Shixiang Tang, Ming Hu, Junjun He
Title: Unimedvl: Unifying Medical Multimodal Understanding And Generation Through Observation-Knowledge-Analysis
Abstract:
Medical diagnostic applications require models that can process multimodal medical inputs (images, patient histories, lab results) and generate diverse outputs including both textual reports and visual content (annotations, segmentation masks, and images). Despite this need, existing medical AI systems disrupt this unified process: medical image understanding models interpret images but cannot generate visual outputs, while medical image generation models synthesize images but cannot provide textual explanations. This leads to gaps in data representation, feature integration, and task-level multimodal capabilities. To this end, we propose a multi-level framework that draws inspiration from diagnostic workflows through the Observation-Knowledge-Analysis (OKA) paradigm. Specifically, at the observation level, we construct UniMed-5M, a dataset comprising over 5.6M samples that reformat diverse unimodal data into multimodal pairs for foundational observation. At the knowledge level, we propose Progressive Curriculum Learning that systematically introduces medical multimodal knowledge. At the analysis level, we introduce UniMedVL, the first medical unified multimodal model for the simultaneous analysis of image understanding and generation tasks within a single architecture. UniMedVL achieves superior performance on five medical image understanding benchmarks, while matching specialized models in generation quality across eight medical imaging modalities. Crucially, our unified architecture enables bidirectional knowledge sharing: generation tasks enhance visual understanding features, demonstrating that integrating traditionally separate capabilities within a single medical framework unlocks improvements across diverse medical vision-language tasks. Code is available at https://github.com/uni-medical/UniMedVL.

Authors:Italo Luis da Silva, Hanqi Yan, Lin Gui, Yulan He
Title: GraphMind: Interactive Novelty Assessment System for Accelerating Scientific Discovery
Abstract:
Large Language Models (LLMs) show strong reasoning and text generation capabilities, prompting their use in scientific literature analysis, including novelty assessment. While evaluating novelty of scientific papers is crucial for peer review, it requires extensive knowledge of related work, something not all reviewers have. While recent work on LLM-assisted scientific literature analysis supports literature comparison, existing approaches offer limited transparency and lack mechanisms for result traceability via an information retrieval module. To address this gap, we introduce $\textbf{GraphMind}$, an easy-to-use interactive web tool designed to assist users in evaluating the novelty of scientific papers or drafted ideas. Specially, $\textbf{GraphMind}$ enables users to capture the main structure of a scientific paper, explore related ideas through various perspectives, and assess novelty via providing verifiable contextual insights. $\textbf{GraphMind}$ enables users to annotate key elements of a paper, explore related papers through various relationships, and assess novelty with contextual insight. This tool integrates external APIs such as arXiv and Semantic Scholar with LLMs to support annotation, extraction, retrieval and classification of papers. This combination provides users with a rich, structured view of a scientific idea's core contributions and its connections to existing work. $\textbf{GraphMind}$ is available at https://oyarsa.github.io/graphmind and a demonstration video at https://youtu.be/wKbjQpSvwJg. The source code is available at https://github.com/oyarsa/graphmind.

Authors:Effrosyni Sokli, Pranav Kasela, Georgios Peikos, Gabriella Pasi
Title: Mixture of Experts Approaches in Dense Retrieval Tasks
Abstract:
Dense Retrieval Models (DRMs) are a prominent development in Information Retrieval (IR). A key challenge with these neural Transformer-based models is that they often struggle to generalize beyond the specific tasks and domains they were trained on. To address this challenge, prior research in IR incorporated the Mixture-of-Experts (MoE) framework within each Transformer layer of a DRM, which, though effective, substantially increased the number of additional parameters. In this paper, we propose a more efficient design, which introduces a single MoE block (SB-MoE) after the final Transformer layer. To assess the retrieval effectiveness of SB-MoE, we perform an empirical evaluation across three IR tasks. Our experiments involve two evaluation setups, aiming to assess both in-domain effectiveness and the model's zero-shot generalizability. In the first setup, we fine-tune SB-MoE with four different underlying DRMs on seven IR benchmarks and evaluate them on their respective test sets. In the second setup, we fine-tune SB-MoE on MSMARCO and perform zero-shot evaluation on thirteen BEIR datasets. Additionally, we perform further experiments to analyze the model's dependency on its hyperparameters (i.e., the number of employed and activated experts) and investigate how this variation affects SB-MoE's performance. The obtained results show that SB-MoE is particularly effective for DRMs with lightweight base models, such as TinyBERT and BERT-Small, consistently exceeding standard model fine-tuning across benchmarks. For DRMs with more parameters, such as BERT-Base and Contriever, our model requires a larger number of training samples to achieve improved retrieval performance. Our code is available online at: https://github.com/FaySokli/SB-MoE.

Authors:Ed Li, Junyu Ren, Xintian Pan, Cat Yan, Chuanhao Li, Dirk Bergemann, Zhuoran Yang
Title: Build Your Personalized Research Group: A Multiagent Framework for Continual and Interactive Science Automation
Abstract:
The automation of scientific discovery represents a critical milestone in Artificial Intelligence (AI) research. However, existing agentic systems for science suffer from two fundamental limitations: rigid, pre-programmed workflows that cannot adapt to intermediate findings, and inadequate context management that hinders long-horizon research. We present \texttt{freephdlabor}, an open-source multiagent framework featuring \textit{fully dynamic workflows} determined by real-time agent reasoning and a \coloremph{\textit{modular architecture}} enabling seamless customization -- users can modify, add, or remove agents to address domain-specific requirements. The framework provides comprehensive infrastructure including \textit{automatic context compaction}, \textit{workspace-based communication} to prevent information degradation, \textit{memory persistence} across sessions, and \textit{non-blocking human intervention} mechanisms. These features collectively transform automated research from isolated, single-run attempts into \textit{continual research programs} that build systematically on prior explorations and incorporate human feedback. By providing both the architectural principles and practical implementation for building customizable co-scientist systems, this work aims to facilitate broader adoption of automated research across scientific domains, enabling practitioners to deploy interactive multiagent systems that autonomously conduct end-to-end research -- from ideation through experimentation to publication-ready manuscripts.

Authors:Tingting Chen, Beibei Lin, Zifeng Yuan, Qiran Zou, Hongyu He, Yew-Soon Ong, Anirudh Goyal, Dianbo Liu
Title: HypoSpace: Evaluating LLM Creativity as Set-Valued Hypothesis Generators under Underdetermination
Abstract:
As language models are increasingly used in scientific workflows, evaluating their ability to propose sets of explanations-not just a single correct answer-becomes critical. Many scientific problems are underdetermined: multiple, mechanistically distinct hypotheses are consistent with the same observations. We introduce HypoSpace, a diagnostic suite that treats LLMs as samplers of finite hypothesis sets and measures three complementary indicators: Validity (precision of proposals consistent with observations), Uniqueness (non-redundancy among proposals), and Recovery (coverage of the enumerated admissible set). We instantiate HypoSpace in three structured domains with deterministic validators and exactly enumerated hypothesis spaces: (i) causal graphs from perturbations, (ii) gravity-constrained 3D voxel reconstruction from top-down projections, and (iii) Boolean genetic interactions. Across instruction-tuned and reasoning-focused models, Validity often remains high while Uniqueness and Recovery degrade as the admissible space grows, revealing mode collapse that is invisible to correctness-only metrics. HypoSpace offers a controlled probe-rather than a leaderboard-for methods that explicitly explore and cover admissible explanation spaces. Code is available at: https://github.com/CTT-Pavilion/_HypoSpace.

Authors:Xiaotian Wang, Takehito Utsuro, Masaaki Nagata
Title: BiMax: Bidirectional MaxSim Score for Document-Level Alignment
Abstract:
Document alignment is necessary for the hierarchical mining (Bañón et al., 2020; Morishita et al., 2022), which aligns documents across source and target languages within the same web domain. Several high precision sentence embedding-based methods have been developed, such as TK-PERT (Thompson and Koehn, 2020) and Optimal Transport (OT) (Clark et al., 2019; El-Kishky and Guzmán, 2020). However, given the massive scale of web mining data, both accuracy and speed must be considered. In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity, to improve efficiency compared to the OT method. Consequently, on the WMT16 bilingual document alignment task, BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase. Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models. All the alignment methods in this paper are publicly available as a tool called EmbDA (https://github.com/EternalEdenn/EmbDA).

Authors:Xiaoming Zhu, Xu Huang, Qinghongbing Xie, Zhi Deng, Junsheng Yu, Yirui Guan, Zhongyuan Liu, Lin Zhu, Qijun Zhao, Ligang Liu, Long Zeng
Title: Imaginarium: Vision-guided High-Quality 3D Scene Layout Generation
Abstract:
Generating artistic and coherent 3D scene layouts is crucial in digital content creation. Traditional optimization-based methods are often constrained by cumbersome manual rules, while deep generative models face challenges in producing content with richness and diversity. Furthermore, approaches that utilize large language models frequently lack robustness and fail to accurately capture complex spatial relationships. To address these challenges, this paper presents a novel vision-guided 3D layout generation system. We first construct a high-quality asset library containing 2,037 scene assets and 147 3D scene layouts. Subsequently, we employ an image generation model to expand prompt representations into images, fine-tuning it to align with our asset library. We then develop a robust image parsing module to recover the 3D layout of scenes based on visual semantics and geometric information. Finally, we optimize the scene layout using scene graphs and overall visual semantics to ensure logical coherence and alignment with the images. Extensive user testing demonstrates that our algorithm significantly outperforms existing methods in terms of layout richness and quality. The code and dataset will be available at https://github.com/HiHiAllen/Imaginarium.

Authors:Tingyu Lin, Marco Peer, Florian Kleber, Robert Sablatnig
Title: ClapperText: A Benchmark for Text Recognition in Low-Resource Archival Documents
Abstract:
This paper presents ClapperText, a benchmark dataset for handwritten and printed text recognition in visually degraded and low-resource settings. The dataset is derived from 127 World War II-era archival video segments containing clapperboards that record structured production metadata such as date, location, and camera-operator identity. ClapperText includes 9,813 annotated frames and 94,573 word-level text instances, 67% of which are handwritten and 1,566 are partially occluded. Each instance includes transcription, semantic category, text type, and occlusion status, with annotations available as rotated bounding boxes represented as 4-point polygons to support spatially precise OCR applications. Recognizing clapperboard text poses significant challenges, including motion blur, handwriting variation, exposure fluctuations, and cluttered backgrounds, mirroring broader challenges in historical document analysis where structured content appears in degraded, non-standard forms. We provide both full-frame annotations and cropped word images to support downstream tasks. Using a consistent per-video evaluation protocol, we benchmark six representative recognition and seven detection models under zero-shot and fine-tuned conditions. Despite the small training set (18 videos), fine-tuning leads to substantial performance gains, highlighting ClapperText's suitability for few-shot learning scenarios. The dataset offers a realistic and culturally grounded resource for advancing robust OCR and document understanding in low-resource archival contexts. The dataset and evaluation code are available at https://github.com/linty5/ClapperText.

Authors:Yitong Li, Ralph Buchert, Benita Schmitz-Koep, Timo Grimmer, Björn Ommer, Dennis M. Hedderich, Igor Yakushev, Christian Wachinger
Title: Diffusion Bridge Networks Simulate Clinical-grade PET from MRI for Dementia Diagnostics
Abstract:
Positron emission tomography (PET) with 18F-Fluorodeoxyglucose (FDG) is an established tool in the diagnostic workup of patients with suspected dementing disorders. However, compared to the routinely available magnetic resonance imaging (MRI), FDG-PET remains significantly less accessible and substantially more expensive. Here, we present SiM2P, a 3D diffusion bridge-based framework that learns a probabilistic mapping from MRI and auxiliary patient information to simulate FDG-PET images of diagnostic quality. In a blinded clinical reader study, two neuroradiologists and two nuclear medicine physicians rated the original MRI and SiM2P-simulated PET images of patients with Alzheimer's disease, behavioral-variant frontotemporal dementia, and cognitively healthy controls. SiM2P significantly improved the overall diagnostic accuracy of differentiating between three groups from 75.0% to 84.7% (p<0.05). Notably, the simulated PET images received higher diagnostic certainty ratings and achieved superior interrater agreement compared to the MRI images. Finally, we developed a practical workflow for local deployment of the SiM2P framework. It requires as few as 20 site-specific cases and only basic demographic information. This approach makes the established diagnostic benefits of FDG-PET imaging more accessible to patients with suspected dementing disorders, potentially improving early detection and differential diagnosis in resource-limited settings. Our code is available at https://github.com/Yiiitong/SiM2P.

Authors:Saumya B
Title: An Empirical Study on MC Dropout--Based Uncertainty--Error Correlation in 2D Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation from MRI is vital for diagnosis and treatment planning. Although Monte Carlo (MC) Dropout is widely used to estimate model uncertainty, its effectiveness in identifying segmentation errors -- especially near tumor boundaries -- remains unclear. This study empirically examines the relationship between MC Dropout--based uncertainty and segmentation error in 2D brain tumor MRI segmentation using a U-Net trained under four augmentation settings: none, horizontal flip, rotation, and scaling. Uncertainty was computed from 50 stochastic forward passes and correlated with pixel-wise errors using Pearson and Spearman coefficients. Results show weak global correlations ($r \approx 0.30$--$0.38$) and negligible boundary correlations ($|r| < 0.05$). Although differences across augmentations were statistically significant ($p < 0.001$), they lacked practical relevance. These findings suggest that MC Dropout uncertainty provides limited cues for boundary error localization, underscoring the need for alternative or hybrid uncertainty estimation methods in medical image segmentation.

Authors:Aditya Vir
Title: Balanced Multi-Task Attention for Satellite Image Classification: A Systematic Approach to Achieving 97.23% Accuracy on EuroSAT Without Pre-Training
Abstract:
This work presents a systematic investigation of custom convolutional neural network architectures for satellite land use classification, achieving 97.23% test accuracy on the EuroSAT dataset without reliance on pre-trained models. Through three progressive architectural iterations (baseline: 94.30%, CBAM-enhanced: 95.98%, and balanced multi-task attention: 97.23%) we identify and address specific failure modes in satellite imagery classification. Our principal contribution is a novel balanced multi-task attention mechanism that combines Coordinate Attention for spatial feature extraction with Squeeze-Excitation blocks for spectral feature extraction, unified through a learnable fusion parameter. Experimental results demonstrate that this learnable parameter autonomously converges to alpha approximately 0.57, indicating near-equal importance of spatial and spectral modalities for satellite imagery. We employ progressive DropBlock regularization (5-20% by network depth) and class-balanced loss weighting to address overfitting and confusion pattern imbalance. The final 12-layer architecture achieves Cohen's Kappa of 0.9692 with all classes exceeding 94.46% accuracy, demonstrating confidence calibration with a 24.25% gap between correct and incorrect predictions. Our approach achieves performance within 1.34% of fine-tuned ResNet-50 (98.57%) while requiring no external data, validating the efficacy of systematic architectural design for domain-specific applications. Complete code, trained models, and evaluation scripts are publicly available.

Authors:Shijia Kang, Muhan Zhang
Title: The Road Less Traveled: Enhancing Exploration in LLMs via Sequential Sampling
Abstract:
Reinforcement learning (RL) has been pivotal in enhancing the reasoning capabilities of large language models (LLMs), but it often suffers from limited exploration and entropy collapse, where models exploit a narrow set of solutions, leading to a loss of sampling diversity and subsequently preventing RL from further improving performance. This issue is exacerbated in parallel sampling methods, where multiple outputs are drawn from the same distribution, potentially causing the model to converge to similar solutions. We propose SESA, a novel SEquential SAmpling framework that mitigates this challenge by generating diverse solution sketches sequentially before expanding them into full reasoning paths. This approach ensures broader exploration by conditioning each new output on previous ones, promoting diversity throughout the process and preventing policy collapse. Our experiments on a synthetic task show that sequential sampling consistently outperforms traditional RL methods in terms of path diversity and recovery from collapse. Further evaluations on real-world tasks demonstrate that SESA improves both the exploration of valid strategies and the overall performance of LLMs. On three agent benchmarks, SESA lifts success rates by $+0.25$, $+0.42$, and $+0.07$ absolute over the base model (up to an additional $211\%$ relative improvement over baseline RL), underscoring its exploration advantage. This work introduces a structured approach to exploration, paving the way for more effective and diverse reasoning in RL-trained LLMs. Our code is released at https://github.com/MuLabPKU/sesa.

Authors:Yao Huang, Yitong Sun, Yichi Zhang, Ruochen Zhang, Yinpeng Dong, Xingxing Wei
Title: DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios
Abstract:
Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.

Authors:Yuexiao Liu, Lijun Li, Xingjun Wang, Jing Shao
Title: HarmRLVR: Weaponizing Verifiable Rewards for Harmful LLM Alignment
Abstract:
Recent advancements in Reinforcement Learning with Verifiable Rewards (RLVR) have gained significant attention due to their objective and verifiable reward signals, demonstrating strong performance in reasoning and code generation tasks. However, the potential safety risks associated with RLVR remain underexplored. This paper presents HarmRLVR, the first systematic investigation into the alignment reversibility risk of RLVR. We show that safety alignment can be rapidly reversed using GRPO with merely 64 harmful prompts without responses, causing models to readily comply with harmful instructions. Across five models from Llama, Qwen, and DeepSeek, we empirically demonstrate that RLVR-based attacks elevate the average harmfulness score to 4.94 with an attack success rate of 96.01\%, significantly outperforming harmful fine-tuning while preserving general capabilities. Our findings reveal that RLVR can be efficiently exploited for harmful alignment, posing serious threats to open-source model safety. Please see our code at https://github.com/lyxx2535/HarmRLVR.

Authors:Xianmin Chen, Peiliang Huang, Longfei Han, Dingwen Zhang, Junwei Han
Title: Rethinking Efficient Hierarchical Mixing Architecture for Low-light RAW Image Enhancement
Abstract:
Low-light RAW image enhancement remains a challenging task. Although numerous deep learning based approaches have been proposed, they still suffer from inherent limitations. A key challenge is how to simultaneously achieve strong enhancement quality and high efficiency. In this paper, we rethink the architecture for efficient low-light image signal processing (ISP) and introduce a Hierarchical Mixing Architecture (HiMA). HiMA leverages the complementary strengths of Transformer and Mamba modules to handle features at large and small scales, respectively, thereby improving efficiency while avoiding the ambiguities observed in prior two-stage frameworks. To further address uneven illumination with strong local variations, we propose Local Distribution Adjustment (LoDA), which adaptively aligns feature distributions across different local regions. In addition, to fully exploit the denoised outputs from the first stage, we design a Multi-prior Fusion (MPF) module that integrates spatial and frequency-domain priors for detail enhancement. Extensive experiments on multiple public datasets demonstrate that our method outperforms state-of-the-art approaches, achieving superior performance with fewer parameters. Code will be released at https://github.com/Cynicarlos/HiMA.

Authors:Jan Corazza, Hadi Partovi Aria, Daniel Neider, Zhe Xu
Title: Expediting Reinforcement Learning by Incorporating Knowledge About Temporal Causality in the Environment
Abstract:
Reinforcement learning (RL) algorithms struggle with learning optimal policies for tasks where reward feedback is sparse and depends on a complex sequence of events in the environment. Probabilistic reward machines (PRMs) are finite-state formalisms that can capture temporal dependencies in the reward signal, along with nondeterministic task outcomes. While special RL algorithms can exploit this finite-state structure to expedite learning, PRMs remain difficult to modify and design by hand. This hinders the already difficult tasks of utilizing high-level causal knowledge about the environment, and transferring the reward formalism into a new domain with a different causal structure. This paper proposes a novel method to incorporate causal information in the form of Temporal Logic-based Causal Diagrams into the reward formalism, thereby expediting policy learning and aiding the transfer of task specifications to new environments. Furthermore, we provide a theoretical result about convergence to optimal policy for our method, and demonstrate its strengths empirically.

Authors:Gucongcong Fan, Chaoyue Niu, Chengfei Lyu, Fan Wu, Guihai Chen
Title: CORE: Reducing UI Exposure in Mobile Agents via Collaboration Between Cloud and Local LLMs
Abstract:
Mobile agents rely on Large Language Models (LLMs) to plan and execute tasks on smartphone user interfaces (UIs). While cloud-based LLMs achieve high task accuracy, they require uploading the full UI state at every step, exposing unnecessary and often irrelevant information. In contrast, local LLMs avoid UI uploads but suffer from limited capacity, resulting in lower task success rates. We propose $\textbf{CORE}$, a $\textbf{CO}$llaborative framework that combines the strengths of cloud and local LLMs to $\textbf{R}$educe UI $\textbf{E}$xposure, while maintaining task accuracy for mobile agents. CORE comprises three key components: (1) $\textbf{Layout-aware block partitioning}$, which groups semantically related UI elements based on the XML screen hierarchy; (2) $\textbf{Co-planning}$, where local and cloud LLMs collaboratively identify the current sub-task; and (3) $\textbf{Co-decision-making}$, where the local LLM ranks relevant UI blocks, and the cloud LLM selects specific UI elements within the top-ranked block. CORE further introduces a multi-round accumulation mechanism to mitigate local misjudgment or limited context. Experiments across diverse mobile apps and tasks show that CORE reduces UI exposure by up to 55.6% while maintaining task success rates slightly below cloud-only agents, effectively mitigating unnecessary privacy exposure to the cloud. The code is available at https://github.com/Entropy-Fighter/CORE.

Authors:Zhiqiang Zhu, Xinbo Gao, Wen Lu, Jie Li, Zhaoyang Wang, Mingqian Ge
Title: DPTrack:Directional Kernel-Guided Prompt Learning for Robust Nighttime Aerial Tracking
Abstract:
Existing nighttime aerial trackers based on prompt learning rely solely on spatial localization supervision, which fails to provide fine-grained cues that point to target features and inevitably produces vague prompts. This limitation impairs the tracker's ability to accurately focus on the object features and results in trackers still performing poorly. To address this issue, we propose DPTrack, a prompt-based aerial tracker designed for nighttime scenarios by encoding the given object's attribute features into the directional kernel enriched with fine-grained cues to generate precise prompts. Specifically, drawing inspiration from visual bionics, DPTrack first hierarchically captures the object's topological structure, leveraging topological attributes to enrich the feature representation. Subsequently, an encoder condenses these topology-aware features into the directional kernel, which serves as the core guidance signal that explicitly encapsulates the object's fine-grained attribute cues. Finally, a kernel-guided prompt module built on channel-category correspondence attributes propagates the kernel across the features of the search region to pinpoint the positions of target features and convert them into precise prompts, integrating spatial gating for robust nighttime tracking. Extensive evaluations on established benchmarks demonstrate DPTrack's superior performance. Our code will be available at https://github.com/zzq-vipsl/DPTrack.

Authors:Zhi Zhou, Yuhao Tan, Zenan Li, Yuan Yao, Lan-Zhe Guo, Yu-Feng Li, Xiaoxing Ma
Title: A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning
Abstract:
Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.

Authors:Luo Long, Coralia Cartis, Paz Fink Shustin
Title: Nonlinear Dimensionality Reduction Techniques for Bayesian Optimization
Abstract:
Bayesian optimisation (BO) is a standard approach for sample-efficient global optimisation of expensive black-box functions, yet its scalability to high dimensions remains challenging. Here, we investigate nonlinear dimensionality reduction techniques that reduce the problem to a sequence of low-dimensional Latent-Space BO (LSBO). While early LSBO methods used (linear) random projections (Wang et al., 2013), building on Grosnit et al. (2021), we employ Variational Autoencoders (VAEs) for LSBO, focusing on deep metric loss for structured latent manifolds and VAE retraining to adapt the encoder-decoder to newly sampled regions. We propose some changes in their implementation, originally designed for tasks such as molecule generation, and reformulate the algorithm for broader optimisation purposes. We then couple LSBO with Sequential Domain Reduction (SDR) directly in the latent space (SDR-LSBO), yielding an algorithm that narrows the latent search domains as evidence accumulates. Implemented in a GPU-accelerated BoTorch stack with Matern-5/2 Gaussian process surrogates, our numerical results show improved optimisation quality across benchmark tasks and that structured latent manifolds improve BO performance. Additionally, we compare random embeddings and VAEs as two mechanisms for dimensionality reduction, showing that the latter outperforms the former. To the best of our knowledge, this is the first study to combine SDR with VAE-based LSBO, and our analysis clarifies design choices for metric shaping and retraining that are critical for scalable latent space BO. For reproducibility, our source code is available at https://github.com/L-Lok/Nonlinear-Dimensionality-Reduction-Techniques-for-Bayesian-Optimization.git.

Authors:Pavan C Shekar, Ashwanth Krishnan
Title: Adaptive Minds: Empowering Agents with LoRA-as-Tools
Abstract:
We present Adaptive Minds, an agentic system that treats LoRA adapters as domain-specific tools. Instead of relying on a single fine-tuned model or rigid rule-based routing, our approach empowers the base LLM itself to act as a semantic router analyzing each query and dynamically selecting the most relevant LoRA tool. This enables the agent to seamlessly switch between different domain experts on demand. By combining the flexibility of multi-agent orchestration with the efficiency of parameter-efficient fine-tuning, Adaptive Minds delivers accurate, specialized responses while preserving conversational ability. The system is built with LangGraph for workflow management, supports both API and web interfaces, and is fully open source, providing a scalable and extensible foundation for domain-adaptive AI assistance.

Authors:Huining Yuan, Zelai Xu, Zheyue Tan, Xiangmin Yi, Mo Guang, Kaiwen Long, Haojia Hui, Boxun Li, Xinlei Chen, Bo Zhao, Xiao-Ping Zhang, Chao Yu, Yu Wang
Title: MARS: Reinforcing Multi-Agent Reasoning of LLMs through Self-Play in Strategic Games
Abstract:
Developing Large Language Models (LLMs) to cooperate and compete effectively within multi-agent systems is a critical step towards more advanced intelligence. While reinforcement learning (RL) has proven effective for enhancing reasoning in single-agent tasks, its extension to multi-turn, multi-agent scenarios remains underexplored due to the challenges of long-horizon credit assignment and agent-specific advantage estimation. To address these challenges, we introduce MARS, an end-to-end RL framework that incentivizes Multi-Agent Reasoning of LLMs through Self-play in both cooperative and competitive games. MARS features a turn-level advantage estimator that aligns learning signals with each interaction for credit assignment, and an agent-specific advantage normalization to stabilize multi-agent training. By learning with self-play across cooperative and competitive games, the MARS agent trained from Qwen3-4B develops strong strategic abilities that generalize to held-out games with up to 28.7% performance improvements. More importantly, the capability acquired through self-play generalizes beyond games, yielding consistent performance gains of multi-agent systems in reasoning benchmarks. When integrated into leading multi-agent systems, our MARS agent achieves significant performance gains of 10.0% on AIME and 12.5% on GPQA-Diamond. These results establish end-to-end RL training with self-play in strategic games as a powerful approach for developing generalizable multi-agent reasoning capabilities in LLMs. Our code and models are publicly available at https://github.com/thu-nics/MARS.

Authors:Peng Ren, Hai Yang
Title: LILAC: Long-sequence Incremental Low-latency Arbitrary Motion Stylization via Streaming VAE-Diffusion with Causal Decoding
Abstract:
Generating long and stylized human motions in real time is critical for applications that demand continuous and responsive character control. Despite its importance, existing streaming approaches often operate directly in the raw motion space, leading to substantial computational overhead and making it difficult to maintain temporal stability. In contrast, latent-space VAE-Diffusion-based frameworks alleviate these issues and achieve high-quality stylization, but they are generally confined to offline processing. To bridge this gap, LILAC (Long-sequence Incremental Low-latency Arbitrary Motion Stylization via Streaming VAE-Diffusion with Causal Decoding) builds upon a recent high-performing offline framework for arbitrary motion stylization and extends it to an online setting through a latent-space streaming architecture with a sliding-window causal design and the injection of decoded motion features to ensure smooth motion transitions. This architecture enables long-sequence real-time arbitrary stylization without relying on future frames or modifying the diffusion model architecture, achieving a favorable balance between stylization quality and responsiveness as demonstrated by experiments on benchmark datasets. Supplementary video and examples are available at the project page: https://pren1.github.io/lilac/

Authors:Kexin Zheng, Lauriane Teyssier, Yinan Zheng, Yu Luo, Xiayuan Zhan
Title: Towards Robust Zero-Shot Reinforcement Learning
Abstract:
The recent development of zero-shot reinforcement learning (RL) has opened a new avenue for learning pre-trained generalist policies that can adapt to arbitrary new tasks in a zero-shot manner. While the popular Forward-Backward representations (FB) and related methods have shown promise in zero-shot RL, we empirically found that their modeling lacks expressivity and that extrapolation errors caused by out-of-distribution (OOD) actions during offline learning sometimes lead to biased representations, ultimately resulting in suboptimal performance. To address these issues, we propose Behavior-REgularizEd Zero-shot RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework that simultaneously enhances learning stability, policy extraction capability, and representation learning quality. BREEZE introduces behavioral regularization in zero-shot RL policy learning, transforming policy optimization into a stable in-sample learning paradigm. Additionally, BREEZE extracts the policy using a task-conditioned diffusion model, enabling the generation of high-quality and multimodal action distributions in zero-shot RL settings. Moreover, BREEZE employs expressive attention-based architectures for representation modeling to capture the complex relationships between environmental dynamics. Extensive experiments on ExORL and D4RL Kitchen demonstrate that BREEZE achieves the best or near-the-best performance while exhibiting superior robustness compared to prior offline zero-shot RL methods. The official implementation is available at: https://github.com/Whiterrrrr/BREEZE.

Authors:Jinwoo Kim, Max Beier, Petar Bevanda, Nayun Kim, Seunghoon Hong
Title: Sequence Modeling with Spectral Mean Flows
Abstract:
A key question in sequence modeling with neural networks is how to represent and learn highly nonlinear and probabilistic state dynamics. Operator theory views such dynamics as linear maps on Hilbert spaces containing mean embedding vectors of distributions, offering an appealing but currently overlooked perspective. We propose a new approach to sequence modeling based on an operator-theoretic view of a hidden Markov model (HMM). Instead of materializing stochastic recurrence, we embed the full sequence distribution as a tensor in the product Hilbert space. A generative process is then defined as maximum mean discrepancy (MMD) gradient flow in the space of sequences. To overcome challenges with large tensors and slow sampling convergence, we introduce spectral mean flows, a novel tractable algorithm integrating two core concepts. First, we propose a new neural architecture by leveraging spectral decomposition of linear operators to derive a scalable tensor network decomposition of sequence mean embeddings. Second, we extend MMD gradient flows to time-dependent Hilbert spaces and connect them to flow matching via the continuity equation, enabling simulation-free learning and faster sampling. We demonstrate competitive results on a range of time-series modeling datasets. Code is available at https://github.com/jw9730/spectral-mean-flow.

Authors:Maonan Wang, Yirong Chen, Yuxin Cai, Aoyu Pang, Yuejiao Xie, Zian Ma, Chengcheng Xu, Kemou Jiang, Ding Wang, Laurent Roullet, Chung Shue Chen, Zhiyong Cui, Yuheng Kan, Michael Lepech, Man-On Pun
Title: TranSimHub:A Unified Air-Ground Simulation Platform for Multi-Modal Perception and Decision-Making
Abstract:
Air-ground collaborative intelligence is becoming a key approach for next-generation urban intelligent transportation management, where aerial and ground systems work together on perception, communication, and decision-making. However, the lack of a unified multi-modal simulation environment has limited progress in studying cross-domain perception, coordination under communication constraints, and joint decision optimization. To address this gap, we present TranSimHub, a unified simulation platform for air-ground collaborative intelligence. TranSimHub offers synchronized multi-view rendering across RGB, depth, and semantic segmentation modalities, ensuring consistent perception between aerial and ground viewpoints. It also supports information exchange between the two domains and includes a causal scene editor that enables controllable scenario creation and counterfactual analysis under diverse conditions such as different weather, emergency events, and dynamic obstacles. We release TranSimHub as an open-source platform that supports end-to-end research on perception, fusion, and control across realistic air and ground traffic scenes. Our code is available at https://github.com/Traffic-Alpha/TranSimHub.

Authors:Shengkai Hu, Haozhe Qi, Jun Wan, Jiaxing Huang, Lefei Zhang, Hang Sun, Dacheng Tao
Title: Proto-Former: Unified Facial Landmark Detection by Prototype Transformer
Abstract:
Recent advances in deep learning have significantly improved facial landmark detection. However, existing facial landmark detection datasets often define different numbers of landmarks, and most mainstream methods can only be trained on a single dataset. This limits the model generalization to different datasets and hinders the development of a unified model. To address this issue, we propose Proto-Former, a unified, adaptive, end-to-end facial landmark detection framework that explicitly enhances dataset-specific facial structural representations (i.e., prototype). Proto-Former overcomes the limitations of single-dataset training by enabling joint training across multiple datasets within a unified architecture. Specifically, Proto-Former comprises two key components: an Adaptive Prototype-Aware Encoder (APAE) that performs adaptive feature extraction and learns prototype representations, and a Progressive Prototype-Aware Decoder (PPAD) that refines these prototypes to generate prompts that guide the model's attention to key facial regions. Furthermore, we introduce a novel Prototype-Aware (PA) loss, which achieves optimal path finding by constraining the selection weights of prototype experts. This loss function effectively resolves the problem of prototype expert addressing instability during multi-dataset training, alleviates gradient conflicts, and enables the extraction of more accurate facial structure features. Extensive experiments on widely used benchmark datasets demonstrate that our Proto-Former achieves superior performance compared to existing state-of-the-art methods. The code is publicly available at: https://github.com/Husk021118/Proto-Former.

Authors:Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu, Changxing Ding
Title: Layer as Puzzle Pieces: Compressing Large Language Models through Layer Concatenation
Abstract:
Large Language Models excel at natural language processing tasks, but their massive size leads to high computational and storage demands. Recent works have sought to reduce their model size through layer-wise structured pruning. However, they tend to ignore retaining the capabilities in the pruned part. In this work, we re-examine structured pruning paradigms and uncover several key limitations: 1) notable performance degradation due to direct layer removal, 2) incompetent linear weight layer aggregation, and 3) the lack of effective post-training recovery mechanisms. To address these limitations, we propose CoMe, including a progressive layer pruning framework with a Concatenation-based Merging technology and a hierarchical distillation post-training process. Specifically, we introduce a channel sensitivity metric that utilizes activation intensity and weight norms for fine-grained channel selection. Subsequently, we employ a concatenation-based layer merging method to fuse the most critical channels across adjacent layers, enabling progressive model size reduction. Finally, we propose a hierarchical distillation protocol that leverages the correspondences between the original and pruned model layers established during pruning, thereby enabling efficient knowledge transfer. Experiments on seven benchmarks show that CoMe achieves state-of-the-art performance; when pruning 30% of LLaMA-2-7b's parameters, the pruned model retains 83% of its original average accuracy. Our code is available at https://github.com/MPI-Lab/CoMe.

Authors:Fan Liu, Jindong Han, Tengfei Lyu, Weijia Zhang, Zhe-Rui Yang, Lu Dai, Cancheng Liu, Hao Liu
Title: Foundation Models for Scientific Discovery: From Paradigm Enhancement to Paradigm Transition
Abstract:
Foundation models (FMs), such as GPT-4 and AlphaFold, are reshaping the landscape of scientific research. Beyond accelerating tasks such as hypothesis generation, experimental design, and result interpretation, they prompt a more fundamental question: Are FMs merely enhancing existing scientific methodologies, or are they redefining the way science is conducted? In this paper, we argue that FMs are catalyzing a transition toward a new scientific paradigm. We introduce a three-stage framework to describe this evolution: (1) Meta-Scientific Integration, where FMs enhance workflows within traditional paradigms; (2) Hybrid Human-AI Co-Creation, where FMs become active collaborators in problem formulation, reasoning, and discovery; and (3) Autonomous Scientific Discovery, where FMs operate as independent agents capable of generating new scientific knowledge with minimal human intervention. Through this lens, we review current applications and emerging capabilities of FMs across existing scientific paradigms. We further identify risks and future directions for FM-enabled scientific discovery. This position paper aims to support the scientific community in understanding the transformative role of FMs and to foster reflection on the future of scientific discovery. Our project is available at https://github.com/usail-hkust/Awesome-Foundation-Models-for-Scientific-Discovery.

Authors:Jingrui Yu, Jun Liu, Kefei Ren, Joydeep Biswas, Rurui Ye, Keqiang Wu, Chirag Majithia, Di Zeng
Title: CuSfM: CUDA-Accelerated Structure-from-Motion
Abstract:
Efficient and accurate camera pose estimation forms the foundational requirement for dense reconstruction in autonomous navigation, robotic perception, and virtual simulation systems. This paper addresses the challenge via cuSfM, a CUDA-accelerated offline Structure-from-Motion system that leverages GPU parallelization to efficiently employ computationally intensive yet highly accurate feature extractors, generating comprehensive and non-redundant data associations for precise camera pose estimation and globally consistent mapping. The system supports pose optimization, mapping, prior-map localization, and extrinsic refinement. It is designed for offline processing, where computational resources can be fully utilized to maximize accuracy. Experimental results demonstrate that cuSfM achieves significantly improved accuracy and processing speed compared to the widely used COLMAP method across various testing scenarios, while maintaining the high precision and global consistency essential for offline SfM applications. The system is released as an open-source Python wrapper implementation, PyCuSfM, available at https://github.com/nvidia-isaac/pyCuSFM, to facilitate research and applications in computer vision and robotics.

Authors:Xueqing Sun, Renzhen Wang, Quanziang Wang, Yichen Wu, Xixi Jia, Deyu Meng
Title: Semi-Supervised Regression with Heteroscedastic Pseudo-Labels
Abstract:
Pseudo-labeling is a commonly used paradigm in semi-supervised learning, yet its application to semi-supervised regression (SSR) remains relatively under-explored. Unlike classification, where pseudo-labels are discrete and confidence-based filtering is effective, SSR involves continuous outputs with heteroscedastic noise, making it challenging to assess pseudo-label reliability. As a result, naive pseudo-labeling can lead to error accumulation and overfitting to incorrect labels. To address this, we propose an uncertainty-aware pseudo-labeling framework that dynamically adjusts pseudo-label influence from a bi-level optimization perspective. By jointly minimizing empirical risk over all data and optimizing uncertainty estimates to enhance generalization on labeled data, our method effectively mitigates the impact of unreliable pseudo-labels. We provide theoretical insights and extensive experiments to validate our approach across various benchmark SSR datasets, and the results demonstrate superior robustness and performance compared to existing methods. Our code is available at https://github.com/sxq/Heteroscedastic-Pseudo-Labels.

Authors:Aysan Aghazadeh, Adriana Kovashka
Title: The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads
Abstract:
Text-to-image models are appealing for customizing visual advertisements and targeting specific populations. We investigate this potential by examining the demographic bias within ads for different ad topics, and the disparate level of persuasiveness (judged by models) of ads that are identical except for gender/race of the people portrayed. We also experiment with a technique to target ads for specific countries. The code is available at https://github.com/aysanaghazadeh/FaceOfPersuasion

Authors:Xiaohan Zhao, Hongyu Xiang, Shengze Ye, Song Li, Zhengkun Tian, Guanyu Chen, Ke Ding, Guanglu Wan
Title: LongCat-Audio-Codec: An Audio Tokenizer and Detokenizer Solution Designed for Speech Large Language Models
Abstract:
This paper presents LongCat-Audio-Codec, an audio tokenizer and detokenizer solution designed for industrial grade end-to-end speech large language models. By leveraging a decoupled model architecture and a multistage training strategy, LongCat-Audio-Codec exhibits robust semantic modeling capabilities, flexible acoustic feature extraction capabilities, and low-latency streaming synthesis capabilities. It encodes speech at an ultra-low frame rate of 16.67 Hz, with a minimum bitrate of 0.43 kbps and a maximum bitrate of 0.87 kbps. Evaluation results demonstrate that LongCat-Audio-Codec achieves strong speech intelligibility and is capable of synthesizing highquality speech at low bitrate, thus effectively balancing coding efficiency and decoding quality. The inference code and model checkpoints of LongCat-Audio-Codec are available at: https://github.com/meituan-longcat/LongCat-Audio-Codec.

Authors:Daniela Vega, Hannah V. Ceballos, Javier S. Vera, Santiago Rodriguez, Alejandra Perez, Angela Castillo, Maria Escobar, Dario Londoño, Luis A. Sarmiento, Camila I. Castro, Nadiezhda Rodriguez, Juan C. Briceño, Pablo Arbeláez
Title: CARDIUM: Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records
Abstract:
Prenatal diagnosis of Congenital Heart Diseases (CHDs) holds great potential for Artificial Intelligence (AI)-driven solutions. However, collecting high-quality diagnostic data remains difficult due to the rarity of these conditions, resulting in imbalanced and low-quality datasets that hinder model performance. Moreover, no public efforts have been made to integrate multiple sources of information, such as imaging and clinical data, further limiting the ability of AI models to support and enhance clinical decision-making. To overcome these challenges, we introduce the Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records (CARDIUM) dataset, the first publicly available multimodal dataset consolidating fetal ultrasound and echocardiographic images along with maternal clinical records for prenatal CHD detection. Furthermore, we propose a robust multimodal transformer architecture that incorporates a cross-attention mechanism to fuse feature representations from image and tabular data, improving CHD detection by 11% and 50% over image and tabular single-modality approaches, respectively, and achieving an F1 score of 79.8 $\pm$ 4.8% in the CARDIUM dataset. We will publicly release our dataset and code to encourage further research on this unexplored field. Our dataset and code are available at https://github.com/BCVUniandes/Cardium, and at the project website https://bcv-uniandes.github.io/CardiumPage/

Authors:Junlin Wu, Xianrui Zhong, Jiashuo Sun, Bolian Li, Bowen Jin, Jiawei Han, Qingkai Zeng
Title: Structure-R1: Dynamically Leveraging Structural Knowledge in LLM Reasoning through Reinforcement Learning
Abstract:
Large language models (LLMs) have demonstrated remarkable advances in reasoning capabilities. However, their performance remains constrained by limited access to explicit and structured domain knowledge. Retrieval-Augmented Generation (RAG) addresses this by incorporating external information as context to augment reasoning. Nevertheless, traditional RAG systems typically operate over unstructured and fragmented text, resulting in low information density and suboptimal reasoning. To overcome these limitations, we propose \textsc{Structure-R1}, a novel framework that transforms retrieved content into structured representations optimized for reasoning. Leveraging reinforcement learning, \textsc{Structure-R1} learns a content representation policy that dynamically generates and adapts structural formats based on the demands of multi-step reasoning. Unlike prior methods that rely on fixed schemas, our approach adopts a generative paradigm capable of producing task-specific structures tailored to individual queries. To ensure the quality and reliability of these representations, we introduce a self-reward structural verification mechanism that checks whether the generated structures are both correct and self-contained. Extensive experiments on seven knowledge-intensive benchmarks show that \textsc{Structure-R1} consistently achieves competitive performance with a 7B-scale backbone model and matches the performance of much larger models. Additionally, our theoretical analysis demonstrates how structured representations enhance reasoning by improving information density and contextual clarity. Our code and data are available at: https://github.com/jlwu002/sr1.

Authors:Xingrui Wang, Jiang Liu, Chao Huang, Xiaodong Yu, Ze Wang, Ximeng Sun, Jialian Wu, Alan Yuille, Emad Barsoum, Zicheng Liu
Title: XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
Abstract:
Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.

Authors:Oluwasegun Adegoke
Title: Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)
Abstract:
We study short-horizon forecasting of weekly terrorism incident counts using the Global Terrorism Database (GTD, 1970--2016). We build a reproducible pipeline with fixed time-based splits and evaluate a Bidirectional LSTM (BiLSTM) against strong classical anchors (seasonal-naive, linear/ARIMA) and a deep LSTM-Attention baseline. On the held-out test set, the BiLSTM attains RMSE 6.38, outperforming LSTM-Attention (9.19; +30.6\%) and a linear lag-regression baseline (+35.4\% RMSE gain), with parallel improvements in MAE and MAPE. Ablations varying temporal memory, training-history length, spatial grain, lookback size, and feature groups show that models trained on long historical data generalize best; a moderate lookback (20--30 weeks) provides strong context; and bidirectional encoding is critical for capturing both build-up and aftermath patterns within the window. Feature-group analysis indicates that short-horizon structure (lagged counts and rolling statistics) contributes most, with geographic and casualty features adding incremental lift. We release code, configs, and compact result tables, and provide a data/ethics statement documenting GTD licensing and research-only use. Overall, the study offers a transparent, baseline-beating reference for GTD incident forecasting.

Authors:Kirill Semenov, Rico Sennrich
Title: Measuring the Effect of Disfluency in Multilingual Knowledge Probing Benchmarks
Abstract:
For multilingual factual knowledge assessment of LLMs, benchmarks such as MLAMA use template translations that do not take into account the grammatical and semantic information of the named entities inserted in the sentence. This leads to numerous instances of ungrammaticality or wrong wording of the final prompts, which complicates the interpretation of scores, especially for languages that have a rich morphological inventory. In this work, we sample 4 Slavic languages from the MLAMA dataset and compare the knowledge retrieval scores between the initial (templated) MLAMA dataset and its sentence-level translations made by Google Translate and ChatGPT. We observe a significant increase in knowledge retrieval scores, and provide a qualitative analysis for possible reasons behind it. We also make an additional analysis of 5 more languages from different families and see similar patterns. Therefore, we encourage the community to control the grammaticality of highly multilingual datasets for higher and more interpretable results, which is well approximated by whole sentence translation with neural MT or LLM systems. The dataset and all related code is published at the Github repository: https://github.com/ZurichNLP/Fluent-mLAMA.

Authors:Kai Yin, Xiangjue Dong, Chengkai Liu, Allen Lin, Lingfeng Shi, Ali Mostafavi, James Caverlee
Title: DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management
Abstract:
Effective and efficient access to relevant information is essential for disaster management. However, no retrieval model is specialized for disaster management, and existing general-domain models fail to handle the varied search intents inherent to disaster management scenarios, resulting in inconsistent and unreliable performance. To this end, we introduce DMRetriever, the first series of dense retrieval models (33M to 7.6B) tailored for this domain. It is trained through a novel three-stage framework of bidirectional attention adaptation, unsupervised contrastive pre-training, and difficulty-aware progressive instruction fine-tuning, using high-quality data generated through an advanced data refinement pipeline. Comprehensive experiments demonstrate that DMRetriever achieves state-of-the-art (SOTA) performance across all six search intents at every model scale. Moreover, DMRetriever is highly parameter-efficient, with 596M model outperforming baselines over 13.3 X larger and 33M model exceeding baselines with only 7.6% of their parameters. All codes, data, and checkpoints are available at https://github.com/KaiYin97/DMRETRIEVER

Authors:Jiaxin Guo, Tongfan Guan, Wenzhen Dong, Wenzhao Zheng, Wenting Wang, Yue Wang, Yeung Yam, Yun-Hui Liu
Title: SaLon3R: Structure-aware Long-term Generalizable 3D Reconstruction from Unposed Images
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) have enabled generalizable, on-the-fly reconstruction of sequential input views. However, existing methods often predict per-pixel Gaussians and combine Gaussians from all views as the scene representation, leading to substantial redundancies and geometric inconsistencies in long-duration video sequences. To address this, we propose SaLon3R, a novel framework for Structure-aware, Long-term 3DGS Reconstruction. To our best knowledge, SaLon3R is the first online generalizable GS method capable of reconstructing over 50 views in over 10 FPS, with 50% to 90% redundancy removal. Our method introduces compact anchor primitives to eliminate redundancy through differentiable saliency-aware Gaussian quantization, coupled with a 3D Point Transformer that refines anchor attributes and saliency to resolve cross-frame geometric and photometric inconsistencies. Specifically, we first leverage a 3D reconstruction backbone to predict dense per-pixel Gaussians and a saliency map encoding regional geometric complexity. Redundant Gaussians are compressed into compact anchors by prioritizing high-complexity regions. The 3D Point Transformer then learns spatial structural priors in 3D space from training data to refine anchor attributes and saliency, enabling regionally adaptive Gaussian decoding for geometric fidelity. Without known camera parameters or test-time optimization, our approach effectively resolves artifacts and prunes the redundant 3DGS in a single feed-forward pass. Experiments on multiple datasets demonstrate our state-of-the-art performance on both novel view synthesis and depth estimation, demonstrating superior efficiency, robustness, and generalization ability for long-term generalizable 3D reconstruction. Project Page: https://wrld.github.io/SaLon3R/.

Authors:Samuel Paech, Allen Roush, Judah Goldfeder, Ravid Shwartz-Ziv
Title: Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models
Abstract:
Widespread LLM adoption has introduced characteristic repetitive phraseology, termed ``slop,'' which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000$\times$ more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90\% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.

Authors:Chao Huang, Zeliang Zhang, Jiang Liu, Ximeng Sun, Jialian Wu, Xiaodong Yu, Ze Wang, Chenliang Xu, Emad Barsoum, Zicheng Liu
Title: Directional Reasoning Injection for Fine-Tuning MLLMs
Abstract:
Multimodal large language models (MLLMs) are rapidly advancing, yet their reasoning ability often lags behind that of strong text-only counterparts. Existing methods to bridge this gap rely on supervised fine-tuning over large-scale multimodal reasoning data or reinforcement learning, both of which are resource-intensive. A promising alternative is model merging, which interpolates parameters between reasoning-enhanced LLMs and multimodal variants. However, our analysis shows that naive merging is not always a "free lunch": its effectiveness varies drastically across model families, with some (e.g., LLaVA, Idefics) benefiting while others (e.g., Qwen) suffer performance degradation. To address this, we propose Directional Reasoning Injection for Fine-Tuning (DRIFT) MLLMs, a lightweight method that transfers reasoning knowledge in the gradient space, without destabilizing multimodal alignment. DRIFT precomputes a reasoning prior as the parameter-space difference between reasoning and multimodal variants, then uses it to bias gradients during multimodal fine-tuning. This approach preserves the simplicity of standard supervised fine-tuning pipelines while enabling efficient reasoning transfer. Extensive experiments on multimodal reasoning benchmarks, including MathVista and MathVerse, demonstrate that DRIFT consistently improves reasoning performance over naive merging and supervised fine-tuning, while matching or surpassing training-heavy methods at a fraction of the cost.

Authors:Lingkai Kong, Molei Tao, Yang Liu, Bryan Wang, Jinmiao Fu, Chien-Chih Wang, Huidong Liu
Title: AlignFlow: Improving Flow-based Generative Models with Semi-Discrete Optimal Transport
Abstract:
Flow-based Generative Models (FGMs) effectively transform noise into complex data distributions. Incorporating Optimal Transport (OT) to couple noise and data during FGM training has been shown to improve the straightness of flow trajectories, enabling more effective inference. However, existing OT-based methods estimate the OT plan using (mini-)batches of sampled noise and data points, which limits their scalability to large and high-dimensional datasets in FGMs. This paper introduces AlignFlow, a novel approach that leverages Semi-Discrete Optimal Transport (SDOT) to enhance the training of FGMs by establishing an explicit, optimal alignment between noise distribution and data points with guaranteed convergence. SDOT computes a transport map by partitioning the noise space into Laguerre cells, each mapped to a corresponding data point. During FGM training, i.i.d. noise samples are paired with data points via the SDOT map. AlignFlow scales well to large datasets and model architectures with negligible computational overhead. Experimental results show that AlignFlow improves the performance of a wide range of state-of-the-art FGM algorithms and can be integrated as a plug-and-play component. Code is available at: https://github.com/konglk1203/AlignFlow.

Authors:Junliang Ye, Shenghao Xie, Ruowen Zhao, Zhengyi Wang, Hongyu Yan, Wenqiang Zu, Lei Ma, Jun Zhu
Title: NANO3D: A Training-Free Approach for Efficient 3D Editing Without Masks
Abstract:
3D object editing is essential for interactive content creation in gaming, animation, and robotics, yet current approaches remain inefficient, inconsistent, and often fail to preserve unedited regions. Most methods rely on editing multi-view renderings followed by reconstruction, which introduces artifacts and limits practicality. To address these challenges, we propose Nano3D, a training-free framework for precise and coherent 3D object editing without masks. Nano3D integrates FlowEdit into TRELLIS to perform localized edits guided by front-view renderings, and further introduces region-aware merging strategies, Voxel/Slat-Merge, which adaptively preserve structural fidelity by ensuring consistency between edited and unedited areas. Experiments demonstrate that Nano3D achieves superior 3D consistency and visual quality compared with existing methods. Based on this framework, we construct the first large-scale 3D editing datasets Nano3D-Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work addresses long-standing challenges in both algorithm design and data availability, significantly improving the generality and reliability of 3D editing, and laying the groundwork for the development of feed-forward 3D editing models. Project Page:https://jamesyjl.github.io/Nano3D

Authors:Jinkyu Kim, Hyunjung Yi, Mogan Gim, Donghee Choi, Jaewoo Kang
Title: DeepAries: Adaptive Rebalancing Interval Selection for Enhanced Portfolio Selection
Abstract:
We propose DeepAries , a novel deep reinforcement learning framework for dynamic portfolio management that jointly optimizes the timing and allocation of rebalancing decisions. Unlike prior reinforcement learning methods that employ fixed rebalancing intervals regardless of market conditions, DeepAries adaptively selects optimal rebalancing intervals along with portfolio weights to reduce unnecessary transaction costs and maximize risk-adjusted returns. Our framework integrates a Transformer-based state encoder, which effectively captures complex long-term market dependencies, with Proximal Policy Optimization (PPO) to generate simultaneous discrete (rebalancing intervals) and continuous (asset allocations) actions. Extensive experiments on multiple real-world financial markets demonstrate that DeepAries significantly outperforms traditional fixed-frequency and full-rebalancing strategies in terms of risk-adjusted returns, transaction costs, and drawdowns. Additionally, we provide a live demo of DeepAries at https://deep-aries.github.io/, along with the source code and dataset at https://github.com/dmis-lab/DeepAries, illustrating DeepAries' capability to produce interpretable rebalancing and allocation decisions aligned with shifting market regimes. Overall, DeepAries introduces an innovative paradigm for adaptive and practical portfolio management by integrating both timing and allocation into a unified decision-making process.

Authors:Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu
Title: From Pixels to Words -- Towards Native Vision-Language Primitives at Scale
Abstract:
The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch NEO, a novel family of native VLMs built from first principles, capable of rivaling top-tier modular counterparts across diverse real-world scenarios. With only 390M image-text examples, NEO efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position NEO as a cornerstone for scalable and powerful native VLMs, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Our code and models are publicly available at: https://github.com/EvolvingLMMs-Lab/NEO.

Authors:Nupur Kumari, Sheng-Yu Wang, Nanxuan Zhao, Yotam Nitzan, Yuheng Li, Krishna Kumar Singh, Richard Zhang, Eli Shechtman, Jun-Yan Zhu, Xun Huang
Title: Learning an Image Editing Model without Image Editing Pairs
Abstract:
Recent image editing models have achieved impressive results while following natural language editing instructions, but they rely on supervised fine-tuning with large datasets of input-target pairs. This is a critical bottleneck, as such naturally occurring pairs are hard to curate at scale. Current workarounds use synthetic training pairs that leverage the zero-shot capabilities of existing models. However, this can propagate and magnify the artifacts of the pretrained model into the final trained model. In this work, we present a new training paradigm that eliminates the need for paired data entirely. Our approach directly optimizes a few-step diffusion model by unrolling it during training and leveraging feedback from vision-language models (VLMs). For each input and editing instruction, the VLM evaluates if an edit follows the instruction and preserves unchanged content, providing direct gradients for end-to-end optimization. To ensure visual fidelity, we incorporate distribution matching loss (DMD), which constrains generated images to remain within the image manifold learned by pretrained models. We evaluate our method on standard benchmarks and include an extensive ablation study. Without any paired data, our method performs on par with various image editing diffusion models trained on extensive supervised paired data, under the few-step setting. Given the same VLM as the reward model, we also outperform RL-based techniques like Flow-GRPO.

Authors:Yuanhui Huang, Weiliang Chen, Wenzhao Zheng, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Title: Terra: Explorable Native 3D World Model with Point Latents
Abstract:
World models have garnered increasing attention for comprehensive modeling of the real world. However, most existing methods still rely on pixel-aligned representations as the basis for world evolution, neglecting the inherent 3D nature of the physical world. This could undermine the 3D consistency and diminish the modeling efficiency of world models. In this paper, we present Terra, a native 3D world model that represents and generates explorable environments in an intrinsic 3D latent space. Specifically, we propose a novel point-to-Gaussian variational autoencoder (P2G-VAE) that encodes 3D inputs into a latent point representation, which is subsequently decoded as 3D Gaussian primitives to jointly model geometry and appearance. We then introduce a sparse point flow matching network (SPFlow) for generating the latent point representation, which simultaneously denoises the positions and features of the point latents. Our Terra enables exact multi-view consistency with native 3D representation and architecture, and supports flexible rendering from any viewpoint with only a single generation process. Furthermore, Terra achieves explorable world modeling through progressive generation in the point latent space. We conduct extensive experiments on the challenging indoor scenes from ScanNet v2. Terra achieves state-of-the-art performance in both reconstruction and generation with high 3D consistency.

Authors:Shaowei Liu, Chuan Guo, Bing Zhou, Jian Wang
Title: Ponimator: Unfolding Interactive Pose for Versatile Human-human Interaction Animation
Abstract:
Close-proximity human-human interactive poses convey rich contextual information about interaction dynamics. Given such poses, humans can intuitively infer the context and anticipate possible past and future dynamics, drawing on strong priors of human behavior. Inspired by this observation, we propose Ponimator, a simple framework anchored on proximal interactive poses for versatile interaction animation. Our training data consists of close-contact two-person poses and their surrounding temporal context from motion-capture interaction datasets. Leveraging interactive pose priors, Ponimator employs two conditional diffusion models: (1) a pose animator that uses the temporal prior to generate dynamic motion sequences from interactive poses, and (2) a pose generator that applies the spatial prior to synthesize interactive poses from a single pose, text, or both when interactive poses are unavailable. Collectively, Ponimator supports diverse tasks, including image-based interaction animation, reaction animation, and text-to-interaction synthesis, facilitating the transfer of interaction knowledge from high-quality mocap data to open-world scenarios. Empirical experiments across diverse datasets and applications demonstrate the universality of the pose prior and the effectiveness and robustness of our framework.

Authors:Hengyuan Xu, Wei Cheng, Peng Xing, Yixiao Fang, Shuhan Wu, Rui Wang, Xianfang Zeng, Daxin Jiang, Gang Yu, Xingjun Ma, Yu-Gang Jiang
Title: WithAnyone: Towards Controllable and ID Consistent Image Generation
Abstract:
Identity-consistent generation has become an important focus in text-to-image research, with recent models achieving notable success in producing images aligned with a reference identity. Yet, the scarcity of large-scale paired datasets containing multiple images of the same individual forces most approaches to adopt reconstruction-based training. This reliance often leads to a failure mode we term copy-paste, where the model directly replicates the reference face rather than preserving identity across natural variations in pose, expression, or lighting. Such over-similarity undermines controllability and limits the expressive power of generation. To address these limitations, we (1) construct a large-scale paired dataset MultiID-2M, tailored for multi-person scenarios, providing diverse references for each identity; (2) introduce a benchmark that quantifies both copy-paste artifacts and the trade-off between identity fidelity and variation; and (3) propose a novel training paradigm with a contrastive identity loss that leverages paired data to balance fidelity with diversity. These contributions culminate in WithAnyone, a diffusion-based model that effectively mitigates copy-paste while preserving high identity similarity. Extensive qualitative and quantitative experiments demonstrate that WithAnyone significantly reduces copy-paste artifacts, improves controllability over pose and expression, and maintains strong perceptual quality. User studies further validate that our method achieves high identity fidelity while enabling expressive controllable generation.

Authors:Hansheng Chen, Kai Zhang, Hao Tan, Leonidas Guibas, Gordon Wetzstein, Sai Bi
Title: pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation
Abstract:
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming MeanFlow of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art few-step methods, while maintaining teacher-level quality.

Authors:Quan Nguyen-Tri, Mukul Ranjan, Zhiqiang Shen
Title: Attention Is All You Need for KV Cache in Diffusion LLMs
Abstract:
This work studies how to adaptively recompute key-value (KV) caches for diffusion large language models (DLMs) to maximize prediction accuracy while minimizing decoding latency. Prior methods' decoders recompute QKV for all tokens at every denoising step and layer, despite KV states changing little across most steps, especially in shallow layers, leading to substantial redundancy. We make three observations: (1) distant ${\bf MASK}$ tokens primarily act as a length-bias and can be cached block-wise beyond the active prediction window; (2) KV dynamics increase with depth, suggesting that selective refresh starting from deeper layers is sufficient; and (3) the most-attended token exhibits the smallest KV drift, providing a conservative lower bound on cache change for other tokens. Building on these, we propose ${\bf Elastic-Cache}$, a training-free, architecture-agnostic strategy that jointly decides ${when}$ to refresh (via an attention-aware drift test on the most-attended token) and ${where}$ to refresh (via a depth-aware schedule that recomputes from a chosen layer onward while reusing shallow-layer caches and off-window MASK caches). Unlike fixed-period schemes, Elastic-Cache performs adaptive, layer-aware cache updates for diffusion LLMs, reducing redundant computation and accelerating decoding with negligible loss in generation quality. Experiments on LLaDA-Instruct, LLaDA-1.5, and LLaDA-V across mathematical reasoning and code generation tasks demonstrate consistent speedups: $8.7\times$ on GSM8K (256 tokens), $45.1\times$ on longer sequences, and $4.8\times$ on HumanEval, while consistently maintaining higher accuracy than the baseline. Our method achieves significantly higher throughput ($6.8\times$ on GSM8K) than existing confidence-based approaches while preserving generation quality, enabling practical deployment of diffusion LLMs.

Authors:Yiming Wang, Da Yin, Yuedong Cui, Ruichen Zheng, Zhiqian Li, Zongyu Lin, Di Wu, Xueqing Wu, Chenchen Ye, Yu Zhou, Kai-Wei Chang
Title: LLMs as Scalable, General-Purpose Simulators For Evolving Digital Agent Training
Abstract:
Digital agents require diverse, large-scale UI trajectories to generalize across real-world tasks, yet collecting such data is prohibitively expensive in both human annotation, infra and engineering perspectives. To this end, we introduce $\textbf{UI-Simulator}$, a scalable paradigm that generates structured UI states and transitions to synthesize training trajectories at scale. Our paradigm integrates a digital world simulator for diverse UI states, a guided rollout process for coherent exploration, and a trajectory wrapper that produces high-quality and diverse trajectories for agent training. We further propose $\textbf{UI-Simulator-Grow}$, a targeted scaling strategy that enables more rapid and data-efficient scaling by prioritizing high-impact tasks and synthesizes informative trajectory variants. Experiments on WebArena and AndroidWorld show that UI-Simulator rivals or surpasses open-source agents trained on real UIs with significantly better robustness, despite using weaker teacher models. Moreover, UI-Simulator-Grow matches the performance of Llama-3-70B-Instruct using only Llama-3-8B-Instruct as the base model, highlighting the potential of targeted synthesis scaling paradigm to continuously and efficiently enhance the digital agents.

Authors:Miao Hu, Zhiwei Huang, Tai Wang, Jiangmiao Pang, Dahua Lin, Nanning Zheng, Runsen Xu
Title: ChangingGrounding: 3D Visual Grounding in Changing Scenes
Abstract:
Real-world robots localize objects from natural-language instructions while scenes around them keep changing. Yet most of the existing 3D visual grounding (3DVG) method still assumes a reconstructed and up-to-date point cloud, an assumption that forces costly re-scans and hinders deployment. We argue that 3DVG should be formulated as an active, memory-driven problem, and we introduce ChangingGrounding, the first benchmark that explicitly measures how well an agent can exploit past observations, explore only where needed, and still deliver precise 3D boxes in changing scenes. To set a strong reference point, we also propose Mem-ChangingGrounder, a zero-shot method for this task that marries cross-modal retrieval with lightweight multi-view fusion: it identifies the object type implied by the query, retrieves relevant memories to guide actions, then explores the target efficiently in the scene, falls back when previous operations are invalid, performs multi-view scanning of the target, and projects the fused evidence from multi-view scans to get accurate object bounding boxes. We evaluate different baselines on ChangingGrounding, and our Mem-ChangingGrounder achieves the highest localization accuracy while greatly reducing exploration cost. We hope this benchmark and method catalyze a shift toward practical, memory-centric 3DVG research for real-world applications. Project page: https://hm123450.github.io/CGB/ .

Authors:Jonas Geiping, Xinyu Yang, Guinan Su
Title: Efficient Parallel Samplers for Recurrent-Depth Models and Their Connection to Diffusion Language Models
Abstract:
Language models with recurrent depth, also referred to as universal or looped when considering transformers, are defined by the capacity to increase their computation through the repetition of layers. Recent efforts in pretraining have demonstrated that these architectures can scale to modern language modeling tasks while exhibiting advantages in reasoning tasks. In this work, we examine the relationship between recurrent-depth models and diffusion language models. Building on their similarities, we develop a new diffusion forcing sampler for these models to accelerate generation. The sampler advances by decoding new tokens at every forward pass of the model, while the latent states of these tokens can be further refined in parallel through recurrence. Theoretically, generation with our sampler is strictly more expressive than the baseline autoregressive generation using the same time budget on modern hardware. Moreover, this sampler, based on principles from diffusion literature, can be directly applied to existing 3.5B recurrent-depth transformers without any tuning, leading to up to a 5x speedup. Consequently, our findings not only provide an efficient mechanism for parallelizing the extra computation in recurrent-depth models at inference, but also suggest that such models can be naturally viewed as strong continuous, though causal, diffusion language models.

Authors:Shizun Wang, Zhenxiang Jiang, Xingyi Yang, Xinchao Wang
Title: C4D: 4D Made from 3D through Dual Correspondences
Abstract:
Recovering 4D from monocular video, which jointly estimates dynamic geometry and camera poses, is an inevitably challenging problem. While recent pointmap-based 3D reconstruction methods (e.g., DUSt3R) have made great progress in reconstructing static scenes, directly applying them to dynamic scenes leads to inaccurate results. This discrepancy arises because moving objects violate multi-view geometric constraints, disrupting the reconstruction. To address this, we introduce C4D, a framework that leverages temporal Correspondences to extend existing 3D reconstruction formulation to 4D. Specifically, apart from predicting pointmaps, C4D captures two types of correspondences: short-term optical flow and long-term point tracking. We train a dynamic-aware point tracker that provides additional mobility information, facilitating the estimation of motion masks to separate moving elements from the static background, thus offering more reliable guidance for dynamic scenes. Furthermore, we introduce a set of dynamic scene optimization objectives to recover per-frame 3D geometry and camera parameters. Simultaneously, the correspondences lift 2D trajectories into smooth 3D trajectories, enabling fully integrated 4D reconstruction. Experiments show that our framework achieves complete 4D recovery and demonstrates strong performance across multiple downstream tasks, including depth estimation, camera pose estimation, and point tracking. Project Page: https://littlepure2333.github.io/C4D

Authors:Guo Cheng, Danni Yang, Ziqi Huang, Jianlou Si, Chenyang Si, Ziwei Liu
Title: RealDPO: Real or Not Real, that is the Preference
Abstract:
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.

Authors:JoungBin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim
Title: 3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation
Abstract:
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/

Authors:Wenkai Yang, Weijie Liu, Ruobing Xie, Yiju Guo, Lulu Wu, Saiyong Yang, Yankai Lin
Title: LaSeR: Reinforcement Learning with Last-Token Self-Rewarding
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a core paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). To address the lack of verification signals at test time, prior studies incorporate the training of model's self-verification capability into the standard RLVR process, thereby unifying reasoning and verification capabilities within a single LLM. However, previous practice requires the LLM to sequentially generate solutions and self-verifications using two separate prompt templates, which significantly reduces efficiency. In this work, we theoretically reveal that the closed-form solution to the RL objective of self-verification can be reduced to a remarkably simple form: the true reasoning reward of a solution is equal to its last-token self-rewarding score, which is computed as the difference between the policy model's next-token log-probability assigned to any pre-specified token at the solution's last token and a pre-calculated constant, scaled by the KL coefficient. Based on this insight, we propose LaSeR (Reinforcement Learning with Last-Token Self-Rewarding), an algorithm that simply augments the original RLVR loss with a MSE loss that aligns the last-token self-rewarding scores with verifier-based reasoning rewards, jointly optimizing the reasoning and self-rewarding capabilities of LLMs. The optimized self-rewarding scores can be utilized in both training and testing to enhance model performance. Notably, our algorithm derives these scores from the predicted next-token probability distribution of the last token immediately after generation, incurring only the minimal extra cost of one additional token inference. Experiments show that our method not only improves the model's reasoning performance but also equips it with remarkable self-rewarding capability, thereby boosting its inference-time scaling performance.

Authors:Binghao Huang, Jie Xu, Iretiayo Akinola, Wei Yang, Balakumar Sundaralingam, Rowland O'Flaherty, Dieter Fox, Xiaolong Wang, Arsalan Mousavian, Yu-Wei Chao, Yunzhu Li
Title: VT-Refine: Learning Bimanual Assembly with Visuo-Tactile Feedback via Simulation Fine-Tunin
Abstract:
Humans excel at bimanual assembly tasks by adapting to rich tactile feedback -- a capability that remains difficult to replicate in robots through behavioral cloning alone, due to the suboptimality and limited diversity of human demonstrations. In this work, we present VT-Refine, a visuo-tactile policy learning framework that combines real-world demonstrations, high-fidelity tactile simulation, and reinforcement learning to tackle precise, contact-rich bimanual assembly. We begin by training a diffusion policy on a small set of demonstrations using synchronized visual and tactile inputs. This policy is then transferred to a simulated digital twin equipped with simulated tactile sensors and further refined via large-scale reinforcement learning to enhance robustness and generalization. To enable accurate sim-to-real transfer, we leverage high-resolution piezoresistive tactile sensors that provide normal force signals and can be realistically modeled in parallel using GPU-accelerated simulation. Experimental results show that VT-Refine improves assembly performance in both simulation and the real world by increasing data diversity and enabling more effective policy fine-tuning. Our project page is available at https://binghao-huang.github.io/vt_refine/.

Authors:Kyle Montgomery, David Park, Jianhong Tu, Michael Bendersky, Beliz Gunel, Dawn Song, Chenguang Wang
Title: Predicting Task Performance with Context-aware Scaling Laws
Abstract:
Scaling laws have transformed our understanding of large language models by linking upstream metrics like cross-entropy loss to design factors such as model size, training data, and compute. However, these conventional laws fail to capture downstream task performance, where context plays a critical role. In this work, we propose a straightforward, interpretable framework that jointly models downstream performance as a function of the training compute and the provided context. We empirically validate our framework by fitting it on the observed downstream performance of extended-context variants of Llama-2-7B and Llama-2-13B across 65,500 unique instances spanning three tasks: arithmetic reasoning, common sense reasoning, and machine translation. Our results demonstrate that our framework accurately models in-distribution downstream performance, generalizes across three orders of magnitude in training compute, and reliably extrapolates performance as the amount of context increases. These findings offer valuable insights into the interplay between training compute and context utilization, providing guidance for designing more efficient long-context LLMs for diverse downstream tasks. Our code is available at https://github.com/wang-research-lab/context-scaling.

Authors:Kyle Montgomery, Sijun Tan, Yuqi Chen, Siyuan Zhuang, Tianjun Zhang, Raluca Ada Popa, Chenguang Wang
Title: Budget-aware Test-time Scaling via Discriminative Verification
Abstract:
Test-time scaling is a powerful strategy for boosting the performance of large language models on complex reasoning tasks. While state-of-the-art approaches often employ generative verifiers to select the best solution from a pool of candidates, this method incurs prohibitive computational costs, limiting its practicality. In this work, we shift the focus to a more budget-aware paradigm: discriminative verification. We conduct a thorough empirical analysis and demonstrate that while discriminative verifiers may underperform in isolation, combining them with self-consistency in a hybrid approach creates a powerful and efficient test-time scaling mechanism. Notably, under a fixed compute budget, this hybrid approach surpasses state-of-the-art generative verification by a significant margin: achieving up to 15.3\% higher accuracy on AIME2025. Our findings establish that for practical, real-world applications, budget-aware scaling with discriminative verifiers is not only a "free" upgrade over self-consistency, but also a more effective and efficient alternative to costly generative techniques. Code is available at https://github.com/wang-research-lab/verification.

Authors:Gabriel Kosmacher, Eric T. Phipps, Sivasankaran Rajamanickam
Title: A Performance Portable Matrix Free Dense MTTKRP in GenTen
Abstract:
We extend the GenTen tensor decomposition package by introducing an accelerated dense matricized tensor times Khatri-Rao product (MTTKRP), the workhorse kernel for canonical polyadic (CP) tensor decompositions, that is portable and performant on modern CPU and GPU architectures. In contrast to the state-of-the-art matrix multiply based MTTKRP kernels used by Tensor Toolbox, TensorLy, etc., that explicitly form Khatri-Rao matrices, we develop a matrix-free element-wise parallelization approach whose memory cost grows with the rank R like the sum of the tensor shape O(R(n+m+k)), compared to matrix-based methods whose memory cost grows like the product of the tensor shape O(R(mnk)). For the largest problem we study, a rank 2000 MTTKRP, the smaller growth rate yields a matrix-free memory cost of just 2% of the matrix-based methods, a 50x improvement. In practice, the reduced memory impact means our matrix-free MTTKRP can compute a rank 2000 tensor decomposition on a single NVIDIA H100 instead of six H100s using a matrix-based MTTKRP. We also compare our optimized matrix-free MTTKRP to baseline matrix-free implementations on different devices, showing a 3x single-device speedup on an Intel 8480+ CPU and an 11x speedup on a H100 GPU. In addition to numerical results, we provide fine grained performance models for an ideal multi-level cache machine, compare analytical performance predictions to empirical results, and provide a motivated heuristic selection for selecting an algorithmic hyperparameter.

Authors:Guangyi Han, Wei Zhai, Yuhang Yang, Yang Cao, Zheng-Jun Zha
Title: TOUCH: Text-guided Controllable Generation of Free-Form Hand-Object Interactions
Abstract:
Hand-object interaction (HOI) is fundamental for humans to express intent. Existing HOI generation research is predominantly confined to fixed grasping patterns, where control is tied to physical priors such as force closure or generic intent instructions, even when expressed through elaborate language. Such an overly general conditioning imposes a strong inductive bias for stable grasps, thus failing to capture the diversity of daily HOI. To address these limitations, we introduce Free-Form HOI Generation, which aims to generate controllable, diverse, and physically plausible HOI conditioned on fine-grained intent, extending HOI from grasping to free-form interactions, like pushing, poking, and rotating. To support this task, we construct WildO2, an in-the-wild diverse 3D HOI dataset, which includes diverse HOI derived from internet videos. Specifically, it contains 4.4k unique interactions across 92 intents and 610 object categories, each with detailed semantic annotations. Building on this dataset, we propose TOUCH, a three-stage framework centered on a multi-level diffusion model that facilitates fine-grained semantic control to generate versatile hand poses beyond grasping priors. This process leverages explicit contact modeling for conditioning and is subsequently refined with contact consistency and physical constraints to ensure realism. Comprehensive experiments demonstrate our method's ability to generate controllable, diverse, and physically plausible hand interactions representative of daily activities. The project page is $\href{https://guangyid.github.io/hoi123touch}{here}$.

Authors:Jan Corazza, Ivan Gavran, Daniel Neider
Title: Reinforcement Learning with Stochastic Reward Machines
Abstract:
Reward machines are an established tool for dealing with reinforcement learning problems in which rewards are sparse and depend on complex sequences of actions. However, existing algorithms for learning reward machines assume an overly idealized setting where rewards have to be free of noise. To overcome this practical limitation, we introduce a novel type of reward machines, called stochastic reward machines, and an algorithm for learning them. Our algorithm, based on constraint solving, learns minimal stochastic reward machines from the explorations of a reinforcement learning agent. This algorithm can easily be paired with existing reinforcement learning algorithms for reward machines and guarantees to converge to an optimal policy in the limit. We demonstrate the effectiveness of our algorithm in two case studies and show that it outperforms both existing methods and a naive approach for handling noisy reward functions.

Authors:Kun Lei, Huanyu Li, Dongjie Yu, Zhenyu Wei, Lingxiao Guo, Zhennan Jiang, Ziyu Wang, Shiyu Liang, Huazhe Xu
Title: RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Abstract:
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass skilled human operators. We present RL-100, a real-world reinforcement learning training framework built on diffusion visuomotor policies trained bu supervised learning. RL-100 introduces a three-stage pipeline. First, imitation learning leverages human priors. Second, iterative offline reinforcement learning uses an Offline Policy Evaluation procedure, abbreviated OPE, to gate PPO-style updates that are applied in the denoising process for conservative and reliable improvement. Third, online reinforcement learning eliminates residual failure modes. An additional lightweight consistency distillation head compresses the multi-step sampling process in diffusion into a single-step policy, enabling high-frequency control with an order-of-magnitude reduction in latency while preserving task performance. The framework is task-, embodiment-, and representation-agnostic and supports both 3D point clouds and 2D RGB inputs, a variety of robot platforms, and both single-step and action-chunk policies. We evaluate RL-100 on seven real-robot tasks spanning dynamic rigid-body control, such as Push-T and Agile Bowling, fluids and granular pouring, deformable cloth folding, precise dexterous unscrewing, and multi-stage orange juicing. RL-100 attains 100\% success across evaluated trials for a total of 900 out of 900 episodes, including up to 250 out of 250 consecutive trials on one task. The method achieves near-human teleoperation or better time efficiency and demonstrates multi-hour robustness with uninterrupted operation lasting up to two hours.

Authors:Gabriel Poesia, Georgia Gabriela Sampaio
Title: Programmatic Representation Learning with Language Models
Abstract:
Classical models for supervised machine learning, such as decision trees, are efficient and interpretable predictors, but their quality is highly dependent on the particular choice of input features. Although neural networks can learn useful representations directly from raw data (e.g., images or text), this comes at the expense of interpretability and the need for specialized hardware to run them efficiently. In this paper, we explore a hypothesis class we call Learned Programmatic Representations (LeaPR) models, which stack arbitrary features represented as code (functions from data points to scalars) and decision tree predictors. We synthesize feature functions using Large Language Models (LLMs), which have rich prior knowledge in a wide range of domains and a remarkable ability to write code using existing domain-specific libraries. We propose two algorithms to learn LeaPR models from supervised data. First, we design an adaptation of FunSearch to learn features rather than directly generate predictors. Then, we develop a novel variant of the classical ID3 algorithm for decision tree learning, where new features are generated on demand when splitting leaf nodes. In experiments from chess position evaluation to image and text classification, our methods learn high-quality, neural network-free predictors often competitive with neural networks. Our work suggests a flexible paradigm for learning interpretable representations end-to-end where features and predictions can be readily inspected and understood.

Authors:Shikuang Deng, Jiayuan Zhang, Yuhang Wu, Ting Chen, Shi Gu
Title: Rethinking Hebbian Principle: Low-Dimensional Structural Projection for Unsupervised Learning
Abstract:
Hebbian learning is a biological principle that intuitively describes how neurons adapt their connections through repeated stimuli. However, when applied to machine learning, it suffers serious issues due to the unconstrained updates of the connections and the lack of accounting for feedback mediation. Such shortcomings limit its effective scaling to complex network architectures and tasks. To this end, here we introduce the Structural Projection Hebbian Representation (SPHeRe), a novel unsupervised learning method that integrates orthogonality and structural information preservation through a local auxiliary nonlinear block. The loss for structural information preservation backpropagates to the input through an auxiliary lightweight projection that conceptually serves as feedback mediation while the orthogonality constraints account for the boundedness of updating magnitude. Extensive experimental results show that SPHeRe achieves SOTA performance among unsupervised synaptic plasticity approaches on standard image classification benchmarks, including CIFAR-10, CIFAR-100, and Tiny-ImageNet. Furthermore, the method exhibits strong effectiveness in continual learning and transfer learning scenarios, and image reconstruction tasks show the robustness and generalizability of the extracted features. This work demonstrates the competitiveness and potential of Hebbian unsupervised learning rules within modern deep learning frameworks, demonstrating the possibility of efficient and biologically inspired learning algorithms without the strong dependence on strict backpropagation. Our code is available at https://github.com/brain-intelligence-lab/SPHeRe.

Authors:Pedro R. A. S. Bassi, Xinze Zhou, Wenxuan Li, Szymon Płotka, Jieneng Chen, Qi Chen, Zheren Zhu, Jakub Prządo, Ibrahim E. Hamacı, Sezgin Er, Yuhan Wang, Ashwin Kumar, Bjoern Menze, Jarosław B. Ćwikła, Yuyin Zhou, Akshay S. Chaudhari, Curtis P. Langlotz, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Scaling Artificial Intelligence for Multi-Tumor Early Detection with More Reports, Fewer Masks
Abstract:
Early tumor detection save lives. Each year, more than 300 million computed tomography (CT) scans are performed worldwide, offering a vast opportunity for effective cancer screening. However, detecting small or early-stage tumors on these CT scans remains challenging, even for experts. Artificial intelligence (AI) models can assist by highlighting suspicious regions, but training such models typically requires extensive tumor masks--detailed, voxel-wise outlines of tumors manually drawn by radiologists. Drawing these masks is costly, requiring years of effort and millions of dollars. In contrast, nearly every CT scan in clinical practice is already accompanied by medical reports describing the tumor's size, number, appearance, and sometimes, pathology results--information that is rich, abundant, and often underutilized for AI training. We introduce R-Super, which trains AI to segment tumors that match their descriptions in medical reports. This approach scales AI training with large collections of readily available medical reports, substantially reducing the need for manually drawn tumor masks. When trained on 101,654 reports, AI models achieved performance comparable to those trained on 723 masks. Combining reports and masks further improved sensitivity by +13% and specificity by +8%, surpassing radiologists in detecting five of the seven tumor types. Notably, R-Super enabled segmentation of tumors in the spleen, gallbladder, prostate, bladder, uterus, and esophagus, for which no public masks or AI models previously existed. This study challenges the long-held belief that large-scale, labor-intensive tumor mask creation is indispensable, establishing a scalable and accessible path toward early detection across diverse tumor types. We plan to release our trained models, code, and dataset at https://github.com/MrGiovanni/R-Super

Authors:Simone Carnemolla, Matteo Pennisi, Sarinda Samarasinghe, Giovanni Bellitto, Simone Palazzo, Daniela Giordano, Mubarak Shah, Concetto Spampinato
Title: DEXTER: Diffusion-Guided EXplanations with TExtual Reasoning for Vision Models
Abstract:
Understanding and explaining the behavior of machine learning models is essential for building transparent and trustworthy AI systems. We introduce DEXTER, a data-free framework that employs diffusion models and large language models to generate global, textual explanations of visual classifiers. DEXTER operates by optimizing text prompts to synthesize class-conditional images that strongly activate a target classifier. These synthetic samples are then used to elicit detailed natural language reports that describe class-specific decision patterns and biases. Unlike prior work, DEXTER enables natural language explanation about a classifier's decision process without access to training data or ground-truth labels. We demonstrate DEXTER's flexibility across three tasks-activation maximization, slice discovery and debiasing, and bias explanation-each illustrating its ability to uncover the internal mechanisms of visual classifiers. Quantitative and qualitative evaluations, including a user study, show that DEXTER produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds, CelebA, and FairFaces confirm that DEXTER outperforms existing approaches in global model explanation and class-level bias reporting. Code is available at https://github.com/perceivelab/dexter.

Authors:Caleb Robinson, Kimberly T. Goetz, Christin B. Khan, Meredith Sackett, Kathleen Leonard, Rahul Dodhia, Juan M. Lavista Ferres
Title: Where are the Whales: A Human-in-the-loop Detection Method for Identifying Whales in High-resolution Satellite Imagery
Abstract:
Effective monitoring of whale populations is critical for conservation, but traditional survey methods are expensive and difficult to scale. While prior work has shown that whales can be identified in very high-resolution (VHR) satellite imagery, large-scale automated detection remains challenging due to a lack of annotated imagery, variability in image quality and environmental conditions, and the cost of building robust machine learning pipelines over massive remote sensing archives. We present a semi-automated approach for surfacing possible whale detections in VHR imagery using a statistical anomaly detection method that flags spatial outliers, i.e. "interesting points". We pair this detector with a web-based labeling interface designed to enable experts to quickly annotate the interesting points. We evaluate our system on three benchmark scenes with known whale annotations and achieve recalls of 90.3% to 96.4%, while reducing the area requiring expert inspection by up to 99.8% -- from over 1,000 sq km to less than 2 sq km in some cases. Our method does not rely on labeled training data and offers a scalable first step toward future machine-assisted marine mammal monitoring from space. We have open sourced this pipeline at https://github.com/microsoft/whales.

Authors:Tongxuan Liu, Tao Peng, Peijun Yang, Xiaoyang Zhao, Xiusheng Lu, Weizhe Huang, Zirui Liu, Xiaoyu Chen, Zhiwei Liang, Jun Xiong, Donghe Jin, Minchao Zhang, Jinrong Guo, Yingxu Deng, Xu Zhang, Xianzhe Dong, Siqi Wang, Siyu Wu, Yu Wu, Zihan Tang, Yuting Zeng, Yanshu Wang, Jinguang Liu, Meng Kang, Menxin Li, Yunlong Wang, Yiming Liu, Xiaolong Ma, Yifan Wang, Yichen Zhang, Jinrun Yin, Keyang Zheng, Jiawei Yin, Jun Zhang, Ziyue Wang, Xiaobo Lin, Liangyu Liu, Liwei Lan, Yang Liu, Chunhua Peng, Han Liu, Songcheng Ren, Xuezhu Wang, Yunheng Shen, Yi Wang, Guyue Liu, Hui Chen, Tong Yang, Hailong Yang, Jing Li, Guiguang Ding, Ke Zhang
Title: xLLM Technical Report
Abstract:
We introduce xLLM, an intelligent and efficient Large Language Model (LLM) inference framework designed for high-performance, large-scale enterprise-grade serving, with deep optimizations for diverse AI accelerators. To address these challenges, xLLM builds a novel decoupled service-engine architecture. At the service layer, xLLM-Service features an intelligent scheduling module that efficiently processes multimodal requests and co-locates online and offline tasks through unified elastic scheduling to maximize cluster utilization. This module also relies on a workload-adaptive dynamic Prefill-Decode (PD) disaggregation policy and a novel Encode-Prefill-Decode (EPD) disaggregation policy designed for multimodal inputs. Furthermore, it incorporates a distributed architecture to provide global KV Cache management and robust fault-tolerant capabilities for high availability. At the engine layer, xLLM-Engine co-optimizes system and algorithm designs to fully saturate computing resources. This is achieved through comprehensive multi-layer execution pipeline optimizations, an adaptive graph mode and an xTensor memory management. xLLM-Engine also further integrates algorithmic enhancements such as optimized speculative decoding and dynamic EPLB, collectively serving to substantially boost throughput and inference efficiency. Extensive evaluations demonstrate that xLLM delivers significantly superior performance and resource efficiency. Under identical TPOT constraints, xLLM achieves throughput up to 1.7x that of MindIE and 2.2x that of vLLM-Ascend with Qwen-series models, while maintaining an average throughput of 1.7x that of MindIE with Deepseek-series models. xLLM framework is publicly available at https://github.com/jd-opensource/xllm and https://github.com/jd-opensource/xllm-service.

Authors:Steffen Hagedorn, Luka Donkov, Aron Distelzweig, Alexandru P. Condurache
Title: When Planners Meet Reality: How Learned, Reactive Traffic Agents Shift nuPlan Benchmarks
Abstract:
Planner evaluation in closed-loop simulation often uses rule-based traffic agents, whose simplistic and passive behavior can hide planner deficiencies and bias rankings. Widely used IDM agents simply follow a lead vehicle and cannot react to vehicles in adjacent lanes, hindering tests of complex interaction capabilities. We address this issue by integrating the state-of-the-art learned traffic agent model SMART into nuPlan. Thus, we are the first to evaluate planners under more realistic conditions and quantify how conclusions shift when narrowing the sim-to-real gap. Our analysis covers 14 recent planners and established baselines and shows that IDM-based simulation overestimates planning performance: nearly all scores deteriorate. In contrast, many planners interact better than previously assumed and even improve in multi-lane, interaction-heavy scenarios like lane changes or turns. Methods trained in closed-loop demonstrate the best and most stable driving performance. However, when reaching their limits in augmented edge-case scenarios, all learned planners degrade abruptly, whereas rule-based planners maintain reasonable basic behavior. Based on our results, we suggest SMART-reactive simulation as a new standard closed-loop benchmark in nuPlan and release the SMART agents as a drop-in alternative to IDM at https://github.com/shgd95/InteractiveClosedLoop.

Authors:Shayan Gharib, Marcelo Hartmann, Arto Klami
Title: Geometric Moment Alignment for Domain Adaptation via Siegel Embeddings
Abstract:
We address the problem of distribution shift in unsupervised domain adaptation with a moment-matching approach. Existing methods typically align low-order statistical moments of the source and target distributions in an embedding space using ad-hoc similarity measures. We propose a principled alternative that instead leverages the intrinsic geometry of these distributions by adopting a Riemannian distance for this alignment. Our key novelty lies in expressing the first- and second-order moments as a single symmetric positive definite (SPD) matrix through Siegel embeddings. This enables simultaneous adaptation of both moments using the natural geometric distance on the shared manifold of SPD matrices, preserving the mean and covariance structure of the source and target distributions and yielding a more faithful metric for cross-domain comparison. We connect the Riemannian manifold distance to the target-domain error bound, and validate the method on image denoising and image classification benchmarks. Our code is publicly available at https://github.com/shayangharib/GeoAdapt.

Authors:Weikang Yu, Vincent Nwazelibe, Xianping Ma, Xiaokang Zhang, Richard Gloaguen, Xiao Xiang Zhu, Pedram Ghamisi
Title: EuroMineNet: A Multitemporal Sentinel-2 Benchmark for Spatiotemporal Mining Footprint Analysis in the European Union (2015-2024)
Abstract:
Mining activities are essential for industrial and economic development, but remain a leading source of environmental degradation, contributing to deforestation, soil erosion, and water contamination. Sustainable resource management and environmental governance require consistent, long-term monitoring of mining-induced land surface changes, yet existing datasets are often limited in temporal depth or geographic scope. To address this gap, we present EuroMineNet, the first comprehensive multitemporal benchmark for mining footprint mapping and monitoring based on Sentinel-2 multispectral imagery. Spanning 133 mining sites across the European Union, EuroMineNet provides annual observations and expert-verified annotations from 2015 to 2024, enabling GeoAI-based models to analyze environmental dynamics at a continental scale. It supports two sustainability-driven tasks: (1) multitemporal mining footprint mapping for consistent annual land-use delineation, evaluated with a novel Change-Aware Temporal IoU (CA-TIoU) metric, and (2) cross-temporal change detection to capture both gradual and abrupt surface transformations. Benchmarking 20 state-of-the-art deep learning models reveals that while GeoAI methods effectively identify long-term environmental changes, challenges remain in detecting short-term dynamics critical for timely mitigation. By advancing temporally consistent and explainable mining monitoring, EuroMineNet contributes to sustainable land-use management, environmental resilience, and the broader goal of applying GeoAI for social and environmental good. We release the codes and datasets by aligning with FAIR and the open science paradigm at https://github.com/EricYu97/EuroMineNet.

Authors:Ming Gui, Johannes Schusterbauer, Timy Phan, Felix Krause, Josh Susskind, Miguel Angel Bautista, Björn Ommer
Title: Adapting Self-Supervised Representations as a Latent Space for Efficient Generation
Abstract:
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow matching objective. This adaptation enriches the token with low-level, reconstruction-relevant details, enabling faithful image reconstruction. To preserve the favorable geometry of the original SSL space, we add a cosine-similarity loss that regularizes the adapted token, ensuring the latent space remains smooth and suitable for generation. Our single-token formulation resolves spatial redundancies of 2D latent spaces and significantly reduces training costs. Despite its simplicity and efficiency, RepTok achieves competitive results on class-conditional ImageNet generation and naturally extends to text-to-image synthesis, reaching competitive zero-shot performance on MS-COCO under extremely limited training budgets. Our findings highlight the potential of fine-tuned SSL representations as compact and effective latent spaces for efficient generative modeling.

Authors:Yuanyi Song, Heyuan Huang, Qiqiang Lin, Yin Zhao, Xiangmou Qu, Jun Wang, Xingyu Lou, Weiwen Liu, Zhuosheng Zhang, Jun Wang, Yong Yu, Weinan Zhang, Zhaoxiang Wang
Title: ColorBench: Benchmarking Mobile Agents with Graph-Structured Framework for Complex Long-Horizon Tasks
Abstract:
The rapid advancement of multimodal large language models has enabled agents to operate mobile devices by directly interacting with graphical user interfaces, opening new possibilities for mobile automation. However, real-world mobile tasks are often complex and allow for multiple valid solutions. This contradicts current mobile agent evaluation standards: offline static benchmarks can only validate a single predefined "golden path", while online dynamic testing is constrained by the complexity and non-reproducibility of real devices, making both approaches inadequate for comprehensively assessing agent capabilities. To bridge the gap between offline and online evaluation and enhance testing stability, this paper introduces a novel graph-structured benchmarking framework. By modeling the finite states observed during real-device interactions, it achieves static simulation of dynamic behaviors. Building on this, we develop ColorBench, a benchmark focused on complex long-horizon tasks. It supports evaluation of multiple valid solutions, subtask completion rate statistics, and atomic-level capability analysis. ColorBench contains 175 tasks (74 single-app, 101 cross-app) with an average length of over 13 steps. Each task includes at least two correct paths and several typical error paths, enabling quasi-dynamic interaction. By evaluating ColorBench across various baselines, we discover limitations of existing models and propose improvement directions and feasible technical pathways to enhance agents' performance on complex, long-horizon problems based on experimental results. Code and data are available at: https://github.com/MadeAgents/ColorBench.

Authors:Yuyang Hong, Jiaqi Gu, Qi Yang, Lubin Fan, Yue Wu, Ying Wang, Kun Ding, Shiming Xiang, Jieping Ye
Title: Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
Abstract:
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF

Authors:Zhifei Chen, Tianshuo Xu, Leyi Wu, Luozhou Wang, Dongyu Yan, Zihan You, Wenting Luo, Guo Zhang, Yingcong Chen
Title: STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Abstract:
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.

Authors:Daria Frolova, Talgat Daulbaev, Egor Sevryugov, Sergei A. Nikolenko, Dmitry N. Ivankov, Ivan Oseledets, Marina A. Pak
Title: Matcha: Multi-Stage Riemannian Flow Matching for Accurate and Physically Valid Molecular Docking
Abstract:
Accurate prediction of protein-ligand binding poses is crucial for structure-based drug design, yet existing methods struggle to balance speed, accuracy, and physical plausibility. We introduce Matcha, a novel molecular docking pipeline that combines multi-stage flow matching with learned scoring and physical validity filtering. Our approach consists of three sequential stages applied consecutively to refine docking predictions, each implemented as a flow matching model operating on appropriate geometric spaces ($\mathbb{R}^3$, $\mathrm{SO}(3)$, and $\mathrm{SO}(2)$). We enhance the prediction quality through a dedicated scoring model and apply unsupervised physical validity filters to eliminate unrealistic poses. Compared to various approaches, Matcha demonstrates superior performance on Astex and PDBbind test sets in terms of docking success rate and physical plausibility. Moreover, our method works approximately 25 times faster than modern large-scale co-folding models. The model weights and inference code to reproduce our results are available at https://github.com/LigandPro/Matcha.

Authors:Matan Rusanovsky, Shimon Malnick, Shai Avidan
Title: Talking Points: Describing and Localizing Pixels
Abstract:
Vision-language models have achieved remarkable success in cross-modal understanding. Yet, these models remain limited to object-level or region-level grounding, lacking the capability for pixel-precise keypoint comprehension through natural language. We introduce a novel framework for pixel level grounding. The framework consists of two complementary components: a Point Descriptor that generates rich, contextual descriptions of individual keypoints, and a Point Localizer that regresses precise pixel coordinates from these descriptions. Unlike prior work that relies on templated prompts or keypoint names, our approach produces free-form, coarse-to-fine descriptions that situate keypoints within their visual context. Since there is no available dataset to train such a system, we introduce LlamaPointInPart, a carefully curated dataset of 20K+ image-keypoint-description triplets synthesized from multiple vision-language models, capturing multi-scale information from scene-level context to visual features around the keypoint. For cross-category generalization, we optimize the Point Descriptor on AP-10K via GRPO, using the frozen Point Localizer as a reward model to produce descriptions that maximize localization accuracy. To evaluate our results we establish a new evaluation protocol. Instead of comparing the text description produced by our method to the ground truth, we use the localizer to determine how close is the predicted point generated to the ground truth point. Experiments demonstrate superior performance compared to baseline models on LlamaPointInPart.The bidirectional nature of our framework should enable future applications in both keypoint-guided image understanding and language-guided precise localization. Our code and dataset are publicly available at https://github.com/matanr/Talking_Points.

Authors:Yulin Zhang, Cheng Shi, Yang Wang, Sibei Yang
Title: Eyes Wide Open: Ego Proactive Video-LLM for Streaming Video
Abstract:
Envision an AI capable of functioning in human-like settings, moving beyond mere observation to actively understand, anticipate, and proactively respond to unfolding events. Towards this vision, we focus on the innovative task where, given ego-streaming video input, an assistant proactively answers diverse, evolving questions at the opportune moment, while maintaining synchronized perception and reasoning. This task embodies three key properties: (1) Proactive Coherence, (2) Just-in-Time Responsiveness, and (3) Synchronized Efficiency. To evaluate and address these properties, we first introduce ESTP-Bench (Ego Streaming Proactive Benchmark) alongside the ESTP-F1 metric-a novel framework designed for their rigorous assessment. Secondly, we propose a comprehensive technical pipeline to enable models to tackle this challenging task. This pipeline comprises: (1) a data engine, (2) a multi-stage training strategy, and (3) a proactive dynamic compression technique. Our proposed model effectively addresses these critical properties while outperforming multiple baselines across diverse online and offline benchmarks. Project Page:https://zhangyl4.github.io/publications/eyes-wide-open/

Authors:Xingjian Wu, Xiangfei Qiu, Hanyin Cheng, Zhengyu Li, Jilin Hu, Chenjuan Guo, Bin Yang
Title: Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective
Abstract:
Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plugin-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.

Authors:Jingyao Liu, Chen Huang, Zhizhao Guan, Wenqiang Lei, Yang Deng
Title: E2Edev: Benchmarking Large Language Models in End-to-End Software Development Task
Abstract:
E2EDev comprises (i) a fine-grained set of user requirements, (ii) {multiple BDD test scenarios with corresponding Python step implementations for each requirement}, and (iii) a fully automated testing pipeline built on the Behave framework. To ensure its quality while reducing the annotation effort, E2EDev leverages our proposed Human-in-the-Loop Multi-Agent Annotation Framework (HITL-MAA). {By evaluating various E2ESD frameworks and LLM backbones with E2EDev}, our analysis reveals a persistent struggle to effectively solve these tasks, underscoring the critical need for more effective and cost-efficient E2ESD solutions. Our codebase and benchmark are publicly available at https://github.com/SCUNLP/E2EDev.

Authors:Aleksis Pirinen, Delia Fano Yela, Smita Chakraborty, Erik Källman
Title: Grazing Detection using Deep Learning and Sentinel-2 Time Series Data
Abstract:
Grazing shapes both agricultural production and biodiversity, yet scalable monitoring of where grazing occurs remains limited. We study seasonal grazing detection from Sentinel-2 L2A time series: for each polygon-defined field boundary, April-October imagery is used for binary prediction (grazed / not grazed). We train an ensemble of CNN-LSTM models on multi-temporal reflectance features, and achieve an average F1 score of 77 percent across five validation splits, with 90 percent recall on grazed pastures. Operationally, if inspectors can visit at most 4 percent of sites annually, prioritising fields predicted by our model as non-grazed yields 17.2 times more confirmed non-grazing sites than random inspection. These results indicate that coarse-resolution, freely available satellite data can reliably steer inspection resources for conservation-aligned land-use compliance. Code and models have been made publicly available.

Authors:Thomas Katraouras, Dimitrios Rafailidis
Title: Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration
Abstract:
Image quality is a critical factor in delivering visually appealing content on web platforms. However, images often suffer from degradation due to lossy operations applied by online social networks (OSNs), negatively affecting user experience. Image restoration is the process of recovering a clean high-quality image from a given degraded input. Recently, multi-task (all-in-one) image restoration models have gained significant attention, due to their ability to simultaneously handle different types of image degradations. However, these models often come with an excessively high number of trainable parameters, making them computationally inefficient. In this paper, we propose a strategy for compressing multi-task image restoration models. We aim to discover highly sparse subnetworks within overparameterized deep models that can match or even surpass the performance of their dense counterparts. The proposed model, namely MIR-L, utilizes an iterative pruning strategy that removes low-magnitude weights across multiple rounds, while resetting the remaining weights to their original initialization. This iterative process is important for the multi-task image restoration model's optimization, effectively uncovering "winning tickets" that maintain or exceed state-of-the-art performance at high sparsity levels. Experimental evaluation on benchmark datasets for the deraining, dehazing, and denoising tasks shows that MIR-L retains only 10% of the trainable parameters while maintaining high image restoration performance. Our code, datasets and pre-trained models are made publicly available at https://github.com/Thomkat/MIR-L.

Authors:Sven Jacob, Weijia Shao, Gjergji Kasneci
Title: Structured Universal Adversarial Attacks on Object Detection for Video Sequences
Abstract:
Video-based object detection plays a vital role in safety-critical applications. While deep learning-based object detectors have achieved impressive performance, they remain vulnerable to adversarial attacks, particularly those involving universal perturbations. In this work, we propose a minimally distorted universal adversarial attack tailored for video object detection, which leverages nuclear norm regularization to promote structured perturbations concentrated in the background. To optimize this formulation efficiently, we employ an adaptive, optimistic exponentiated gradient method that enhances both scalability and convergence. Our results demonstrate that the proposed attack outperforms both low-rank projected gradient descent and Frank-Wolfe based attacks in effectiveness while maintaining high stealthiness. All code and data are publicly available at https://github.com/jsve96/AO-Exp-Attack.

Authors:Tao Huang, Huayi Wang, Junli Ren, Kangning Yin, Zirui Wang, Xiao Chen, Feiyu Jia, Wentao Zhang, Junfeng Long, Jingbo Wang, Jiangmiao Pang
Title: Towards Adaptable Humanoid Control via Adaptive Motion Tracking
Abstract:
Humanoid robots are envisioned to adapt demonstrated motions to diverse real-world conditions while accurately preserving motion patterns. Existing motion prior approaches enable well adaptability with a few motions but often sacrifice imitation accuracy, whereas motion-tracking methods achieve accurate imitation yet require many training motions and a test-time target motion to adapt. To combine their strengths, we introduce AdaMimic, a novel motion tracking algorithm that enables adaptable humanoid control from a single reference motion. To reduce data dependence while ensuring adaptability, our method first creates an augmented dataset by sparsifying the single reference motion into keyframes and applying light editing with minimal physical assumptions. A policy is then initialized by tracking these sparse keyframes to generate dense intermediate motions, and adapters are subsequently trained to adjust tracking speed and refine low-level actions based on the adjustment, enabling flexible time warping that further improves imitation accuracy and adaptability. We validate these significant improvements in our approach in both simulation and the real-world Unitree G1 humanoid robot in multiple tasks across a wide range of adaptation conditions. Videos and code are available at https://taohuang13.github.io/adamimic.github.io/.

Authors:Ho Yin Au, Jie Chen, Junkun Jiang, Jingyu Xiang
Title: Deep Compositional Phase Diffusion for Long Motion Sequence Generation
Abstract:
Recent research on motion generation has shown significant progress in generating semantically aligned motion with singular semantics. However, when employing these models to create composite sequences containing multiple semantically generated motion clips, they often struggle to preserve the continuity of motion dynamics at the transition boundaries between clips, resulting in awkward transitions and abrupt artifacts. To address these challenges, we present Compositional Phase Diffusion, which leverages the Semantic Phase Diffusion Module (SPDM) and Transitional Phase Diffusion Module (TPDM) to progressively incorporate semantic guidance and phase details from adjacent motion clips into the diffusion process. Specifically, SPDM and TPDM operate within the latent motion frequency domain established by the pre-trained Action-Centric Motion Phase Autoencoder (ACT-PAE). This allows them to learn semantically important and transition-aware phase information from variable-length motion clips during training. Experimental results demonstrate the competitive performance of our proposed framework in generating compositional motion sequences that align semantically with the input conditions, while preserving phase transitional continuity between preceding and succeeding motion clips. Additionally, motion inbetweening task is made possible by keeping the phase parameter of the input motion sequences fixed throughout the diffusion process, showcasing the potential for extending the proposed framework to accommodate various application scenarios. Codes are available at https://github.com/asdryau/TransPhase.

Authors:Qingyu Ren, Qianyu He, Bowei Zhang, Jie Zeng, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Instructions are all you need: Self-supervised Reinforcement Learning for Instruction Following
Abstract:
Language models often struggle to follow multi-constraint instructions that are crucial for real-world applications. Existing reinforcement learning (RL) approaches suffer from dependency on external supervision and sparse reward signals from multi-constraint tasks. We propose a label-free self-supervised RL framework that eliminates dependency on external supervision by deriving reward signals directly from instructions and generating pseudo-labels for reward model training. Our approach introduces constraint decomposition strategies and efficient constraint-wise binary classification to address sparse reward challenges while maintaining computational efficiency. Experiments show that our approach generalizes well, achieving strong improvements across 3 in-domain and 5 out-of-domain datasets, including challenging agentic and multi-turn instruction following. The data and code are publicly available at https://github.com/Rainier-rq/verl-if

Authors:Chao Tu, Kun Huang, Jie Zhang, Qianjin Feng, Yu Zhang, Zhenyuan Ning
Title: DCMIL: A Progressive Representation Learning Model of Whole Slide Images for Cancer Prognosis Analysis
Abstract:
The burgeoning discipline of computational pathology shows promise in harnessing whole slide images (WSIs) to quantify morphological heterogeneity and develop objective prognostic modes for human cancers. However, progress is impeded by the computational bottleneck of gigapixel-size inputs and the scarcity of dense manual annotations. Current methods often overlook fine-grained information across multi-magnification WSIs and variations in tumor microenvironments. Here, we propose an easy-to-hard progressive representation learning model, termed dual-curriculum contrastive multi-instance learning (DCMIL), to efficiently process WSIs for cancer prognosis. The model does not rely on dense annotations and enables the direct transformation of gigapixel-size WSIs into outcome predictions. Extensive experiments on twelve cancer types (5,954 patients, 12.54 million tiles) demonstrate that DCMIL outperforms standard WSI-based prognostic models. Additionally, DCMIL identifies fine-grained prognosis-salient regions, provides robust instance uncertainty estimation, and captures morphological differences between normal and tumor tissues, with the potential to generate new biological insights. All codes have been made publicly accessible at https://github.com/tuuuc/DCMIL.

Authors:Shiyao Ding, Takayuki Ito
Title: Your Next Token Prediction: A Multilingual Benchmark for Personalized Response Generation
Abstract:
Large language models (LLMs) excel at general next-token prediction but still struggle to generate responses that reflect how individuals truly communicate, such as replying to emails or social messages in their own style. However, real SNS or email histories are difficult to collect due to privacy concerns. To address this, we propose the task of "Your Next Token Prediction (YNTP)", which models a user's precise word choices through controlled human-agent conversations. We build a multilingual benchmark of 100 dialogue sessions across English, Japanese, and Chinese, where users interact for five days with psychologically grounded NPCs based on MBTI dimensions. This setup captures natural, daily-life communication patterns and enables analysis of users' internal models. We evaluate prompt-based and fine-tuning-based personalization methods, establishing the first benchmark for YNTP and a foundation for user-aligned language modeling. The dataset is available at: https://github.com/AnonymousHub4Submissions/your-next-token-prediction-dataset-100

Authors:Han Qiu, Peng Gao, Lewei Lu, Xiaoqin Zhang, Ling Shao, Shijian Lu
Title: Spatial Preference Rewarding for MLLMs Spatial Understanding
Abstract:
Multimodal large language models~(MLLMs) have demonstrated promising spatial understanding capabilities, such as referencing and grounding object descriptions. Despite their successes, MLLMs still fall short in fine-grained spatial perception abilities, such as generating detailed region descriptions or accurately localizing objects. Additionally, they often fail to respond to the user's requirements for desired fine-grained spatial understanding. This issue might arise because existing approaches primarily focus on tuning MLLMs to model pre-annotated instruction data to inject spatial knowledge, without direct supervision of MLLMs' actual responses. We address this issue by SPR, a Spatial Preference Rewarding~(SPR) approach that enhances MLLMs' spatial capabilities by rewarding MLLMs' detailed responses with precise object localization over vague or inaccurate responses. With randomly selected image regions and region descriptions from MLLMs, SPR introduces semantic and localization scores to comprehensively evaluate the text quality and localization quality in MLLM-generated descriptions. We also refine the MLLM descriptions with better localization accuracy and pair the best-scored refinement with the initial descriptions of the lowest score for direct preference optimization, thereby enhancing fine-grained alignment with visual input. Extensive experiments over standard referring and grounding benchmarks show that SPR improves MLLM spatial understanding capabilities effectively with minimal overhead in training. Data and code will be released at https://github.com/hanqiu-hq/SPR

Authors:Xiaobei Zhao, Xingqi Lyu, Xiang Li
Title: SUM-AgriVLN: Spatial Understanding Memory for Agricultural Vision-and-Language Navigation
Abstract:
Agricultural robots are emerging as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily rely on manual operation or fixed rail systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling robots to navigate to the target positions following the natural language instructions. In practical agricultural scenarios, navigation instructions often repeatedly occur, yet AgriVLN treat each instruction as an independent episode, overlooking the potential of past experiences to provide spatial context for subsequent ones. To bridge this gap, we propose the method of Spatial Understanding Memory for Agricultural Vision-and-Language Navigation (SUM-AgriVLN), in which the SUM module employs spatial understanding and save spatial memory through 3D reconstruction and representation. When evaluated on the A2A benchmark, our SUM-AgriVLN effectively improves Success Rate from 0.47 to 0.54 with slight sacrifice on Navigation Error from 2.91m to 2.93m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/SUM-AgriVLN.

Authors:Hendrik Ranocha, David I. Ketcheson
Title: High-order mass- and energy-conserving methods for the nonlinear Schrödinger equation and its hyperbolization
Abstract:
We propose a class of numerical methods for the nonlinear Schrödinger (NLS) equation that conserves mass and energy, is of arbitrarily high-order accuracy in space and time, and requires only the solution of a scalar algebraic equation per time step. We show that some existing spatial discretizations, including the popular Fourier spectral method, are in fact energy-conserving if one considers the appropriate form of the energy density. We develop a new relaxation-type approach for conserving multiple nonlinear functionals that is more efficient and robust for the NLS equation compared to the existing multiple-relaxation approach. The accuracy and efficiency of the new schemes is demonstrated on test problems for both the focusing and defocusing NLS.

Authors:Ryo Kuroiwa, Edward Lam
Title: Column Generation Using Domain-Independent Dynamic Programming
Abstract:
Column generation and branch-and-price are leading methods for large-scale exact optimization. Column generation iterates between solving a master problem and a pricing problem. The master problem is a linear program, which can be solved using a generic solver. The pricing problem is highly dependent on the application but is usually discrete. Due to the difficulty of discrete optimization, high-performance column generation often relies on a custom pricing algorithm built specifically to exploit the problem's structure. This bespoke nature of the pricing solver prevents the reuse of components for other applications. We show that domain-independent dynamic programming, a software package for modeling and solving arbitrary dynamic programs, can be used as a generic pricing solver. We develop basic implementations of branch-and-price with pricing by domain-independent dynamic programming and show that they outperform a world-leading solver on static mixed integer programming formulations for seven problem classes.

Authors:Sathyanarayanan Ramamoorthy, Vishwa Shah, Simran Khanuja, Zaid Sheikh, Shan Jie, Ann Chia, Shearman Chua, Graham Neubig
Title: MERLIN: A Testbed for Multilingual Multimodal Entity Recognition and Linking
Abstract:
This paper introduces MERLIN, a novel testbed system for the task of Multilingual Multimodal Entity Linking. The created dataset includes BBC news article titles, paired with corresponding images, in five languages: Hindi, Japanese, Indonesian, Vietnamese, and Tamil, featuring over 7,000 named entity mentions linked to 2,500 unique Wikidata entities. We also include several benchmarks using multilingual and multimodal entity linking methods exploring different language models like LLaMa-2 and Aya-23. Our findings indicate that incorporating visual data improves the accuracy of entity linking, especially for entities where the textual context is ambiguous or insufficient, and particularly for models that do not have strong multilingual abilities. For the work, the dataset, methods are available here at https://github.com/rsathya4802/merlin

Authors:Mahbub E Sobhani, Md. Faiyaz Abdullah Sayeedi, Tasnim Mohiuddin, Md Mofijul Islam, Swakkhar Shatabda
Title: MathMist: A Parallel Multilingual Benchmark Dataset for Mathematical Problem Solving and Reasoning
Abstract:
Mathematical reasoning remains one of the most challenging domains for large language models (LLMs), requiring not only linguistic understanding but also structured logical deduction and numerical precision. While recent LLMs demonstrate strong general-purpose reasoning abilities, their mathematical competence across diverse languages remains underexplored. Existing benchmarks primarily focus on English or a narrow subset of high-resource languages, leaving significant gaps in assessing multilingual and cross-lingual mathematical reasoning. To address this, we introduce MathMist, a parallel multilingual benchmark for mathematical problem solving and reasoning. MathMist encompasses over 21K aligned question-answer pairs across seven languages, representing a balanced coverage of high-, medium-, and low-resource linguistic settings. The dataset captures linguistic variety, multiple types of problem settings, and solution synthesizing capabilities. We systematically evaluate a diverse suite of models, including open-source small and medium LLMs, proprietary systems, and multilingual-reasoning-focused models, under zero-shot, chain-of-thought (CoT), and code-switched reasoning paradigms. Our results reveal persistent deficiencies in LLMs' ability to perform consistent and interpretable mathematical reasoning across languages, with pronounced degradation in low-resource settings. All the codes and data are available at GitHub: https://github.com/mahbubhimel/MathMist

Authors:Kyungryul Back, Seongbeom Park, Milim Kim, Mincheol Kwon, SangHyeok Lee, Hyunyoung Lee, Junhee Cho, Seunghyun Park, Jinkyu Kim
Title: Watermarking for Factuality: Guiding Vision-Language Models Toward Truth via Tri-layer Contrastive Decoding
Abstract:
Large Vision-Language Models (LVLMs) have recently shown promising results on various multimodal tasks, even achieving human-comparable performance in certain cases. Nevertheless, LVLMs remain prone to hallucinations -- they often rely heavily on a single modality or memorize training data without properly grounding their outputs. To address this, we propose a training-free, tri-layer contrastive decoding with watermarking, which proceeds in three steps: (1) select a mature layer and an amateur layer among the decoding layers, (2) identify a pivot layer using a watermark-related question to assess whether the layer is visually well-grounded, and (3) apply tri-layer contrastive decoding to generate the final output. Experiments on public benchmarks such as POPE, MME and AMBER demonstrate that our method achieves state-of-the-art performance in reducing hallucinations in LVLMs and generates more visually grounded responses.

Authors:Nam Le, Leo Yu Zhang, Kewen Liao, Shirui Pan, Wei Luo
Title: TED++: Submanifold-Aware Backdoor Detection via Layerwise Tubular-Neighbourhood Screening
Abstract:
As deep neural networks power increasingly critical applications, stealthy backdoor attacks, where poisoned training inputs trigger malicious model behaviour while appearing benign, pose a severe security risk. Many existing defences are vulnerable when attackers exploit subtle distance-based anomalies or when clean examples are scarce. To meet this challenge, we introduce TED++, a submanifold-aware framework that effectively detects subtle backdoors that evade existing defences. TED++ begins by constructing a tubular neighbourhood around each class's hidden-feature manifold, estimating its local ``thickness'' from a handful of clean activations. It then applies Locally Adaptive Ranking (LAR) to detect any activation that drifts outside the admissible tube. By aggregating these LAR-adjusted ranks across all layers, TED++ captures how faithfully an input remains on the evolving class submanifolds. Based on such characteristic ``tube-constrained'' behaviour, TED++ flags inputs whose LAR-based ranking sequences deviate significantly. Extensive experiments are conducted on benchmark datasets and tasks, demonstrating that TED++ achieves state-of-the-art detection performance under both adaptive-attack and limited-data scenarios. Remarkably, even with only five held-out examples per class, TED++ still delivers near-perfect detection, achieving gains of up to 14\% in AUROC over the next-best method. The code is publicly available at https://github.com/namle-w/TEDpp.

Authors:Mayank Keoliya, Seewon Choi, Rajeev Alur, Mayur Naik, Eric Wong
Title: Stable Prediction of Adverse Events in Medical Time-Series Data
Abstract:
Early event prediction (EEP) systems continuously estimate a patient's imminent risk to support clinical decision-making. For bedside trust, risk trajectories must be accurate and temporally stable, shifting only with new, relevant evidence. However, current benchmarks (a) ignore stability of risk scores and (b) evaluate mainly on tabular inputs, leaving trajectory behavior untested. To address this gap, we introduce CAREBench, an EEP benchmark that evaluates deployability using multi-modal inputs-tabular EHR, ECG waveforms, and clinical text-and assesses temporal stability alongside predictive accuracy. We propose a stability metric that quantifies short-term variability in per-patient risk and penalizes abrupt oscillations based on local-Lipschitz constants. CAREBench spans six prediction tasks such as sepsis onset and compares classical learners, deep sequence models, and zero-shot LLMs. Across tasks, existing methods, especially LLMs, struggle to jointly optimize accuracy and stability, with notably poor recall at high-precision operating points. These results highlight the need for models that produce evidence-aligned, stable trajectories to earn clinician trust in continuous monitoring settings. (Code: https://github.com/SeewonChoi/CAREBench.)

Authors:Yutian Zhao, Chao Du, Xiaosen Zheng, Tianyu Pang, Min Lin
Title: Nonparametric Data Attribution for Diffusion Models
Abstract:
Data attribution for generative models seeks to quantify the influence of individual training examples on model outputs. Existing methods for diffusion models typically require access to model gradients or retraining, limiting their applicability in proprietary or large-scale settings. We propose a nonparametric attribution method that operates entirely on data, measuring influence via patch-level similarity between generated and training images. Our approach is grounded in the analytical form of the optimal score function and naturally extends to multiscale representations, while remaining computationally efficient through convolution-based acceleration. In addition to producing spatially interpretable attributions, our framework uncovers patterns that reflect intrinsic relationships between training data and outputs, independent of any specific model. Experiments demonstrate that our method achieves strong attribution performance, closely matching gradient-based approaches and substantially outperforming existing nonparametric baselines. Code is available at https://github.com/sail-sg/NDA.

Authors:Xukai Wang, Xuanbo Liu, Mingrui Chen, Haitian Zhong, Xuanlin Yang, Bohan Zeng, Jinbo Hu, Hao Liang, Junbo Niu, Xuchen Li, Ruitao Wu, Ruichuan An, Yang Shi, Liu Liu, Xu-Yao Zhang, Qiang Liu, Zhouchen Lin, Wentao Zhang, Bin Dong
Title: MorphoBench: A Benchmark with Difficulty Adaptive to Model Reasoning
Abstract:
With the advancement of powerful large-scale reasoning models, effectively evaluating the reasoning capabilities of these models has become increasingly important. However, existing benchmarks designed to assess the reasoning abilities of large models tend to be limited in scope and lack the flexibility to adapt their difficulty according to the evolving reasoning capacities of the models. To address this, we propose MorphoBench, a benchmark that incorporates multidisciplinary questions to evaluate the reasoning capabilities of large models and can adjust and update question difficulty based on the reasoning abilities of advanced models. Specifically, we curate the benchmark by selecting and collecting complex reasoning questions from existing benchmarks and sources such as Olympiad-level competitions. Additionally, MorphoBench adaptively modifies the analytical challenge of questions by leveraging key statements generated during the model's reasoning process. Furthermore, it includes questions generated using simulation software, enabling dynamic adjustment of benchmark difficulty with minimal resource consumption. We have gathered over 1,300 test questions and iteratively adjusted the difficulty of MorphoBench based on the reasoning capabilities of models such as o3 and GPT-5. MorphoBench enhances the comprehensiveness and validity of model reasoning evaluation, providing reliable guidance for improving both the reasoning abilities and scientific robustness of large models. The code has been released in https://github.com/OpenDCAI/MorphoBench.

Authors:Zheye Deng, Jiashu Wang
Title: AlphaQuanter: An End-to-End Tool-Orchestrated Agentic Reinforcement Learning Framework for Stock Trading
Abstract:
While Large Language Model (LLM) agents show promise in automated trading, they still face critical limitations. Prominent multi-agent frameworks often suffer from inefficiency, produce inconsistent signals, and lack the end-to-end optimization required to learn a coherent strategy from market feedback. To address this, we introduce AlphaQuanter, a single-agent framework that uses reinforcement learning (RL) to learn a dynamic policy over a transparent, tool-augmented decision workflow, which empowers a single agent to autonomously orchestrate tools and proactively acquire information on demand, establishing a transparent and auditable reasoning process. Extensive experiments demonstrate that AlphaQuanter achieves state-of-the-art performance on key financial metrics. Moreover, its interpretable reasoning reveals sophisticated strategies, offering novel and valuable insights for human traders. Our code for data acquisition and agent training is publicly available at: https://github.com/AlphaQuanter/AlphaQuanter

Authors:Tingman Yan, Tao Liu, Xilian Yang, Qunfei Zhao, Zeyang Xia
Title: MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching
Abstract:
Cross-view matching is fundamentally achieved through cross-attention mechanisms. However, matching of high-resolution images remains challenging due to the quadratic complexity and lack of explicit matching constraints in the existing cross-attention. This paper proposes an attention mechanism, MatchAttention, that dynamically matches relative positions. The relative position determines the attention sampling center of the key-value pairs given a query. Continuous and differentiable sliding-window attention sampling is achieved by the proposed BilinearSoftmax. The relative positions are iteratively updated through residual connections across layers by embedding them into the feature channels. Since the relative position is exactly the learning target for cross-view matching, an efficient hierarchical cross-view decoder, MatchDecoder, is designed with MatchAttention as its core component. To handle cross-view occlusions, gated cross-MatchAttention and a consistency-constrained loss are proposed. These two components collectively mitigate the impact of occlusions in both forward and backward passes, allowing the model to focus more on learning matching relationships. When applied to stereo matching, MatchStereo-B ranked 1st in average error on the public Middlebury benchmark and requires only 29ms for KITTI-resolution inference. MatchStereo-T can process 4K UHD images in 0.1 seconds using only 3GB of GPU memory. The proposed models also achieve state-of-the-art performance on KITTI 2012, KITTI 2015, ETH3D, and Spring flow datasets. The combination of high accuracy and low computational complexity makes real-time, high-resolution, and high-accuracy cross-view matching possible. Code is available at https://github.com/TingmanYan/MatchAttention.

Authors:Liao Shen, Wentao Jiang, Yiran Zhu, Tiezheng Ge, Zhiguo Cao, Bo Zheng
Title: Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Abstract:
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at \href{https://ipro-alimama.github.io/}{https://ipro-alimama.github.io/}.

Authors:Wangtao Sun, Xiang Cheng, Jialin Fan, Yao Xu, Xing Yu, Shizhu He, Jun Zhao, Kang Liu
Title: Towards Agentic Self-Learning LLMs in Search Environment
Abstract:
We study whether self-learning can scale LLM-based agents without relying on human-curated datasets or predefined rule-based rewards. Through controlled experiments in a search-agent setting, we identify two key determinants of scalable agent training: the source of reward signals and the scale of agent task data. We find that rewards from a Generative Reward Model (GRM) outperform rigid rule-based signals for open-domain learning, and that co-evolving the GRM with the policy further boosts performance. Increasing the volume of agent task data-even when synthetically generated-substantially enhances agentic capabilities. Building on these insights, we propose \textbf{Agentic Self-Learning} (ASL), a fully closed-loop, multi-role reinforcement learning framework that unifies task generation, policy execution, and evaluation within a shared tool environment and LLM backbone. ASL coordinates a Prompt Generator, a Policy Model, and a Generative Reward Model to form a virtuous cycle of harder task setting, sharper verification, and stronger solving. Empirically, ASL delivers steady, round-over-round gains, surpasses strong RLVR baselines (e.g., Search-R1) that plateau or degrade, and continues improving under zero-labeled-data conditions, indicating superior sample efficiency and robustness. We further show that GRM verification capacity is the main bottleneck: if frozen, it induces reward hacking and stalls progress; continual GRM training on the evolving data distribution mitigates this, and a small late-stage injection of real verification data raises the performance ceiling. This work establishes reward source and data scale as critical levers for open-domain agent learning and demonstrates the efficacy of multi-role co-evolution for scalable, self-improving agents. The data and code of this paper are released at https://github.com/forangel2014/Towards-Agentic-Self-Learning

Authors:Arnaud Judge, Nicolas Duchateau, Thierry Judge, Roman A. Sandler, Joseph Z. Sokol, Christian Desrosiers, Olivier Bernard, Pierre-Marc Jodoin
Title: Reinforcement Learning for Unsupervised Domain Adaptation in Spatio-Temporal Echocardiography Segmentation
Abstract:
Domain adaptation methods aim to bridge the gap between datasets by enabling knowledge transfer across domains, reducing the need for additional expert annotations. However, many approaches struggle with reliability in the target domain, an issue particularly critical in medical image segmentation, where accuracy and anatomical validity are essential. This challenge is further exacerbated in spatio-temporal data, where the lack of temporal consistency can significantly degrade segmentation quality, and particularly in echocardiography, where the presence of artifacts and noise can further hinder segmentation performance. To address these issues, we present RL4Seg3D, an unsupervised domain adaptation framework for 2D + time echocardiography segmentation. RL4Seg3D integrates novel reward functions and a fusion scheme to enhance key landmark precision in its segmentations while processing full-sized input videos. By leveraging reinforcement learning for image segmentation, our approach improves accuracy, anatomical validity, and temporal consistency while also providing, as a beneficial side effect, a robust uncertainty estimator, which can be used at test time to further enhance segmentation performance. We demonstrate the effectiveness of our framework on over 30,000 echocardiographic videos, showing that it outperforms standard domain adaptation techniques without the need for any labels on the target domain. Code is available at https://github.com/arnaudjudge/RL4Seg3D.

Authors:Parsa Hejabi, Elnaz Rahmati, Alireza S. Ziabari, Morteza Dehghani
Title: Flip-Flop Consistency: Unsupervised Training for Robustness to Prompt Perturbations in LLMs
Abstract:
Large Language Models (LLMs) often produce inconsistent answers when faced with different phrasings of the same prompt. In this paper, we propose Flip-Flop Consistency ($F^2C$), an unsupervised training method that improves robustness to such perturbations. $F^2C$ is composed of two key components. The first, Consensus Cross-Entropy (CCE), uses a majority vote across prompt variations to create a hard pseudo-label. The second is a representation alignment loss that pulls lower-confidence and non-majority predictors toward the consensus established by high-confidence, majority-voting variations. We evaluate our method on 11 datasets spanning four NLP tasks, with 4-15 prompt variations per dataset. On average, $F^2C$ raises observed agreement by 11.62%, improves mean $F_1$ by 8.94%, and reduces performance variance across formats by 3.29%. In out-of-domain evaluations, $F^2C$ generalizes effectively, increasing $\overline{F_1}$ and agreement while decreasing variance across most source-target pairs. Finally, when trained on only a subset of prompt perturbations and evaluated on held-out formats, $F^2C$ consistently improves both performance and agreement while reducing variance. These findings highlight $F^2C$ as an effective unsupervised method for enhancing LLM consistency, performance, and generalization under prompt perturbations. Code is available at https://github.com/ParsaHejabi/Flip-Flop-Consistency-Unsupervised-Training-for-Robustness-to-Prompt-Perturbations-in-LLMs.

Authors:Soumyya Kanti Datta, Tanvi Ranga, Chengzhe Sun, Siwei Lyu
Title: PIA: Deepfake Detection Using Phoneme-Temporal and Identity-Dynamic Analysis
Abstract:
The rise of manipulated media has made deepfakes a particularly insidious threat, involving various generative manipulations such as lip-sync modifications, face-swaps, and avatar-driven facial synthesis. Conventional detection methods, which predominantly depend on manually designed phoneme-viseme alignment thresholds, fundamental frame-level consistency checks, or a unimodal detection strategy, inadequately identify modern-day deepfakes generated by advanced generative models such as GANs, diffusion models, and neural rendering techniques. These advanced techniques generate nearly perfect individual frames yet inadvertently create minor temporal discrepancies frequently overlooked by traditional detectors. We present a novel multimodal audio-visual framework, Phoneme-Temporal and Identity-Dynamic Analysis(PIA), incorporating language, dynamic face motion, and facial identification cues to address these limitations. We utilize phoneme sequences, lip geometry data, and advanced facial identity embeddings. This integrated method significantly improves the detection of subtle deepfake alterations by identifying inconsistencies across multiple complementary modalities. Code is available at https://github.com/skrantidatta/PIA

Authors:Hongsong Wang, Renxi Cheng, Yang Zhang, Chaolei Han, Jie Gui
Title: LOTA: Bit-Planes Guided AI-Generated Image Detection
Abstract:
The rapid advancement of GAN and Diffusion models makes it more difficult to distinguish AI-generated images from real ones. Recent studies often use image-based reconstruction errors as an important feature for determining whether an image is AI-generated. However, these approaches typically incur high computational costs and also fail to capture intrinsic noisy features present in the raw images. To solve these problems, we innovatively refine error extraction by using bit-plane-based image processing, as lower bit planes indeed represent noise patterns in images. We introduce an effective bit-planes guided noisy image generation and exploit various image normalization strategies, including scaling and thresholding. Then, to amplify the noise signal for easier AI-generated image detection, we design a maximum gradient patch selection that applies multi-directional gradients to compute the noise score and selects the region with the highest score. Finally, we propose a lightweight and effective classification head and explore two different structures: noise-based classifier and noise-guided classifier. Extensive experiments on the GenImage benchmark demonstrate the outstanding performance of our method, which achieves an average accuracy of \textbf{98.9\%} (\textbf{11.9}\%~$\uparrow$) and shows excellent cross-generator generalization capability. Particularly, our method achieves an accuracy of over 98.2\% from GAN to Diffusion and over 99.2\% from Diffusion to GAN. Moreover, it performs error extraction at the millisecond level, nearly a hundred times faster than existing methods. The code is at https://github.com/hongsong-wang/LOTA.

Authors:Yuancheng Xu, Wenqi Xian, Li Ma, Julien Philip, Ahmet Levent Taşel, Yiwei Zhao, Ryan Burgert, Mingming He, Oliver Hermann, Oliver Pilarski, Rahul Garg, Paul Debevec, Ning Yu
Title: Virtually Being: Customizing Camera-Controllable Video Diffusion Models with Multi-View Performance Captures
Abstract:
We introduce a framework that enables both multi-view character consistency and 3D camera control in video diffusion models through a novel customization data pipeline. We train the character consistency component with recorded volumetric capture performances re-rendered with diverse camera trajectories via 4D Gaussian Splatting (4DGS), lighting variability obtained with a video relighting model. We fine-tune state-of-the-art open-source video diffusion models on this data to provide strong multi-view identity preservation, precise camera control, and lighting adaptability. Our framework also supports core capabilities for virtual production, including multi-subject generation using two approaches: joint training and noise blending, the latter enabling efficient composition of independently customized models at inference time; it also achieves scene and real-life video customization as well as control over motion and spatial layout during customization. Extensive experiments show improved video quality, higher personalization accuracy, and enhanced camera control and lighting adaptability, advancing the integration of video generation into virtual production. Our project page is available at: https://eyeline-labs.github.io/Virtually-Being.

Authors:Nan Li, Jiming Ren, Haris Miller, Samuel Coogan, Karen M. Feigh, Ye Zhao
Title: Adaptive Obstacle-Aware Task Assignment and Planning for Heterogeneous Robot Teaming
Abstract:
Multi-Agent Task Assignment and Planning (MATP) has attracted growing attention but remains challenging in terms of scalability, spatial reasoning, and adaptability in obstacle-rich environments. To address these challenges, we propose OATH: Adaptive Obstacle-Aware Task Assignment and Planning for Heterogeneous Robot Teaming, which advances MATP by introducing a novel obstacle-aware strategy for task assignment. First, we develop an adaptive Halton sequence map, the first known application of Halton sampling with obstacle-aware adaptation in MATP, which adjusts sampling density based on obstacle distribution. Second, we propose a cluster-auction-selection framework that integrates obstacle-aware clustering with weighted auctions and intra-cluster task selection. These mechanisms jointly enable effective coordination among heterogeneous robots while maintaining scalability and near-optimal allocation performance. In addition, our framework leverages an LLM to interpret human instructions and directly guide the planner in real time. We validate OATH in NVIDIA Isaac Sim, showing substantial improvements in task assignment quality, scalability, adaptability to dynamic changes, and overall execution performance compared to state-of-the-art MATP baselines. A project website is available at https://llm-oath.github.io/.

Authors:Avihai Naaman, Ron Shapira Weber, Oren Freifeld
Title: Synchronization of Multiple Videos
Abstract:
Synchronizing videos captured simultaneously from multiple cameras in the same scene is often easy and typically requires only simple time shifts. However, synchronizing videos from different scenes or, more recently, generative AI videos, poses a far more complex challenge due to diverse subjects, backgrounds, and nonlinear temporal misalignment. We propose Temporal Prototype Learning (TPL), a prototype-based framework that constructs a shared, compact 1D representation from high-dimensional embeddings extracted by any of various pretrained models. TPL robustly aligns videos by learning a unified prototype sequence that anchors key action phases, thereby avoiding exhaustive pairwise matching. Our experiments show that TPL improves synchronization accuracy, efficiency, and robustness across diverse datasets, including fine-grained frame retrieval and phase classification tasks. Importantly, TPL is the first approach to mitigate synchronization issues in multiple generative AI videos depicting the same action. Our code and a new multiple video synchronization dataset are available at https://bgu-cs-vil.github.io/TPL/

Authors:Guangyi Chen, Yunlong Deng, Peiyuan Zhu, Yan Li, Yifan Sheng, Zijian Li, Kun Zhang
Title: CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations
Abstract:
Causal Representation Learning (CRL) aims to uncover the data-generating process and identify the underlying causal variables and relations, whose evaluation remains inherently challenging due to the requirement of known ground-truth causal variables and causal structure. Existing evaluations often rely on either simplistic synthetic datasets or downstream performance on real-world tasks, generally suffering a dilemma between realism and evaluative precision. In this paper, we introduce a new benchmark for CRL using high-fidelity simulated visual data that retains both realistic visual complexity and, more importantly, access to ground-truth causal generating processes. The dataset comprises around 200 thousand images and 3 million video frames across 24 sub-scenes in four domains: static image generation, dynamic physical simulations, robotic manipulations, and traffic situation analysis. These scenarios range from static to dynamic settings, simple to complex structures, and single to multi-agent interactions, offering a comprehensive testbed that hopefully bridges the gap between rigorous evaluation and real-world applicability. In addition, we provide flexible access to the underlying causal structures, allowing users to modify or configure them to align with the required assumptions in CRL, such as available domain labels, temporal dependencies, or intervention histories. Leveraging this benchmark, we evaluated representative CRL methods across diverse paradigms and offered empirical insights to assist practitioners and newcomers in choosing or extending appropriate CRL frameworks to properly address specific types of real problems that can benefit from the CRL perspective. Welcome to visit our: Project page:https://causal-verse.github.io/, Dataset:https://huggingface.co/CausalVerse.

Authors:Xiaoqian Shen, Wenxuan Zhang, Jun Chen, Mohamed Elhoseiny
Title: Vgent: Graph-based Retrieval-Reasoning-Augmented Generation For Long Video Understanding
Abstract:
Understanding and reasoning over long videos pose significant challenges for large video language models (LVLMs) due to the difficulty in processing intensive video tokens beyond context window and retaining long-term sequential information. Retrieval-Augmented Generation (RAG) has demonstrated effectiveness in processing long context for Large Language Models (LLMs); however, applying RAG to long video faces challenges such as disrupted temporal dependencies and inclusion of irrelevant information that can hinder accurate reasoning. To address these limitations, we propose Vgent, a novel graph-based retrieval-reasoning-augmented generation framework to enhance LVLMs for long video understanding. Our approach introduces two key innovations: (i) It represents videos by structured graphs with semantic relationships across video clips preserved to improve retrieval effectiveness. (ii) It introduces an intermediate reasoning step to mitigate the reasoning limitation of LVLMs, which leverages structured verification to reduce retrieval noise and facilitate the explicit aggregation of relevant information across clips, resulting in more accurate and context-aware responses. We comprehensively evaluate our framework with various open-source LVLMs on three long-video understanding benchmarks. Our approach yielded an overall performance improvement of $3.0\%\sim 5.4\%$ over base models on MLVU, and outperformed state-of-the-art video RAG methods by $8.6\%$. Our code is publicly available at https://xiaoqian-shen.github.io/Vgent.

Authors:Wei Zou, Yupei Liu, Yanting Wang, Ying Chen, Neil Gong, Jinyuan Jia
Title: PIShield: Detecting Prompt Injection Attacks via Intrinsic LLM Features
Abstract:
LLM-integrated applications are vulnerable to prompt injection attacks, where an attacker contaminates the input to inject malicious prompts, causing the LLM to follow the attacker's intent instead of the original user's. Existing prompt injection detection methods often have sub-optimal performance and/or high computational overhead. In this work, we propose PIShield, a detection method that is both effective and efficient. Our key observation is that the internal representation of the final token in a prompt-extracted from a specific layer of the LLM, which we term the injection-critical layer-captures distinguishing features between clean and contaminated prompts. Leveraging this insight, we train a simple linear classifier on these internal representations using a labeled set of clean and contaminated prompts. We compare PIShield against 11 baselines across 5 diverse benchmark datasets and 8 prompt injection attacks. The results demonstrate that PIShield is both highly effective and efficient, substantially outperforming existing methods. Additionally, we show that PIShield resists strong adaptive attacks.

Authors:Xun Wu, Shaohan Huang, Wenhui Wang, Ting Song, Li Dong, Yan Xia, Furu Wei
Title: BitNet Distillation
Abstract:
In this paper, we present BitNet Distillation (BitDistill), a lightweight pipeline that fine-tunes off-the-shelf full-precision LLMs (e.g., Qwen) into 1.58-bit precision (i.e., ternary weights {-1, 0, 1}) for specific downstream tasks, achieving strong task-specific performance with minimal computational cost. Specifically, BitDistill incorporates three key techniques: the SubLN module, as introduced in BitNet; multi-head attention distillation, based on MiniLM; and continual pre-training, which serves as a crucial warm-up step to mitigate the scalability issue of the performance gap between finetuned full-precision and 1.58-bit LLMs on specific tasks. Experimental results show that BitDistill achieves performance comparable to the full-precision counterpart models across model size, while enabling up to 10x memory savings and 2.65x faster inference on CPUs. Code is available at https://github.com/microsoft/BitNet.

Authors:Huifang Lyu, James Alvey, Noemi Anau Montel, Mauro Pieroni, Christoph Weniger
Title: Dynamic SBI: Round-free Sequential Simulation-Based Inference with Adaptive Datasets
Abstract:
Simulation-based inference (SBI) is emerging as a new statistical paradigm for addressing complex scientific inference problems. By leveraging the representational power of deep neural networks, SBI can extract the most informative simulation features for the parameters of interest. Sequential SBI methods extend this approach by iteratively steering the simulation process towards the most relevant regions of parameter space. This is typically implemented through an algorithmic structure, in which simulation and network training alternate over multiple rounds. This strategy is particularly well suited for high-precision inference in high-dimensional settings, which are commonplace in physics applications with growing data volumes and increasing model fidelity. Here, we introduce dynamic SBI, which implements the core ideas of sequential methods in a round-free, asynchronous, and highly parallelisable manner. At its core is an adaptive dataset that is iteratively transformed during inference to resemble the target observation. Simulation and training proceed in parallel: trained networks are used both to filter out simulations incompatible with the data and to propose new, more promising ones. Compared to round-based sequential methods, this asynchronous structure can significantly reduce simulation costs and training overhead. We demonstrate that dynamic SBI achieves significant improvements in simulation and training efficiency while maintaining inference performance. We further validate our framework on two challenging astrophysical inference tasks: characterising the stochastic gravitational wave background and analysing strong gravitational lensing systems. Overall, this work presents a flexible and efficient new paradigm for sequential SBI.

Authors:Kin Kwan Leung, Mouloud Belbahri, Yi Sui, Alex Labach, Xueying Zhang, Stephen Rose, Jesse C. Cresswell
Title: Classifying and Addressing the Diversity of Errors in Retrieval-Augmented Generation Systems
Abstract:
Retrieval-augmented generation (RAG) is a prevalent approach for building LLM-based question-answering systems that can take advantage of external knowledge databases. Due to the complexity of real-world RAG systems, there are many potential causes for erroneous outputs. Understanding the range of errors that can occur in practice is crucial for robust deployment. We present a new taxonomy of the error types that can occur in realistic RAG systems, examples of each, and practical advice for addressing them. Additionally, we curate a dataset of erroneous RAG responses annotated by error types. We then propose an auto-evaluation method aligned with our taxonomy that can be used in practice to track and address errors during development. Code and data are available at https://github.com/layer6ai-labs/rag-error-classification.

Authors:Zhen Yang, Mingyang Zhang, Feng Chen, Ganggui Ding, Liang Hou, Xin Tao, Pengfei Wan, Ying-Cong Chen
Title: Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Abstract:
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +1.35% average improvement on eight benchmarks for Qwen3-8B-Base and +5% on AIME2024 using Qwen3-32B-Reasoning-while remaining highly efficient.

Authors:Congying Liu, Xingyuan Wei, Peipei Liu, Yiqing Shen, Yanxu Mao, Tiehan Cui
Title: BioMedSearch: A Multi-Source Biomedical Retrieval Framework Based on LLMs
Abstract:
Biomedical queries often rely on a deep understanding of specialized knowledge such as gene regulatory mechanisms and pathological processes of diseases. They require detailed analysis of complex physiological processes and effective integration of information from multiple data sources to support accurate retrieval and reasoning. Although large language models (LLMs) perform well in general reasoning tasks, their generated biomedical content often lacks scientific rigor due to the inability to access authoritative biomedical databases and frequently fabricates protein functions, interactions, and structural details that deviate from authentic information. Therefore, we present BioMedSearch, a multi-source biomedical information retrieval framework based on LLMs. The method integrates literature retrieval, protein database and web search access to support accurate and efficient handling of complex biomedical queries. Through sub-queries decomposition, keywords extraction, task graph construction, and multi-source information filtering, BioMedSearch generates high-quality question-answering results. To evaluate the accuracy of question answering, we constructed a multi-level dataset, BioMedMCQs, consisting of 3,000 questions. The dataset covers three levels of reasoning: mechanistic identification, non-adjacent semantic integration, and temporal causal reasoning, and is used to assess the performance of BioMedSearch and other methods on complex QA tasks. Experimental results demonstrate that BioMedSearch consistently improves accuracy over all baseline models across all levels. Specifically, at Level 1, the average accuracy increases from 59.1% to 91.9%; at Level 2, it rises from 47.0% to 81.0%; and at the most challenging Level 3, the average accuracy improves from 36.3% to 73.4%. The code and BioMedMCQs are available at: https://github.com/CyL-ucas/BioMed_Search

Authors:Amrit Romana, Jaya Narain, Tien Dung Tran, Andrea Davis, Jason Fong, Ramya Rasipuram, Vikramjit Mitra
Title: Switchboard-Affect: Emotion Perception Labels from Conversational Speech
Abstract:
Understanding the nuances of speech emotion dataset curation and labeling is essential for assessing speech emotion recognition (SER) model potential in real-world applications. Most training and evaluation datasets contain acted or pseudo-acted speech (e.g., podcast speech) in which emotion expressions may be exaggerated or otherwise intentionally modified. Furthermore, datasets labeled based on crowd perception often lack transparency regarding the guidelines given to annotators. These factors make it difficult to understand model performance and pinpoint necessary areas for improvement. To address this gap, we identified the Switchboard corpus as a promising source of naturalistic conversational speech, and we trained a crowd to label the dataset for categorical emotions (anger, contempt, disgust, fear, sadness, surprise, happiness, tenderness, calmness, and neutral) and dimensional attributes (activation, valence, and dominance). We refer to this label set as Switchboard-Affect (SWB-Affect). In this work, we present our approach in detail, including the definitions provided to annotators and an analysis of the lexical and paralinguistic cues that may have played a role in their perception. In addition, we evaluate state-of-the-art SER models, and we find variable performance across the emotion categories with especially poor generalization for anger. These findings underscore the importance of evaluation with datasets that capture natural affective variations in speech. We release the labels for SWB-Affect to enable further analysis in this domain.

Authors:Zhaoyang Shang, Sibo Wei, Jianbin Guo, Rui Zhou, Lifeng Dong, Yin Luo
Title: The Harder The Better: Maintaining Supervised Fine-tuning Generalization with Less but Harder Data
Abstract:
Large Language Models (LLMs) excel in general tasks, but adapting them to specialized domains relies on high-quality supervised fine-tuning (SFT) data. Although existing methods can identify subsets of high-quality data and reduce training cost to some extent, their selection process still suffers from over-reliance on LLMs' internal knowledge, weak interpretability, and limited generalization. To address these limitations, we propose THTB (The Harder The Better), a cognitive science-inspired framework for instruction data selection and annotation guidance. THTB prioritizes higher-level cognitive instructions by combining quality filtering with intrinsic and extrinsic hardness scoring, offering interpretable and quantifiable criteria for efficient SFT, both in data selection and annotation guidance. Experiments show that THTB enables models trained on only 5% of the data to outperform full-dataset training, while achieving superior generalization compared with LLM-only selection. In addition, THTB provides effective annotation guidance in vertical domains, enabling a model trained on just 2% of the data to surpass models trained on much larger datasets, demonstrating strong potential for domain adaptation. Our code, datasets, and models are available on https://github.com/DYJG-research/THTB.

Authors:Xuwang Yin, Claire Zhang, Julie Steele, Nir Shavit, Tony T. Wang
Title: Joint Discriminative-Generative Modeling via Dual Adversarial Training
Abstract:
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in SGLD-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and PGD-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training procedure to resolve the incompatibility between batch normalization and EBM training. Experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our method substantially improves adversarial robustness over existing hybrid models while maintaining competitive generative performance. On ImageNet, when optimized for generative modeling, our model's generative fidelity surpasses that of BigGAN and approaches diffusion models, representing the first MCMC-based EBM approach to achieve high-quality generation on complex, high-resolution datasets. Our approach addresses key stability issues that have limited JEM scaling and demonstrates that adversarial training can serve as an effective foundation for unified frameworks capable of generating and robustly classifying visual data.

Authors:Munsif Ali, Leonardo Rossi, Massimo Bertozzi
Title: CoLoR-GAN: Continual Few-Shot Learning with Low-Rank Adaptation in Generative Adversarial Networks
Abstract:
Continual learning (CL) in the context of Generative Adversarial Networks (GANs) remains a challenging problem, particularly when it comes to learn from a few-shot (FS) samples without catastrophic forgetting. Current most effective state-of-the-art (SOTA) methods, like LFS-GAN, introduce a non-negligible quantity of new weights at each training iteration, which would become significant when considering the long term. For this reason, this paper introduces \textcolor{red}{\textbf{\underline{c}}}ontinual few-sh\textcolor{red}{\textbf{\underline{o}}}t learning with \textcolor{red}{\textbf{\underline{lo}}}w-\textcolor{red}{\textbf{\underline{r}}}ank adaptation in GANs named CoLoR-GAN, a framework designed to handle both FS and CL together, leveraging low-rank tensors to efficiently adapt the model to target tasks while reducing even more the number of parameters required. Applying a vanilla LoRA implementation already permitted us to obtain pretty good results. In order to optimize even further the size of the adapters, we challenged LoRA limits introducing a LoRA in LoRA (LLoRA) technique for convolutional layers. Finally, aware of the criticality linked to the choice of the hyperparameters of LoRA, we provide an empirical study to easily find the best ones. We demonstrate the effectiveness of CoLoR-GAN through experiments on several benchmark CL and FS tasks and show that our model is efficient, reaching SOTA performance but with a number of resources enormously reduced. Source code is available on \href{https://github.com/munsifali11/CoLoR-GAN}{Github.

Authors:Dongkwan Lee, Junhoo Lee, Nojun Kwak
Title: Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning
Abstract:
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.

Authors:Zixi Wang, Yushe Cao, Yubo Huang, Jinzhu Wei, Jingzehua Xu, Shuai Zhang, Xin Lai
Title: Self-Training with Dynamic Weighting for Robust Gradual Domain Adaptation
Abstract:
In this paper, we propose a new method called Self-Training with Dynamic Weighting (STDW), which aims to enhance robustness in Gradual Domain Adaptation (GDA) by addressing the challenge of smooth knowledge migration from the source to the target domain. Traditional GDA methods mitigate domain shift through intermediate domains and self-training but often suffer from inefficient knowledge migration or incomplete intermediate data. Our approach introduces a dynamic weighting mechanism that adaptively balances the loss contributions of the source and target domains during training. Specifically, we design an optimization framework governed by a time-varying hyperparameter $\varrho$ (progressing from 0 to 1), which controls the strength of domain-specific learning and ensures stable adaptation. The method leverages self-training to generate pseudo-labels and optimizes a weighted objective function for iterative model updates, maintaining robustness across intermediate domains. Experiments on rotated MNIST, color-shifted MNIST, portrait datasets, and the Cover Type dataset demonstrate that STDW outperforms existing baselines. Ablation studies further validate the critical role of $\varrho$'s dynamic scheduling in achieving progressive adaptation, confirming its effectiveness in reducing domain bias and improving generalization. This work provides both theoretical insights and a practical framework for robust gradual domain adaptation, with potential applications in dynamic real-world scenarios. The code is available at https://github.com/Dramwig/STDW.

Authors:Fabian Wenz, Omar Bouattour, Devin Yang, Justin Choi, Cecil Gregg, Nesime Tatbul, Çağatay Demiralp
Title: BenchPress: A Human-in-the-Loop Annotation System for Rapid Text-to-SQL Benchmark Curation
Abstract:
Large language models (LLMs) have been successfully applied to many tasks, including text-to-SQL generation. However, much of this work has focused on publicly available datasets, such as Fiben, Spider, and Bird. Our earlier work showed that LLMs are much less effective in querying large private enterprise data warehouses and released Beaver, the first private enterprise text-to-SQL benchmark. To create Beaver, we leveraged SQL logs, which are often readily available. However, manually annotating these logs to identify which natural language questions they answer is a daunting task. Asking database administrators, who are highly trained experts, to take on additional work to construct and validate corresponding natural language utterances is not only challenging but also quite costly. To address this challenge, we introduce BenchPress, a human-in-the-loop system designed to accelerate the creation of domain-specific text-to-SQL benchmarks. Given a SQL query, BenchPress uses retrieval-augmented generation (RAG) and LLMs to propose multiple natural language descriptions. Human experts then select, rank, or edit these drafts to ensure accuracy and domain alignment. We evaluated BenchPress on annotated enterprise SQL logs, demonstrating that LLM-assisted annotation drastically reduces the time and effort required to create high-quality benchmarks. Our results show that combining human verification with LLM-generated suggestions enhances annotation accuracy, benchmark reliability, and model evaluation robustness. By streamlining the creation of custom benchmarks, BenchPress offers researchers and practitioners a mechanism for assessing text-to-SQL models on a given domain-specific workload. BenchPress is freely available via our public GitHub repository at https://github.com/fabian-wenz/enterprise-txt2sql and is also accessible on our website at http://dsg-mcgraw.csail.mit.edu:5000.

Authors:Peter Banyas, Shristi Sharma, Alistair Simmons, Atharva Vispute
Title: ConsistencyAI: A Benchmark to Assess LLMs' Factual Consistency When Responding to Different Demographic Groups
Abstract:
Is an LLM telling you different facts than it's telling me? This paper introduces ConsistencyAI, an independent benchmark for measuring the factual consistency of large language models (LLMs) for different personas. ConsistencyAI tests whether, when users of different demographics ask identical questions, the model responds with factually inconsistent answers. Designed without involvement from LLM providers, this benchmark offers impartial evaluation and accountability. In our experiment, we queried 19 LLMs with prompts that requested 5 facts for each of 15 topics. We repeated this query 100 times for each LLM, each time adding prompt context from a different persona selected from a subset of personas modeling the general population. We processed the responses into sentence embeddings, computed cross-persona cosine similarity, and computed the weighted average of cross-persona cosine similarity to calculate factual consistency scores. In 100-persona experiments, scores ranged from 0.9065 to 0.7896, and the mean was 0.8656, which we adopt as a benchmark threshold. xAI's Grok-3 is most consistent, while several lightweight models rank lowest. Consistency varies by topic: the job market is least consistent, G7 world leaders most consistent, and issues like vaccines or the Israeli-Palestinian conflict diverge by provider. These results show that both the provider and the topic shape the factual consistency. We release our code and interactive demo to support reproducible evaluation and encourage persona-invariant prompting strategies.

Authors:Chao Han, Yijuan Liang, Zihao Xuan, Daokuan Wu, Wei Zhang, Xiaoyu Shen
Title: Informed Routing in LLMs: Smarter Token-Level Computation for Faster Inference
Abstract:
The deployment of large language models (LLMs) in real-world applications is increasingly limited by their high inference cost. While recent advances in dynamic token-level computation allocation attempt to improve efficiency by selectively activating model components per token, existing methods rely on greedy routing--a myopic execute-or-skip mechanism that often leads to irreversible information loss and suboptimal token selection. This paper introduces informed routing, a new paradigm that proactively addresses these issues. The key insight is to assess not only a token's immediate importance but also its recoverability, i.e., how well its transformation can be approximated. To this end, we propose the Lightweight Feature Forecaster (LFF), a small predictive module that estimates a unit's output before routing decisions are made. This enables a flexible execute-or-approximate policy that preserves model fidelity while drastically reducing computation. Extensive experiments on both language modeling and reasoning tasks show that informed routing achieves state-of-the-art efficiency-performance trade-offs across multiple sparsity levels. Notably, even without final LoRA fine-tuning, our method matches or surpasses strong baselines that require full fine-tuning, all while reducing training time by over 50%. The code is available at: https://github.com/EIT-NLP/informed-routing

Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Title: A Linguistics-Aware LLM Watermarking via Syntactic Predictability
Abstract:
As large language models (LLMs) continue to advance rapidly, reliable governance tools have become critical. Publicly verifiable watermarking is particularly essential for fostering a trustworthy AI ecosystem. A central challenge persists: balancing text quality against detection robustness. Recent studies have sought to navigate this trade-off by leveraging signals from model output distributions (e.g., token-level entropy); however, their reliance on these model-specific signals presents a significant barrier to public verification, as the detection process requires access to the logits of the underlying model. We introduce STELA, a novel framework that aligns watermark strength with the linguistic degrees of freedom inherent in language. STELA dynamically modulates the signal using part-of-speech (POS) n-gram-modeled linguistic indeterminacy, weakening it in grammatically constrained contexts to preserve quality and strengthen it in contexts with greater linguistic flexibility to enhance detectability. Our detector operates without access to any model logits, thus facilitating publicly verifiable detection. Through extensive experiments on typologically diverse languages-analytic English, isolating Chinese, and agglutinative Korean-we show that STELA surpasses prior methods in detection robustness. Our code is available at https://github.com/Shinwoo-Park/stela_watermark.

Authors:Ben Carrillo, Izaskun Mallona
Title: denet, a lightweight command-line tool for process monitoring in benchmarking and beyond
Abstract:
Summary: denet is a lightweight process monitoring utility providing real-time resource profiling of running processes. denet reports CPU, memory, disk I/O, network activity, and thread usage, including recursive child monitoring, with adaptive sampling rates. It offers both a command-line interface (CLI) with colorized outputs and a Python API for inclusion in other software. Its output formats are structured as either JSON, JSONL, or CSV, and include performance metrics as well as process metadata, including PID and the executed command. The easy to parse profiling results make denet suitable for benchmarking, debugging, monitoring, and optimizing data-intensive pipelines in bioinformatics and other fields. Availability and implementation: denet is open-source software released under the GPLv3 license and maintained at https://github.com/btraven00/denet. It is implemented in Rust, with Python bindings provided via maturin, and can be installed from Cargo (cargo install denet) or PyPI (pip install denet). Most functionality does not require administrative privileges, enabling use on cloud platforms, HPC clusters, and standard Linux workstations. Certain advanced features, such as eBPF support, may require elevated permissions. Documentation, including usage examples and API references, is provided.

Authors:Skylar Sargent Walters, Arthea Valderrama, Thomas C. Smits, David Kouřil, Huyen N. Nguyen, Sehi L'Yi, Devin Lange, Nils Gehlenborg
Title: GQVis: A Dataset of Genomics Data Questions and Visualizations for Generative AI
Abstract:
Data visualization is a fundamental tool in genomics research, enabling the exploration, interpretation, and communication of complex genomic features. While machine learning models show promise for transforming data into insightful visualizations, current models lack the training foundation for domain-specific tasks. In an effort to provide a foundational resource for genomics-focused model training, we present a framework for generating a dataset that pairs abstract, low-level questions about genomics data with corresponding visualizations. Building on prior work with statistical plots, our approach adapts to the complexity of genomics data and the specialized representations used to depict them. We further incorporate multiple linked queries and visualizations, along with justifications for design choices, figure captions, and image alt-texts for each item in the dataset. We use genomics data retrieved from three distinct genomics data repositories (4DN, ENCODE, Chromoscope) to produce GQVis: a dataset consisting of 1.14 million single-query data points, 628k query pairs, and 589k query chains. The GQVis dataset and generation code are available at https://huggingface.co/datasets/HIDIVE/GQVis and https://github.com/hms-dbmi/GQVis-Generation.

Authors:Sihui Ji, Xi Chen, Xin Tao, Pengfei Wan, Hengshuang Zhao
Title: PhysMaster: Mastering Physical Representation for Video Generation via Reinforcement Learning
Abstract:
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.

Authors:Xinhang Liu, Yuxi Xiao, Donny Y. Chen, Jiashi Feng, Yu-Wing Tai, Chi-Keung Tang, Bingyi Kang
Title: Trace Anything: Representing Any Video in 4D via Trajectory Fields
Abstract:
Effective spatio-temporal representation is fundamental to modeling, understanding, and predicting dynamics in videos. The atomic unit of a video, the pixel, traces a continuous 3D trajectory over time, serving as the primitive element of dynamics. Based on this principle, we propose representing any video as a Trajectory Field: a dense mapping that assigns a continuous 3D trajectory function of time to each pixel in every frame. With this representation, we introduce Trace Anything, a neural network that predicts the entire trajectory field in a single feed-forward pass. Specifically, for each pixel in each frame, our model predicts a set of control points that parameterizes a trajectory (i.e., a B-spline), yielding its 3D position at arbitrary query time instants. We trained the Trace Anything model on large-scale 4D data, including data from our new platform, and our experiments demonstrate that: (i) Trace Anything achieves state-of-the-art performance on our new benchmark for trajectory field estimation and performs competitively on established point-tracking benchmarks; (ii) it offers significant efficiency gains thanks to its one-pass paradigm, without requiring iterative optimization or auxiliary estimators; and (iii) it exhibits emergent abilities, including goal-conditioned manipulation, motion forecasting, and spatio-temporal fusion. Project page: https://trace-anything.github.io/.

Authors:Jia-Chen Gu, Junyi Zhang, Di Wu, Yuankai Li, Kai-Wei Chang, Nanyun Peng
Title: BRIEF-Pro: Universal Context Compression with Short-to-Long Synthesis for Fast and Accurate Multi-Hop Reasoning
Abstract:
As retrieval-augmented generation (RAG) tackles complex tasks, increasingly expanded contexts offer richer information, but at the cost of higher latency and increased cognitive load on the model. To mitigate this bottleneck, especially for intricate multi-hop questions, we introduce BRIEF-Pro. It is a universal, lightweight compressor that distills relevant evidence for a given query from retrieved documents into a concise summary for seamless integration into in-context RAG. Using seed data consisting of relatively short contexts (fewer than 1k words), BRIEF-Pro is trained to perform abstractive compression of extended contexts exceeding 10k words across a wide range of scenarios. Furthermore, BRIEF-Pro offers flexible user control over summary length by allowing users to specify the desired number of sentences. Experiments on four open-domain multi-hop question-answering datasets show that BRIEF-Pro generates more concise and relevant summaries, enhancing performance across small, large, and proprietary language models. With the 70B reader model, 32x compression by BRIEF-Pro improves QA performance by 4.67% on average over LongLLMLingua's 9x, while requiring only 23% of its computational overhead.

Authors:Xue Bin Peng
Title: MimicKit: A Reinforcement Learning Framework for Motion Imitation and Control
Abstract:
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.

Authors:Nir Goren, Oren Katzir, Abhinav Nakarmi, Eyal Ronen, Mahmood Sharif, Or Patashnik
Title: NoisePrints: Distortion-Free Watermarks for Authorship in Private Diffusion Models
Abstract:
With the rapid adoption of diffusion models for visual content generation, proving authorship and protecting copyright have become critical. This challenge is particularly important when model owners keep their models private and may be unwilling or unable to handle authorship issues, making third-party verification essential. A natural solution is to embed watermarks for later verification. However, existing methods require access to model weights and rely on computationally heavy procedures, rendering them impractical and non-scalable. To address these challenges, we propose , a lightweight watermarking scheme that utilizes the random seed used to initialize the diffusion process as a proof of authorship without modifying the generation process. Our key observation is that the initial noise derived from a seed is highly correlated with the generated visual content. By incorporating a hash function into the noise sampling process, we further ensure that recovering a valid seed from the content is infeasible. We also show that sampling an alternative seed that passes verification is infeasible, and demonstrate the robustness of our method under various manipulations. Finally, we show how to use cryptographic zero-knowledge proofs to prove ownership without revealing the seed. By keeping the seed secret, we increase the difficulty of watermark removal. In our experiments, we validate NoisePrints on multiple state-of-the-art diffusion models for images and videos, demonstrating efficient verification using only the seed and output, without requiring access to model weights.

Authors:Xinyi Chen, Yilun Chen, Yanwei Fu, Ning Gao, Jiaya Jia, Weiyang Jin, Hao Li, Yao Mu, Jiangmiao Pang, Yu Qiao, Yang Tian, Bin Wang, Bolun Wang, Fangjing Wang, Hanqing Wang, Tai Wang, Ziqin Wang, Xueyuan Wei, Chao Wu, Shuai Yang, Jinhui Ye, Junqiu Yu, Jia Zeng, Jingjing Zhang, Jinyu Zhang, Shi Zhang, Feng Zheng, Bowen Zhou, Yangkun Zhu
Title: InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy
Abstract:
We introduce InternVLA-M1, a unified framework for spatial grounding and robot control that advances instruction-following robots toward scalable, general-purpose intelligence. Its core idea is spatially guided vision-language-action training, where spatial grounding serves as the critical link between instructions and robot actions. InternVLA-M1 employs a two-stage pipeline: (i) spatial grounding pre-training on over 2.3M spatial reasoning data to determine ``where to act'' by aligning instructions with visual, embodiment-agnostic positions, and (ii) spatially guided action post-training to decide ``how to act'' by generating embodiment-aware actions through plug-and-play spatial prompting. This spatially guided training recipe yields consistent gains: InternVLA-M1 outperforms its variant without spatial guidance by +14.6% on SimplerEnv Google Robot, +17% on WidowX, and +4.3% on LIBERO Franka, while demonstrating stronger spatial reasoning capability in box, point, and trace prediction. To further scale instruction following, we built a simulation engine to collect 244K generalizable pick-and-place episodes, enabling a 6.2% average improvement across 200 tasks and 3K+ objects. In real-world clustered pick-and-place, InternVLA-M1 improved by 7.3%, and with synthetic co-training, achieved +20.6% on unseen objects and novel configurations. Moreover, in long-horizon reasoning-intensive scenarios, it surpassed existing works by over 10%. These results highlight spatially guided training as a unifying principle for scalable and resilient generalist robots. Code and models are available at https://github.com/InternRobotics/InternVLA-M1.

Authors:Dominik J. Mühlematter, Lin Che, Ye Hong, Martin Raubal, Nina Wiedemann
Title: UrbanFusion: Stochastic Multimodal Fusion for Contrastive Learning of Robust Spatial Representations
Abstract:
Forecasting urban phenomena such as housing prices and public health indicators requires the effective integration of various geospatial data. Current methods primarily utilize task-specific models, while recent foundation models for spatial representations often support only limited modalities and lack multimodal fusion capabilities. To overcome these challenges, we present UrbanFusion, a Geo-Foundation Model (GeoFM) that features Stochastic Multimodal Fusion (SMF). The framework employs modality-specific encoders to process different types of inputs, including street view imagery, remote sensing data, cartographic maps, and points of interest (POIs) data. These multimodal inputs are integrated via a Transformer-based fusion module that learns unified representations. An extensive evaluation across 41 tasks in 56 cities worldwide demonstrates UrbanFusion's strong generalization and predictive performance compared to state-of-the-art GeoAI models. Specifically, it 1) outperforms prior foundation models on location-encoding, 2) allows multimodal input during inference, and 3) generalizes well to regions unseen during training. UrbanFusion can flexibly utilize any subset of available modalities for a given location during both pretraining and inference, enabling broad applicability across diverse data availability scenarios. All source code is available at https://github.com/DominikM198/UrbanFusion.

Authors:Connor Lane, Daniel Z. Kaplan, Tanishq Mathew Abraham, Paul S. Scotti
Title: Scaling Vision Transformers for Functional MRI with Flat Maps
Abstract:
A key question for adapting modern deep learning architectures to functional MRI (fMRI) is how to represent the data for model input. To bridge the modality gap between fMRI and natural images, we transform the 4D volumetric fMRI data into videos of 2D fMRI activity flat maps. We train Vision Transformers on 2.3K hours of fMRI flat map videos from the Human Connectome Project using the spatiotemporal masked autoencoder (MAE) framework. We observe that masked fMRI modeling performance improves with dataset size according to a strict power scaling law. Downstream classification benchmarks show that our model learns rich representations supporting both fine-grained state decoding across subjects, as well as subject-specific trait decoding across changes in brain state. This work is part of an ongoing open science project to build foundation models for fMRI data. Our code and datasets are available at https://github.com/MedARC-AI/fmri-fm.

Authors:Kai Zou, Ziqi Huang, Yuhao Dong, Shulin Tian, Dian Zheng, Hongbo Liu, Jingwen He, Bin Liu, Yu Qiao, Ziwei Liu
Title: Uni-MMMU: A Massive Multi-discipline Multimodal Unified Benchmark
Abstract:
Unified multimodal models aim to jointly enable visual understanding and generation, yet current benchmarks rarely examine their true integration. Existing evaluations either treat the two abilities in isolation or overlook tasks that inherently couple them. To address this gap, we present Uni-MMMU, a comprehensive and discipline-aware benchmark that systematically unfolds the bidirectional synergy between generation and understanding across eight reasoning-centric domains, including science, coding, mathematics, and puzzles. Each task is bidirectionally coupled, demanding models to (i) leverage conceptual understanding to guide precise visual synthesis, or (ii) utilize generation as a cognitive scaffold for analytical reasoning. Uni-MMMU incorporates verifiable intermediate reasoning steps, unique ground truths, and a reproducible scoring protocol for both textual and visual outputs. Through extensive evaluation of state-of-the-art unified, generation-only, and understanding-only models, we reveal substantial performance disparities and cross-modal dependencies, offering new insights into when and how these abilities reinforce one another, and establishing a reliable foundation for advancing unified models.

Authors:Tianshuo Xu, Kai Wang, Zhifei Chen, Leyi Wu, Tianshui Wen, Fei Chao, Ying-Cong Chen
Title: UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Abstract:
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce \textbf{UniCalli}, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in \href{https://github.com/EnVision-Research/UniCalli}{this URL}.

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: Multi-Scale High-Resolution Logarithmic Grapher Module for Efficient Vision GNNs
Abstract:
Vision graph neural networks (ViG) have demonstrated promise in vision tasks as a competitive alternative to conventional convolutional neural nets (CNN) and transformers (ViTs); however, common graph construction methods, such as k-nearest neighbor (KNN), can be expensive on larger images. While methods such as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA's fixed step scale can lead to over-squashing and missing multiple connections to gain the same information that could be gained from a long-range link. Through this observation, we propose a new graph construction method, Logarithmic Scalable Graph Construction (LSGC) to enhance performance by limiting the number of long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN model that utilizes LSGC. Furthermore, inspired by the successes of multi-scale and high-resolution architectures, we introduce and apply a high-resolution branch and fuse features between our high-resolution and low-resolution branches for a multi-scale high-resolution Vision GNN network. Extensive experiments show that LogViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification and semantic segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1 accuracy on ImageNet-1K of 79.9% with a standard deviation of 0.2%, 1.7% higher average accuracy than Vision GNN with a 24.3% reduction in parameters and 35.3% reduction in GMACs. Our work shows that leveraging long-range links in graph construction for ViGs through our proposed LSGC can exceed the performance of current state-of-the-art ViGs. Code is available at https://github.com/mmunir127/LogViG-Official.

Authors:Carlo Saccardi, Maximilian Pierzyna, Haitz Sáez de Ocáriz Borde, Simone Monaco, Cristian Meo, Pietro Liò, Rudolf Saathof, Geethu Joseph, Justin Dauwels
Title: Assessing the Geographic Generalization and Physical Consistency of Generative Models for Climate Downscaling
Abstract:
Kilometer-scale weather data is crucial for real-world applications but remains computationally intensive to produce using traditional weather simulations. An emerging solution is to use deep learning models, which offer a faster alternative for climate downscaling. However, their reliability is still in question, as they are often evaluated using standard machine learning metrics rather than insights from atmospheric and weather physics. This paper benchmarks recent state-of-the-art deep learning models and introduces physics-inspired diagnostics to evaluate their performance and reliability, with a particular focus on geographic generalization and physical consistency. Our experiments show that, despite the seemingly strong performance of models such as CorrDiff, when trained on a limited set of European geographies (e.g., central Europe), they struggle to generalize to other regions such as Iberia, Morocco in the south, or Scandinavia in the north. They also fail to accurately capture second-order variables such as divergence and vorticity derived from predicted velocity fields. These deficiencies appear even in in-distribution geographies, indicating challenges in producing physically consistent predictions. We propose a simple initial solution: introducing a power spectral density loss function that empirically improves geographic generalization by encouraging the reconstruction of small-scale physical structures. The code for reproducing the experimental results can be found at https://github.com/CarloSaccardi/PSD-Downscaling

Authors:Fan Chang, Yijia Fang
Title: VC-Dimension vs Degree: An Uncertainty Principle for Boolean Functions
Abstract:
In this paper, we uncover a new uncertainty principle that governs the complexity of Boolean functions. This principle manifests as a fundamental trade-off between two central measures of complexity: a combinatorial complexity of its supported set, captured by its Vapnik-Chervonenkis dimension ($\mathrm{VC}(f)$), and its algebraic structure, captured by its polynomial degree over various fields. We establish two primary inequalities that formalize this trade-off:$\mathrm{VC}(f)+°(f)\ge n,$ and $\mathrm{VC}(f)+°_{\mathbb{F}_2}(f)\ge n$. In particular, these results recover the classical uncertainty principle on the discrete hypercube, as well as the Sziklai--Weiner's bound in the case of $\mathbb{F}_2$.

Authors:Minjung Shin, Hyunin Cho, Sooyeon Go, Jin-Hwa Kim, Youngjung Uh
Title: MVCustom: Multi-View Customized Diffusion via Geometric Latent Rendering and Completion
Abstract:
Multi-view generation with camera pose control and prompt-based customization are both essential elements for achieving controllable generative models. However, existing multi-view generation models do not support customization with geometric consistency, whereas customization models lack explicit viewpoint control, making them challenging to unify. Motivated by these gaps, we introduce a novel task, multi-view customization, which aims to jointly achieve multi-view camera pose control and customization. Due to the scarcity of training data in customization, existing multi-view generation models, which inherently rely on large-scale datasets, struggle to generalize to diverse prompts. To address this, we propose MVCustom, a novel diffusion-based framework explicitly designed to achieve both multi-view consistency and customization fidelity. In the training stage, MVCustom learns the subject's identity and geometry using a feature-field representation, incorporating the text-to-video diffusion backbone enhanced with dense spatio-temporal attention, which leverages temporal coherence for multi-view consistency. In the inference stage, we introduce two novel techniques: depth-aware feature rendering explicitly enforces geometric consistency, and consistent-aware latent completion ensures accurate perspective alignment of the customized subject and surrounding backgrounds. Extensive experiments demonstrate that MVCustom is the only framework that simultaneously achieves faithful multi-view generation and customization.

Authors:Matthieu Dubois, François Yvon, Pablo Piantanida
Title: How Sampling Affects the Detectability of Machine-written texts: A Comprehensive Study
Abstract:
As texts generated by Large Language Models (LLMs) are ever more common and often indistinguishable from human-written content, research on automatic text detection has attracted growing attention. Many recent detectors report near-perfect accuracy, often boasting AUROC scores above 99\%. However, these claims typically assume fixed generation settings, leaving open the question of how robust such systems are to changes in decoding strategies. In this work, we systematically examine how sampling-based decoding impacts detectability, with a focus on how subtle variations in a model's (sub)word-level distribution affect detection performance. We find that even minor adjustments to decoding parameters - such as temperature, top-p, or nucleus sampling - can severely impair detector accuracy, with AUROC dropping from near-perfect levels to 1\% in some settings. Our findings expose critical blind spots in current detection methods and emphasize the need for more comprehensive evaluation protocols. To facilitate future research, we release a large-scale dataset encompassing 37 decoding configurations, along with our code and evaluation framework https://github.com/BaggerOfWords/Sampling-and-Detection

Authors:Xinyang Li, Tengfei Wang, Zixiao Gu, Shengchuan Zhang, Chunchao Guo, Liujuan Cao
Title: FlashWorld: High-quality 3D Scene Generation within Seconds
Abstract:
We propose FlashWorld, a generative model that produces 3D scenes from a single image or text prompt in seconds, 10~100$\times$ faster than previous works while possessing superior rendering quality. Our approach shifts from the conventional multi-view-oriented (MV-oriented) paradigm, which generates multi-view images for subsequent 3D reconstruction, to a 3D-oriented approach where the model directly produces 3D Gaussian representations during multi-view generation. While ensuring 3D consistency, 3D-oriented method typically suffers poor visual quality. FlashWorld includes a dual-mode pre-training phase followed by a cross-mode post-training phase, effectively integrating the strengths of both paradigms. Specifically, leveraging the prior from a video diffusion model, we first pre-train a dual-mode multi-view diffusion model, which jointly supports MV-oriented and 3D-oriented generation modes. To bridge the quality gap in 3D-oriented generation, we further propose a cross-mode post-training distillation by matching distribution from consistent 3D-oriented mode to high-quality MV-oriented mode. This not only enhances visual quality while maintaining 3D consistency, but also reduces the required denoising steps for inference. Also, we propose a strategy to leverage massive single-view images and text prompts during this process to enhance the model's generalization to out-of-distribution inputs. Extensive experiments demonstrate the superiority and efficiency of our method.

Authors:Hongyu Qu, Jianan Wei, Xiangbo Shu, Yazhou Yao, Wenguan Wang, Jinhui Tang
Title: OmniGaze: Reward-inspired Generalizable Gaze Estimation In The Wild
Abstract:
Current 3D gaze estimation methods struggle to generalize across diverse data domains, primarily due to i) the scarcity of annotated datasets, and ii) the insufficient diversity of labeled data. In this work, we present OmniGaze, a semi-supervised framework for 3D gaze estimation, which utilizes large-scale unlabeled data collected from diverse and unconstrained real-world environments to mitigate domain bias and generalize gaze estimation in the wild. First, we build a diverse collection of unlabeled facial images, varying in facial appearances, background environments, illumination conditions, head poses, and eye occlusions. In order to leverage unlabeled data spanning a broader distribution, OmniGaze adopts a standard pseudo-labeling strategy and devises a reward model to assess the reliability of pseudo labels. Beyond pseudo labels as 3D direction vectors, the reward model also incorporates visual embeddings extracted by an off-the-shelf visual encoder and semantic cues from gaze perspective generated by prompting a Multimodal Large Language Model to compute confidence scores. Then, these scores are utilized to select high-quality pseudo labels and weight them for loss computation. Extensive experiments demonstrate that OmniGaze achieves state-of-the-art performance on five datasets under both in-domain and cross-domain settings. Furthermore, we also evaluate the efficacy of OmniGaze as a scalable data engine for gaze estimation, which exhibits robust zero-shot generalization on four unseen datasets.

Authors:Huaizhi Qu, Ruichen Zhang, Shuqing Luo, Luchao Qi, Zhihao Zhang, Xiaoming Liu, Roni Sengupta, Tianlong Chen
Title: EditCast3D: Single-Frame-Guided 3D Editing with Video Propagation and View Selection
Abstract:
Recent advances in foundation models have driven remarkable progress in image editing, yet their extension to 3D editing remains underexplored. A natural approach is to replace the image editing modules in existing workflows with foundation models. However, their heavy computational demands and the restrictions and costs of closed-source APIs make plugging these models into existing iterative editing strategies impractical. To address this limitation, we propose EditCast3D, a pipeline that employs video generation foundation models to propagate edits from a single first frame across the entire dataset prior to reconstruction. While editing propagation enables dataset-level editing via video models, its consistency remains suboptimal for 3D reconstruction, where multi-view alignment is essential. To overcome this, EditCast3D introduces a view selection strategy that explicitly identifies consistent and reconstruction-friendly views and adopts feedforward reconstruction without requiring costly refinement. In combination, the pipeline both minimizes reliance on expensive image editing and mitigates prompt ambiguities that arise when applying foundation models independently across images. We evaluate EditCast3D on commonly used 3D editing datasets and compare it against state-of-the-art 3D editing baselines, demonstrating superior editing quality and high efficiency. These results establish EditCast3D as a scalable and general paradigm for integrating foundation models into 3D editing pipelines. The code is available at https://github.com/UNITES-Lab/EditCast3D

Authors:Ethan K. Gordon, Bruke Baraki, Hien Bui, Michael Posa
Title: Active Tactile Exploration for Rigid Body Pose and Shape Estimation
Abstract:
General robot manipulation requires the handling of previously unseen objects. Learning a physically accurate model at test time can provide significant benefits in data efficiency, predictability, and reuse between tasks. Tactile sensing can compliment vision with its robustness to occlusion, but its temporal sparsity necessitates careful online exploration to maintain data efficiency. Direct contact can also cause an unrestrained object to move, requiring both shape and location estimation. In this work, we propose a learning and exploration framework that uses only tactile data to simultaneously determine the shape and location of rigid objects with minimal robot motion. We build on recent advances in contact-rich system identification to formulate a loss function that penalizes physical constraint violation without introducing the numerical stiffness inherent in rigid-body contact. Optimizing this loss, we can learn cuboid and convex polyhedral geometries with less than 10s of randomly collected data after first contact. Our exploration scheme seeks to maximize Expected Information Gain and results in significantly faster learning in both simulated and real-robot experiments. More information can be found at https://dairlab.github.io/activetactile

Authors:Chao Shi, Shenghao Jia, Jinhui Liu, Yong Zhang, Liangchao Zhu, Zhonglei Yang, Jinze Ma, Chaoyue Niu, Chengfei Lv
Title: HRM^2Avatar: High-Fidelity Real-Time Mobile Avatars from Monocular Phone Scans
Abstract:
We present HRM$^2$Avatar, a framework for creating high-fidelity avatars from monocular phone scans, which can be rendered and animated in real time on mobile devices. Monocular capture with smartphones provides a low-cost alternative to studio-grade multi-camera rigs, making avatar digitization accessible to non-expert users. Reconstructing high-fidelity avatars from single-view video sequences poses challenges due to limited visual and geometric data. To address these limitations, at the data level, our method leverages two types of data captured with smartphones: static pose sequences for texture reconstruction and dynamic motion sequences for learning pose-dependent deformations and lighting changes. At the representation level, we employ a lightweight yet expressive representation to reconstruct high-fidelity digital humans from sparse monocular data. We extract garment meshes from monocular data to model clothing deformations effectively, and attach illumination-aware Gaussians to the mesh surface, enabling high-fidelity rendering and capturing pose-dependent lighting. This representation efficiently learns high-resolution and dynamic information from monocular data, enabling the creation of detailed avatars. At the rendering level, real-time performance is critical for animating high-fidelity avatars in AR/VR, social gaming, and on-device creation. Our GPU-driven rendering pipeline delivers 120 FPS on mobile devices and 90 FPS on standalone VR devices at 2K resolution, over $2.7\times$ faster than representative mobile-engine baselines. Experiments show that HRM$^2$Avatar delivers superior visual realism and real-time interactivity, outperforming state-of-the-art monocular methods.

Authors:Peng Di, Faqiang Chen, Xiao Bai, Hongjun Yang, Qingfeng Li, Ganglin Wei, Jian Mou, Feng Shi, Keting Chen, Peng Tang, Zhitao Shen, Zheng Li, Wenhui Shi, Junwei Guo, Hang Yu
Title: OpenDerisk: An Industrial Framework for AI-Driven SRE, with Design, Implementation, and Case Studies
Abstract:
The escalating complexity of modern software imposes an unsustainable operational burden on Site Reliability Engineering (SRE) teams, demanding AI-driven automation that can emulate expert diagnostic reasoning. Existing solutions, from traditional AI methods to general-purpose multi-agent systems, fall short: they either lack deep causal reasoning or are not tailored for the specialized, investigative workflows unique to SRE. To address this gap, we present OpenDerisk, a specialized, open-source multi-agent framework architected for SRE. OpenDerisk integrates a diagnostic-native collaboration model, a pluggable reasoning engine, a knowledge engine, and a standardized protocol (MCP) to enable specialist agents to collectively solve complex, multi-domain problems. Our comprehensive evaluation demonstrates that OpenDerisk significantly outperforms state-of-the-art baselines in both accuracy and efficiency. This effectiveness is validated by its large-scale production deployment at Ant Group, where it serves over 3,000 daily users across diverse scenarios, confirming its industrial-grade scalability and practical impact. OpenDerisk is open source and available at https://github.com/derisk-ai/OpenDerisk/

Authors:Ruitao Feng, Bixi Zhang, Sheng Liang, Zheng Yuan
Title: Steer-MoE: Efficient Audio-Language Alignment with a Mixture-of-Experts Steering Module
Abstract:
Aligning pretrained audio encoders and Large Language Models (LLMs) offers a promising, parameter-efficient path to building powerful multimodal agents. However, existing methods often require costly full-model finetuning or rely on static adapters that may lack expressive power. Drawing inspiration from the Platonic Representation Hypothesis, we introduce SteerMoE, a novel and modular framework for audio-language alignment. SteerMoE freezes both the audio encoder and the LLM decoder, training only a lightweight steering module integrated within the encoder's layers. This module uses a Mixture-of-Experts (MoE) router to dynamically select and apply learned steering vectors, progressively transforming continuous audio representations into a space comprehensible to the LLM. By operating entirely in the continuous embedding space, our approach requires no modifications to the LLM's vocabulary and preserves its advanced reasoning and agentic capabilities. We demonstrate through experiments on ASR, audio understanding, and a qualitative function-calling task that SteerMoE achieves strong performance while remaining highly modular and computationally efficient, offering a robust new paradigm for developing sophisticated audio-language systems.

Authors:Yulian Wu, Rushil Thareja, Praneeth Vepakomma, Francesco Orabona
Title: Offline and Online KL-Regularized RLHF under Differential Privacy
Abstract:
In this paper, we study the offline and online settings of reinforcement learning from human feedback (RLHF) with KL-regularization -- a widely used objective function in large language model alignment -- under the $ε$ local differential privacy ($ε$-LDP) model on the label of the human preference. In the offline setting, we design an algorithm based on the principle of pessimism and derive a new suboptimality gap of $\tilde{O}(1/[(e^ε-1)^2 n])$ on the KL-regularized objective under single-policy concentrability. We also prove its optimality by providing a matching lower bound where $n$ is the sample size. In the online setting, we are the first one to theoretically investigate the problem of KL-regularized RLHF with LDP. We design an optimism-based algorithm and derive a logarithmic regret bound of $O(d_{\mathcal{F}}\log (N_{\mathcal{F}}\cdot T) /(e^ε-1)^2 )$, where $T$ is the total time step, $N_{\mathcal{F}}$ is cardinality of the reward function space $\mathcal{F}$ and $d_{\mathcal{F}}$ is a variant of eluder dimension for RLHF. As a by-product of our analysis, our results also imply the first analysis for online KL-regularized RLHF without privacy. We implement our algorithm in the offline setting to verify our theoretical results and release our open source code at: https://github.com/rushil-thareja/PPKL-RLHF-Official.

Authors:Shujun Xia, Haokun Lin, Yichen Wu, Yinan Zhou, Zixuan Li, Zhongwei Wan, Xingrun Xing, Yefeng Zheng, Xiang Li, Caifeng Shan, Zhenan Sun, Quanzheng Li
Title: MedREK: Retrieval-Based Editing for Medical LLMs with Key-Aware Prompts
Abstract:
LLMs hold great promise for healthcare applications, but the rapid evolution of medical knowledge and errors in training data often cause them to generate outdated or inaccurate information, limiting their applicability in high-stakes clinical practice. Model editing has emerged as a potential remedy without full retraining. While parameter-based editing often compromises locality and is thus ill-suited for the medical domain, retrieval-based editing offers a more viable alternative. However, it still faces two critical challenges: (1) representation overlap within the medical knowledge space often causes inaccurate retrieval and reduces editing accuracy; (2) existing methods are restricted to single-sample edits, while batch-editing remains largely unexplored despite its importance for real-world medical applications. To address these challenges, we first construct MedVersa, \hk{an enhanced benchmark with broader coverage of medical subjects, designed to evaluate both single and batch edits under strict locality constraints}. We then propose MedREK, a retrieval-based editing framework that integrates a shared query-key module for precise matching with an attention-based prompt encoder for informative guidance. Experimental results on various medical benchmarks demonstrate that our MedREK achieves superior performance across different core metrics and provides the first validated solution for batch-editing in medical LLMs. Our code and dataset are available at https://github.com/mylittleriver/MedREK.

Authors:Tommaso Bonomo, Luca Gioffré, Roberto Navigli
Title: LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA
Abstract:
Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA. This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans. Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/SapienzaNLP/LiteraryQA.

Authors:Deeptimaan Banerjee, Prateek Gothwal, Ashis Kumer Biswas
Title: ExpressNet-MoE: A Hybrid Deep Neural Network for Emotion Recognition
Abstract:
In many domains, including online education, healthcare, security, and human-computer interaction, facial emotion recognition (FER) is essential. Real-world FER is still difficult despite its significance because of some factors such as variable head positions, occlusions, illumination shifts, and demographic diversity. Engagement detection, which is essential for applications like virtual learning and customer services, is frequently challenging due to FER limitations by many current models. In this article, we propose ExpressNet-MoE, a novel hybrid deep learning model that blends both Convolution Neural Networks (CNNs) and Mixture of Experts (MoE) framework, to overcome the difficulties. Our model dynamically chooses the most pertinent expert networks, thus it aids in the generalization and providing flexibility to model across a wide variety of datasets. Our model improves on the accuracy of emotion recognition by utilizing multi-scale feature extraction to collect both global and local facial features. ExpressNet-MoE includes numerous CNN-based feature extractors, a MoE module for adaptive feature selection, and finally a residual network backbone for deep feature learning. To demonstrate efficacy of our proposed model we evaluated on several datasets, and compared with current state-of-the-art methods. Our model achieves accuracies of 74.77% on AffectNet (v7), 72.55% on AffectNet (v8), 84.29% on RAF-DB, and 64.66% on FER-2013. The results show how adaptive our model is and how it may be used to develop end-to-end emotion recognition systems in practical settings. Reproducible codes and results are made publicly accessible at https://github.com/DeeptimaanB/ExpressNet-MoE.

Authors:Enhan Li, Hongyang Du, Kaibin Huang
Title: NetMCP: Network-Aware Model Context Protocol Platform for LLM Capability Extension
Abstract:
Large Language Models (LLMs) remain static in functionality after training, and extending their capabilities requires integration with external data, computation, and services. The Model Context Protocol (MCP) has emerged as a standard interface for such extensions, but current implementations rely solely on semantic matching between users' requests and server function descriptions, which makes current deployments and simulation testbeds fragile under latency fluctuations or server failures. We address this gap by enhancing MCP tool routing algorithms with real-time awareness of network and server status. To provide a controlled test environment for development and evaluation, we construct a heterogeneous experimental platform, namely Network-aware MCP (NetMCP), which offers five representative network states and build a benchmark for latency sequence generation and MCP server datasets. On top of NetMCP platform, we analyze latency sequences and propose a Semantic-Oriented and Network-Aware Routing (SONAR) algorithm, which jointly optimizes semantic similarity and network Quality of Service (QoS) metrics for adaptive tool routing. Results show that SONAR consistently improves task success rate and reduces completion time and failure number compared with semantic-only, LLM-based baselines, demonstrating the value of network-aware design for production-scale LLM systems. The code for NetMCP is available at https://github.com/NICE-HKU/NetMCP.

Authors:Hyojun Go, Dominik Narnhofer, Goutam Bhat, Prune Truong, Federico Tombari, Konrad Schindler
Title: VIST3A: Text-to-3D by Stitching a Multi-view Reconstruction Network to a Video Generator
Abstract:
The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as "generator" with the geometric abilities of a recent (feedforward) 3D reconstruction system as "decoder". We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit model stitching, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt direct reward finetuning, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation.

Authors:Masahiro Fujisawa, Futoshi Futami
Title: $L_2$-Regularized Empirical Risk Minimization Guarantees Small Smooth Calibration Error
Abstract:
Calibration of predicted probabilities is critical for reliable machine learning, yet it is poorly understood how standard training procedures yield well-calibrated models. This work provides the first theoretical proof that canonical $L_{2}$-regularized empirical risk minimization directly controls the smooth calibration error (smCE) without post-hoc correction or specialized calibration-promoting regularizer. We establish finite-sample generalization bounds for smCE based on optimization error, regularization strength, and the Rademacher complexity. We then instantiate this theory for models in reproducing kernel Hilbert spaces, deriving concrete guarantees for kernel ridge and logistic regression. Our experiments confirm these specific guarantees, demonstrating that $L_{2}$-regularized ERM can provide a well-calibrated model without boosting or post-hoc recalibration. The source code to reproduce all experiments is available at https://github.com/msfuji0211/erm_calibration.

Authors:Jiaxing Deng, Junbiao Pang, Zhicheng Wang, Haitao Yu
Title: Rectify and Align GPS Points to Parking Spots via Rank-1 Constraint
Abstract:
Parking spots are essential components, providing vital mobile resources for residents in a city. Accurate Global Positioning System (GPS) points of parking spots are the core data for subsequent applications,e.g., parking management, parking policy, and urban development. However, high-rise buildings tend to cause GPS points to drift from the actual locations of parking spots; besides, the standard lower-cost GPS equipment itself has a certain location error. Therefore, it is a non-trivial task to correct a few wrong GPS points from a large number of parking spots in an unsupervised approach. In this paper, motivated by the physical constraints of parking spots (i.e., parking spots are parallel to the sides of roads), we propose an unsupervised low-rank method to effectively rectify errors in GPS points and further align them to the parking spots in a unified framework. The proposed unconventional rectification and alignment method is simple and yet effective for any type of GPS point errors. Extensive experiments demonstrate the superiority of the proposed method to solve a practical problem. The data set and the code are publicly accessible at:https://github.com/pangjunbiao/ITS-Parking-spots-Dataset.

Authors:Yifu Luo, Xinhao Hu, Keyu Fan, Haoyuan Sun, Zeyu Chen, Bo Xia, Tiantian Zhang, Yongzhe Chang, Xueqian Wang
Title: Reinforcement Learning Meets Masked Generative Models: Mask-GRPO for Text-to-Image Generation
Abstract:
Reinforcement learning (RL) has garnered increasing attention in text-to-image (T2I) generation. However, most existing RL approaches are tailored to either diffusion models or autoregressive models, overlooking an important alternative: masked generative models. In this work, we propose Mask-GRPO, the first method to incorporate Group Relative Policy Optimization (GRPO)-based RL into this overlooked paradigm. Our core insight is to redefine the transition probability, which is different from current approaches, and formulate the unmasking process as a multi-step decision-making problem. To further enhance our method, we explore several useful strategies, including removing the KL constraint, applying the reduction strategy, and filtering out low-quality samples. Using Mask-GRPO, we improve a base model, Show-o, with substantial improvements on standard T2I benchmarks and preference alignment, outperforming existing state-of-the-art approaches. The code is available on https://github.com/xingzhejun/Mask-GRPO

Authors:Zhenyu Liu, Yunxin Li, Xuanyu Zhang, Qixun Teng, Shenyuan Jiang, Xinyu Chen, Haoyuan Shi, Jinchao Li, Qi Wang, Haolan Chen, Fanbo Meng, Mingjun Zhao, Yu Xu, Yancheng He, Baotian Hu, Min Zhang
Title: UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE
Abstract:
Recent advances in unified multimodal models indicate a clear trend towards comprehensive content generation. However, the auditory domain remains a significant challenge, with music and speech often developed in isolation, hindering progress towards universal audio synthesis. This separation stems from inherent task conflicts and severe data imbalances, which impede the development of a truly unified audio generation model. To address this challenge, we propose UniMoE-Audio, a unified speech and music generation model within a novel Dynamic-Capacity Mixture-of-Experts (MoE) framework. Architecturally, UniMoE-Audio introduces a Top-P routing strategy for dynamic expert number allocation, and a hybrid expert design comprising routed experts for domain-specific knowledge, shared experts for domain-agnostic features, and null experts for adaptive computation skipping. To tackle data imbalance, we introduce a three-stage training curriculum: 1) Independent Specialist Training leverages original datasets to instill domain-specific knowledge into each "proto-expert" without interference; 2) MoE Integration and Warmup incorporates these specialists into the UniMoE-Audio architecture, warming up the gate module and shared expert using a subset of balanced dataset; and 3) Synergistic Joint Training trains the entire model end-to-end on the fully balanced dataset, fostering enhanced cross-domain synergy. Extensive experiments show that UniMoE-Audio not only achieves state-of-the-art performance on major speech and music generation benchmarks, but also demonstrates superior synergistic learning, mitigating the performance degradation typically seen in naive joint training. Our findings highlight the substantial potential of specialized MoE architecture and curated training strategies in advancing the field of universal audio generation. Homepage: https://mukioxun.github.io/Uni-MoE-site/home.html

Authors:Yuan Feng, Haoyu Guo, JunLin Lv, S. Kevin Zhou, Xike Xie
Title: Taming the Fragility of KV Cache Eviction in LLM Inference
Abstract:
Large language models have revolutionized natural language processing, yet their deployment remains hampered by the substantial memory and runtime overhead of the transformer's Key-Value cache. To mitigate this, recent methods employ a scoring-aggregation framework to evict unimportant cache entries, based on the stability assumption-that a fixed subset of entries remains consistently important during generation. However, prior work has largely focused on refining importance indicators for scoring, while defaulting to mean aggregation due to a faithful trust in the stability assumption. In this work, we argue that this underlying assumption is inherently fragile, making mean aggregation highly vulnerable in extreme cases. To counter this, we propose a simple yet elegant defensive aggregation strategy: a two-step, linear-time approach that controls worst-case risk, thereby defending against extreme cases with negligible computational overhead. Embodying this strategy, we propose a novel cache eviction method, DefensiveKV and its extension, Layer-DefensiveKV, which incorporates layer-wise budget allocation. Across seven task domains (18 datasets), our methods reduce generation quality loss by 2.3x and 4.3x respectively, versus the strongest baseline under a 20% cache size. These results set new performance benchmarks and pioneer a promising direction for optimizing cache eviction against underlying fragility through worst-case risk management. Our code is available at https://github.com/FFY0/DefensiveKV.

Authors:Bridget Smart, Max Ward, Matthew Roughan
Title: A faster algorithm for efficient longest common substring calculation for non-parametric entropy estimation in sequential data
Abstract:
Non-parametric entropy estimation on sequential data is a fundamental tool in signal processing, capturing information flow within or between processes to measure predictability, redundancy, or similarity. Methods based on longest common substrings (LCS) provide a non-parametric estimate of typical set size but are often inefficient, limiting use on real-world data. We introduce LCSFinder, a new algorithm that improves the worst-case performance of LCS calculations from cubic to log-linear time. Although built on standard algorithmic constructs - including sorted suffix arrays and persistent binary search trees - the details require care to provide the matches required for entropy estimation on dynamically growing sequences. We demonstrate that LCSFinder achieves dramatic speedups over existing implementations on real and simulated data, enabling entropy estimation at scales previously infeasible in practical signal processing.

Authors:Jiankun Zhong, Zitong Zhan, Quankai Gao, Ziyu Chen, Haozhe Lou, Jiageng Mao, Ulrich Neumann, Yue Wang
Title: InstantSfM: Fully Sparse and Parallel Structure-from-Motion
Abstract:
Structure-from-Motion (SfM), a method that recovers camera poses and scene geometry from uncalibrated images, is a central component in robotic reconstruction and simulation. Despite the state-of-the-art performance of traditional SfM methods such as COLMAP and its follow-up work, GLOMAP, naive CPU-specialized implementations of bundle adjustment (BA) or global positioning (GP) introduce significant computational overhead when handling large-scale scenarios, leading to a trade-off between accuracy and speed in SfM. Moreover, the blessing of efficient C++-based implementations in COLMAP and GLOMAP comes with the curse of limited flexibility, as they lack support for various external optimization options. On the other hand, while deep learning based SfM pipelines like VGGSfM and VGGT enable feed-forward 3D reconstruction, they are unable to scale to thousands of input views at once as GPU memory consumption increases sharply as the number of input views grows. In this paper, we unleash the full potential of GPU parallel computation to accelerate each critical stage of the standard SfM pipeline. Building upon recent advances in sparse-aware bundle adjustment optimization, our design extends these techniques to accelerate both BA and GP within a unified global SfM framework. Through extensive experiments on datasets of varying scales (e.g. 5000 images where VGGSfM and VGGT run out of memory), our method demonstrates up to about 40 times speedup over COLMAP while achieving consistently comparable or even improved reconstruction accuracy. Our project page can be found at https://cre185.github.io/InstantSfM/.

Authors:JiaKui Hu, Zhengjian Yao, Lujia Jin, Yinghao Chen, Yanye Lu
Title: Universal Image Restoration Pre-training via Masked Degradation Classification
Abstract:
This study introduces a Masked Degradation Classification Pre-Training method (MaskDCPT), designed to facilitate the classification of degradation types in input images, leading to comprehensive image restoration pre-training. Unlike conventional pre-training methods, MaskDCPT uses the degradation type of the image as an extremely weak supervision, while simultaneously leveraging the image reconstruction to enhance performance and robustness. MaskDCPT includes an encoder and two decoders: the encoder extracts features from the masked low-quality input image. The classification decoder uses these features to identify the degradation type, whereas the reconstruction decoder aims to reconstruct a corresponding high-quality image. This design allows the pre-training to benefit from both masked image modeling and contrastive learning, resulting in a generalized representation suited for restoration tasks. Benefit from the straightforward yet potent MaskDCPT, the pre-trained encoder can be used to address universal image restoration and achieve outstanding performance. Implementing MaskDCPT significantly improves performance for both convolution neural networks (CNNs) and Transformers, with a minimum increase in PSNR of 3.77 dB in the 5D all-in-one restoration task and a 34.8% reduction in PIQE compared to baseline in real-world degradation scenarios. It also emergences strong generalization to previously unseen degradation types and levels. In addition, we curate and release the UIR-2.5M dataset, which includes 2.5 million paired restoration samples across 19 degradation types and over 200 degradation levels, incorporating both synthetic and real-world data. The dataset, source code, and models are available at https://github.com/MILab-PKU/MaskDCPT.

Authors:Sungnyun Kim, Kangwook Jang, Sungwoo Cho, Joon Son Chung, Hoirin Kim, Se-Young Yun
Title: Two Heads Are Better Than One: Audio-Visual Speech Error Correction with Dual Hypotheses
Abstract:
This paper introduces a new paradigm for generative error correction (GER) framework in audio-visual speech recognition (AVSR) that reasons over modality-specific evidences directly in the language space. Our framework, DualHyp, empowers a large language model (LLM) to compose independent N-best hypotheses from separate automatic speech recognition (ASR) and visual speech recognition (VSR) models. To maximize the effectiveness of DualHyp, we further introduce RelPrompt, a noise-aware guidance mechanism that provides modality-grounded prompts to the LLM. RelPrompt offers the temporal reliability of each modality stream, guiding the model to dynamically switch its focus between ASR and VSR hypotheses for an accurate correction. Under various corruption scenarios, our framework attains up to 57.7% error rate gain on the LRS2 benchmark over standard ASR baseline, contrary to single-stream GER approaches that achieve only 10% gain. To facilitate research within our DualHyp framework, we release the code and the dataset comprising ASR and VSR hypotheses at https://github.com/sungnyun/dualhyp.

Authors:Jingmin An, Yilong Song, Ruolin Yang, Nai Ding, Lingxi Lu, Yuxuan Wang, Wei Wang, Chu Zhuang, Qian Wang, Fang Fang
Title: Hierarchical Frequency Tagging Probe (HFTP): A Unified Approach to Investigate Syntactic Structure Representations in Large Language Models and the Human Brain
Abstract:
Large Language Models (LLMs) demonstrate human-level or even superior language abilities, effectively modeling syntactic structures, yet the specific computational modules responsible remain unclear. A key question is whether LLM behavioral capabilities stem from mechanisms akin to those in the human brain. To address these questions, we introduce the Hierarchical Frequency Tagging Probe (HFTP), a tool that utilizes frequency-domain analysis to identify neuron-wise components of LLMs (e.g., individual Multilayer Perceptron (MLP) neurons) and cortical regions (via intracranial recordings) encoding syntactic structures. Our results show that models such as GPT-2, Gemma, Gemma 2, Llama 2, Llama 3.1, and GLM-4 process syntax in analogous layers, while the human brain relies on distinct cortical regions for different syntactic levels. Representational similarity analysis reveals a stronger alignment between LLM representations and the left hemisphere of the brain (dominant in language processing). Notably, upgraded models exhibit divergent trends: Gemma 2 shows greater brain similarity than Gemma, while Llama 3.1 shows less alignment with the brain compared to Llama 2. These findings offer new insights into the interpretability of LLM behavioral improvements, raising questions about whether these advancements are driven by human-like or non-human-like mechanisms, and establish HFTP as a valuable tool bridging computational linguistics and cognitive neuroscience. This project is available at https://github.com/LilTiger/HFTP.

Authors:Li Liang, Bo Miao, Xinyu Wang, Naveed Akhtar, Jordan Vice, Ajmal Mian
Title: CymbaDiff: Structured Spatial Diffusion for Sketch-based 3D Semantic Urban Scene Generation
Abstract:
Outdoor 3D semantic scene generation produces realistic and semantically rich environments for applications such as urban simulation and autonomous driving. However, advances in this direction are constrained by the absence of publicly available, well-annotated datasets. We introduce SketchSem3D, the first large-scale benchmark for generating 3D outdoor semantic scenes from abstract freehand sketches and pseudo-labeled annotations of satellite images. SketchSem3D includes two subsets, Sketch-based SemanticKITTI and Sketch-based KITTI-360 (containing LiDAR voxels along with their corresponding sketches and annotated satellite images), to enable standardized, rigorous, and diverse evaluations. We also propose Cylinder Mamba Diffusion (CymbaDiff) that significantly enhances spatial coherence in outdoor 3D scene generation. CymbaDiff imposes structured spatial ordering, explicitly captures cylindrical continuity and vertical hierarchy, and preserves both physical neighborhood relationships and global context within the generated scenes. Extensive experiments on SketchSem3D demonstrate that CymbaDiff achieves superior semantic consistency, spatial realism, and cross-dataset generalization. The code and dataset will be available at https://github.com/Lillian-research-hub/CymbaDiff

Authors:Xuanchen Wang, Heng Wang, Weidong Cai
Title: MotionBeat: Motion-Aligned Music Representation via Embodied Contrastive Learning and Bar-Equivariant Contact-Aware Encoding
Abstract:
Music is both an auditory and an embodied phenomenon, closely linked to human motion and naturally expressed through dance. However, most existing audio representations neglect this embodied dimension, limiting their ability to capture rhythmic and structural cues that drive movement. We propose MotionBeat, a framework for motion-aligned music representation learning. MotionBeat is trained with two newly proposed objectives: the Embodied Contrastive Loss (ECL), an enhanced InfoNCE formulation with tempo-aware and beat-jitter negatives to achieve fine-grained rhythmic discrimination, and the Structural Rhythm Alignment Loss (SRAL), which ensures rhythm consistency by aligning music accents with corresponding motion events. Architecturally, MotionBeat introduces bar-equivariant phase rotations to capture cyclic rhythmic patterns and contact-guided attention to emphasize motion events synchronized with musical accents. Experiments show that MotionBeat outperforms state-of-the-art audio encoders in music-to-dance generation and transfers effectively to beat tracking, music tagging, genre and instrument classification, emotion recognition, and audio-visual retrieval. Our project demo page: https://motionbeat2025.github.io/.

Authors:Haochuan Xu, Yun Sing Koh, Shuhuai Huang, Zirun Zhou, Di Wang, Jun Sakuma, Jingfeng Zhang
Title: Model-agnostic Adversarial Attack and Defense for Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models have achieved revolutionary progress in robot learning, enabling robots to execute complex physical robot tasks from natural language instructions. Despite this progress, their adversarial robustness remains underexplored. In this work, we propose both adversarial patch attack and corresponding defense strategies for VLA models. We first introduce the Embedding Disruption Patch Attack (EDPA), a model-agnostic adversarial attack that generates patches directly placeable within the camera's view. In comparison to prior methods, EDPA can be readily applied to different VLA models without requiring prior knowledge of the model architecture, or the controlled robotic manipulator. EDPA constructs these patches by (i) disrupting the semantic alignment between visual and textual latent representations, and (ii) maximizing the discrepancy of latent representations between adversarial and corresponding clean visual inputs. Through the optimization of these objectives, EDPA distorts the VLA's interpretation of visual information, causing the model to repeatedly generate incorrect actions and ultimately result in failure to complete the given robotic task. To counter this, we propose an adversarial fine-tuning scheme for the visual encoder, in which the encoder is optimized to produce similar latent representations for both clean and adversarially perturbed visual inputs. Extensive evaluations on the widely recognized LIBERO robotic simulation benchmark demonstrate that EDPA substantially increases the task failure rate of cutting-edge VLA models, while our proposed defense effectively mitigates this degradation. The codebase is accessible via the homepage at https://edpa-attack.github.io/.

Authors:Yinglong Yan, Jun Yue, Shaobo Xia, Hanmeng Sun, Tianxu Ying, Chengcheng Wu, Sifan Lan, Min He, Pedram Ghamisi, Leyuan Fang
Title: UniVector: Unified Vector Extraction via Instance-Geometry Interaction
Abstract:
Vector extraction retrieves structured vector geometry from raster images, offering high-fidelity representation and broad applicability. Existing methods, however, are usually tailored to a single vector type (e.g., polygons, polylines, line segments), requiring separate models for different structures. This stems from treating instance attributes (category, structure) and geometric attributes (point coordinates, connections) independently, limiting the ability to capture complex structures. Inspired by the human brain's simultaneous use of semantic and spatial interactions in visual perception, we propose UniVector, a unified VE framework that leverages instance-geometry interaction to extract multiple vector types within a single model. UniVector encodes vectors as structured queries containing both instance- and geometry-level information, and iteratively updates them through an interaction module for cross-level context exchange. A dynamic shape constraint further refines global structures and key points. To benchmark multi-structure scenarios, we introduce the Multi-Vector dataset with diverse polygons, polylines, and line segments. Experiments show UniVector sets a new state of the art on both single- and multi-structure VE tasks. Code and dataset will be released at https://github.com/yyyyll0ss/UniVector.

Authors:Yi Zhang, Lili Xie, Ruihong Qiu, Jiajun Liu, Sen Wang
Title: Beyond Static LLM Policies: Imitation-Enhanced Reinforcement Learning for Recommendation
Abstract:
Recommender systems (RecSys) have become critical tools for enhancing user engagement by delivering personalized content across diverse digital platforms. Recent advancements in large language models (LLMs) demonstrate significant potential for improving RecSys, primarily due to their exceptional generalization capabilities and sophisticated contextual understanding, which facilitate the generation of flexible and interpretable recommendations. However, the direct deployment of LLMs as primary recommendation policies presents notable challenges, including persistent latency issues stemming from frequent API calls and inherent model limitations such as hallucinations and biases. To address these issues, this paper proposes a novel offline reinforcement learning (RL) framework that leverages imitation learning from LLM-generated trajectories. Specifically, inverse reinforcement learning is employed to extract robust reward models from LLM demonstrations. This approach negates the need for LLM fine-tuning, thereby substantially reducing computational overhead. Simultaneously, the RL policy is guided by the cumulative rewards derived from these demonstrations, effectively transferring the semantic insights captured by the LLM. Comprehensive experiments conducted on two benchmark datasets validate the effectiveness of the proposed method, demonstrating superior performance when compared against state-of-the-art RL-based and in-context learning baselines. The code can be found at https://github.com/ArronDZhang/IL-Rec.

Authors:Rongtao Xu, Jinzhou Lin, Jialei Zhou, Jiahua Dong, Changwei Wang, Ruisheng Wang, Li Guo, Shibiao Xu, Xiaodan Liang
Title: Complementary Information Guided Occupancy Prediction via Multi-Level Representation Fusion
Abstract:
Camera-based occupancy prediction is a mainstream approach for 3D perception in autonomous driving, aiming to infer complete 3D scene geometry and semantics from 2D images. Almost existing methods focus on improving performance through structural modifications, such as lightweight backbones and complex cascaded frameworks, with good yet limited performance. Few studies explore from the perspective of representation fusion, leaving the rich diversity of features in 2D images underutilized. Motivated by this, we propose \textbf{CIGOcc, a two-stage occupancy prediction framework based on multi-level representation fusion. \textbf{CIGOcc extracts segmentation, graphics, and depth features from an input image and introduces a deformable multi-level fusion mechanism to fuse these three multi-level features. Additionally, CIGOcc incorporates knowledge distilled from SAM to further enhance prediction accuracy. Without increasing training costs, CIGOcc achieves state-of-the-art performance on the SemanticKITTI benchmark. The code is provided in the supplementary material and will be released https://github.com/VitaLemonTea1/CIGOcc

Authors:Yang Cao, Sikun Yang, Yujiu Yang, Lianyong Qi, Ming Liu
Title: Text Anomaly Detection with Simplified Isolation Kernel
Abstract:
Two-step approaches combining pre-trained large language model embeddings and anomaly detectors demonstrate strong performance in text anomaly detection by leveraging rich semantic representations. However, high-dimensional dense embeddings extracted by large language models pose challenges due to substantial memory requirements and high computation time. To address this challenge, we introduce the Simplified Isolation Kernel (SIK), which maps high-dimensional dense embeddings to lower-dimensional sparse representations while preserving crucial anomaly characteristics. SIK has linear time complexity and significantly reduces space complexity through its innovative boundary-focused feature mapping. Experiments across 7 datasets demonstrate that SIK achieves better detection performance than 11 state-of-the-art (SOTA) anomaly detection algorithms while maintaining computational efficiency and low memory cost. All code and demonstrations are available at https://github.com/charles-cao/SIK.

Authors:Yikuan Hu, Jifeng Zhu, Lanrui Tang, Chen Huang
Title: ReMindRAG: Low-Cost LLM-Guided Knowledge Graph Traversal for Efficient RAG
Abstract:
Knowledge graphs (KGs), with their structured representation capabilities, offer promising avenue for enhancing Retrieval Augmented Generation (RAG) systems, leading to the development of KG-RAG systems. Nevertheless, existing methods often struggle to achieve effective synergy between system effectiveness and cost efficiency, leading to neither unsatisfying performance nor excessive LLM prompt tokens and inference time. To this end, this paper proposes REMINDRAG, which employs an LLM-guided graph traversal featuring node exploration, node exploitation, and, most notably, memory replay, to improve both system effectiveness and cost efficiency. Specifically, REMINDRAG memorizes traversal experience within KG edge embeddings, mirroring the way LLMs "memorize" world knowledge within their parameters, but in a train-free manner. We theoretically and experimentally confirm the effectiveness of REMINDRAG, demonstrating its superiority over existing baselines across various benchmark datasets and LLM backbones. Our code is available at https://github.com/kilgrims/ReMindRAG.

Authors:Xiaoshu Chen, Sihang Zhou, Ke Liang, Duanyang Yuan, Haoyuan Chen, Xiaoyu Sun, Linyuan Meng, Xinwang Liu
Title: Putting on the Thinking Hats: A Survey on Chain of Thought Fine-tuning from the Perspective of Human Reasoning Mechanism
Abstract:
Chain of thought (CoT) fine-tuning aims to endow large language models (LLMs) with reasoning capabilities by training them on curated reasoning traces. It leverages both supervised and reinforced fine-tuning to cultivate human-like reasoning skills in LLMs, including detailed planning, divergent thinking, intuitive judgment, timely reflection, internal thinking, and fact perception, etc. As CoT fine-tuning has advanced, LLMs have demonstrated substantial improvements in tasks such as mathematical reasoning and code generation. However, existing surveys about CoT fine-tuning primarily focus on technical aspects and overlook a systematic analysis from the perspective of human reasoning mechanisms. Given that the ultimate goal of CoT fine-tuning is to enable LLMs to reason like humans, it is crucial to investigate this technique through the lens of human cognition. To fill this gap, we present the first comprehensive survey of CoT fine-tuning grounded in human reasoning theory. Specifically, inspired by the well-known Six Thinking Hats framework, which systematically characterizes common human thinking modes using six metaphorical hats, we classify and examine CoT fine-tuning methods through this lens. Furthermore, building upon this theory, we outline potential directions for future research in CoT fine-tuning. In addition, we compile a comprehensive overview of existing datasets and model performances, and a real-time GitHub repository \footnote{https://github.com/AI-Chen/Awesome-CoT-Finetuning} that continuously tracks recent advances in this area is maintained. We hope this survey will serve as a valuable resource to inspire innovation and foster progress in this rapidly evolving field.

Authors:Aditya Ganeshan, Kurt Fleischer, Wenzel Jakob, Ariel Shamir, Daniel Ritchie, Takeo Igarashi, Maria Larsson
Title: MiGumi: Making Tightly Coupled Integral Joints Millable
Abstract:
Traditional integral wood joints, despite their strength, durability, and elegance, remain rare in modern workflows due to the cost and difficulty of manual fabrication. CNC milling offers a scalable alternative, but directly milling traditional joints often fails to produce functional results because milling induces geometric deviations, such as rounded inner corners, that alter the target geometries of the parts. Since joints rely on tightly fitting surfaces, such deviations introduce gaps or overlaps that undermine fit or block assembly. We propose to overcome this problem by (1) designing a language that represent millable geometry, and (2) co-optimizing part geometries to restore coupling. We introduce Millable Extrusion Geometry (MXG), a language for representing geometry as the outcome of milling operations performed with flat-end drill bits. MXG represents each operation as a subtractive extrusion volume defined by a tool direction and drill radius. This parameterization enables the modeling of artifact-free geometry under an idealized zero-radius drill bit, matching traditional joint designs. Increasing the radius then reveals milling-induced deviations, which compromise the integrity of the joint. To restore coupling, we formalize tight coupling in terms of both surface proximity and proximity constraints on the mill-bit paths associated with mating surfaces. We then derive two tractable, differentiable losses that enable efficient optimization of joint geometry. We evaluate our method on 30 traditional joint designs, demonstrating that it produces CNC-compatible, tightly fitting joints that approximates the original geometry. By reinterpreting traditional joints for CNC workflows, we continue the evolution of this heritage craft and help ensure its relevance in future making practices.

Authors:Haolin Pan, Jinyuan Dong, Hongbin Zhang, Hongyu Lin, Mingjie Xing, Yanjun Wu
Title: Behavioral Embeddings of Programs: A Quasi-Dynamic Approach for Optimization Prediction
Abstract:
Learning effective numerical representations, or embeddings, of programs is a fundamental prerequisite for applying machine learning to automate and enhance compiler optimization. Prevailing paradigms, however, present a dilemma. Static representations, derived from source code or intermediate representation (IR), are efficient and deterministic but offer limited insight into how a program will behave or evolve under complex code transformations. Conversely, dynamic representations, which rely on runtime profiling, provide profound insights into performance bottlenecks but are often impractical for large-scale tasks due to prohibitive overhead and inherent non-determinism. This paper transcends this trade-off by proposing a novel quasi-dynamic framework for program representation. The core insight is to model a program's optimization sensitivity. We introduce the Program Behavior Spectrum, a new representation generated by probing a program's IR with a diverse set of optimization sequences and quantifying the resulting changes in its static features. To effectively encode this high-dimensional, continuous spectrum, we pioneer a compositional learning approach. Product Quantization is employed to discretize the continuous reaction vectors into structured, compositional sub-words. Subsequently, a multi-task Transformer model, termed PQ-BERT, is pre-trained to learn the deep contextual grammar of these behavioral codes. Comprehensive experiments on two representative compiler optimization tasks -- Best Pass Prediction and -Oz Benefit Prediction -- demonstrate that our method outperforms state-of-the-art static baselines. Our code is publicly available at https://github.com/Panhaolin2001/PREP/.

Authors:Yangtao Chen, Zixuan Chen, Nga Teng Chan, Junting Chen, Junhui Yin, Jieqi Shi, Yang Gao, Yong-Lu Li, Jing Huo
Title: RoboHiMan: A Hierarchical Evaluation Paradigm for Compositional Generalization in Long-Horizon Manipulation
Abstract:
Enabling robots to flexibly schedule and compose learned skills for novel long-horizon manipulation under diverse perturbations remains a core challenge. Early explorations with end-to-end VLA models show limited success, as these models struggle to generalize beyond the training distribution. Hierarchical approaches, where high-level planners generate subgoals for low-level policies, bring certain improvements but still suffer under complex perturbations, revealing limited capability in skill composition. However, existing benchmarks primarily emphasize task completion in long-horizon settings, offering little insight into compositional generalization, robustness, and the interplay between planning and execution. To systematically investigate these gaps, we propose RoboHiMan, a hierarchical evaluation paradigm for compositional generalization in long-horizon manipulation. RoboHiMan introduces HiMan-Bench, a benchmark of atomic and compositional tasks under diverse perturbations, supported by a multi-level training dataset for analyzing progressive data scaling, and proposes three evaluation paradigms (vanilla, decoupled, coupled) that probe the necessity of skill composition and reveal bottlenecks in hierarchical architectures. Experiments highlight clear capability gaps across representative models and architectures, pointing to directions for advancing models better suited to real-world long-horizon manipulation tasks. Videos and open-source code can be found on our project website: https://chenyt31.github.io/robo-himan.github.io/.

Authors:Hariharan Ramasubramanian, Alvaro Vazquez-Mayagoitia, Ganesh Sivaraman, Atul C. Thakur
Title: Reciprocal Space Attention for Learning Long-Range Interactions
Abstract:
Machine learning interatomic potentials (MLIPs) have revolutionized the modeling of materials and molecules by directly fitting to ab initio data. However, while these models excel at capturing local and semi-local interactions, they often prove insufficient when an explicit and efficient treatment of long-range interactions is required. To address this limitation, we introduce Reciprocal-Space Attention (RSA), a framework designed to capture long-range interactions in the Fourier domain. RSA can be integrated with any existing local or semi-local MLIP framework. The central contribution of this work is the mapping of a linear-scaling attention mechanism into Fourier space, enabling the explicit modeling of long-range interactions such as electrostatics and dispersion without relying on predefined charges or other empirical assumptions. We demonstrate the effectiveness of our method as a long-range correction to the MACE backbone across diverse benchmarks, including dimer binding curves, dispersion-dominated layered phosphorene exfoliation, and the molecular dipole density of bulk water. Our results show that RSA consistently captures long-range physics across a broad range of chemical and materials systems. The code and datasets for this work is available at https://github.com/rfhari/reciprocal_space_attention

Authors:Ankit Goyal, Hugo Hadfield, Xuning Yang, Valts Blukis, Fabio Ramos
Title: VLA-0: Building State-of-the-Art VLAs with Zero Modification
Abstract:
Vision-Language-Action models (VLAs) hold immense promise for enabling generalist robot manipulation. However, the best way to build them remains an open question. Current approaches often add complexity, such as modifying the existing vocabulary of a Vision-Language Model (VLM) with action tokens or introducing special action heads. Curiously, the simplest strategy of representing actions directly as text has remained largely unexplored. This work introduces VLA-0 to investigate this idea. We find that VLA-0 is not only effective; it is surprisingly powerful. With the right design, VLA-0 outperforms more involved models. On LIBERO, a popular benchmark for evaluating VLAs, VLA-0 outperforms all existing methods trained on the same robotic data, including $π_0.5$-KI, OpenVLA-OFT and SmolVLA. Furthermore, without large-scale robotics-specific training, it outperforms methods trained on large-scale robotic data, like $π_0.5$-KI, $π_0$, GR00T-N1 and MolmoAct. These findings also translate to the real world, where VLA-0 outperforms SmolVLA, a VLA model pre-trained on large-scale real data. This paper summarizes our unexpected findings and spells out the specific techniques required to unlock the high performance of this simple yet potent VLA design. Visual results, code, and trained models are provided here: https://vla0.github.io/.

Authors:Zhengxu Tang, Zizheng Wang, Luning Wang, Zitao Shuai, Chenhao Zhang, Siyu Qian, Yirui Wu, Bohao Wang, Haosong Rao, Zhenyu Yang, Chenwei Wu
Title: SeqBench: Benchmarking Sequential Narrative Generation in Text-to-Video Models
Abstract:
Text-to-video (T2V) generation models have made significant progress in creating visually appealing videos. However, they struggle with generating coherent sequential narratives that require logical progression through multiple events. Existing T2V benchmarks primarily focus on visual quality metrics but fail to evaluate narrative coherence over extended sequences. To bridge this gap, we present SeqBench, a comprehensive benchmark for evaluating sequential narrative coherence in T2V generation. SeqBench includes a carefully designed dataset of 320 prompts spanning various narrative complexities, with 2,560 human-annotated videos generated from 8 state-of-the-art T2V models. Additionally, we design a Dynamic Temporal Graphs (DTG)-based automatic evaluation metric, which can efficiently capture long-range dependencies and temporal ordering while maintaining computational efficiency. Our DTG-based metric demonstrates a strong correlation with human annotations. Through systematic evaluation using SeqBench, we reveal critical limitations in current T2V models: failure to maintain consistent object states across multi-action sequences, physically implausible results in multi-object scenarios, and difficulties in preserving realistic timing and ordering relationships between sequential actions. SeqBench provides the first systematic framework for evaluating narrative coherence in T2V generation and offers concrete insights for improving sequential reasoning capabilities in future models. Please refer to https://videobench.github.io/SeqBench.github.io/ for more details.

Authors:Xiaoyuan Cheng, Wenxuan Yuan, Yiming Yang, Yuanzhao Zhang, Sibo Cheng, Yi He, Zhuo Sun
Title: Information Shapes Koopman Representation
Abstract:
The Koopman operator provides a powerful framework for modeling dynamical systems and has attracted growing interest from the machine learning community. However, its infinite-dimensional nature makes identifying suitable finite-dimensional subspaces challenging, especially for deep architectures. We argue that these difficulties come from suboptimal representation learning, where latent variables fail to balance expressivity and simplicity. This tension is closely related to the information bottleneck (IB) dilemma: constructing compressed representations that are both compact and predictive. Rethinking Koopman learning through this lens, we demonstrate that latent mutual information promotes simplicity, yet an overemphasis on simplicity may cause latent space to collapse onto a few dominant modes. In contrast, expressiveness is sustained by the von Neumann entropy, which prevents such collapse and encourages mode diversity. This insight leads us to propose an information-theoretic Lagrangian formulation that explicitly balances this tradeoff. Furthermore, we propose a new algorithm based on the Lagrangian formulation that encourages both simplicity and expressiveness, leading to a stable and interpretable Koopman representation. Beyond quantitative evaluations, we further visualize the learned manifolds under our representations, observing empirical results consistent with our theoretical predictions. Finally, we validate our approach across a diverse range of dynamical systems, demonstrating improved performance over existing Koopman learning methods. The implementation is publicly available at https://github.com/Wenxuan52/InformationKoopman.

Authors:Sikai Cheng, Reza Zandehshahvar, Haoruo Zhao, Daniel A. Garcia-Ulloa, Alejandro Villena-Rodriguez, Carles Navarro Manchón, Pascal Van Hentenryck
Title: CSI-4CAST: A Hybrid Deep Learning Model for CSI Prediction with Comprehensive Robustness and Generalization Testing
Abstract:
Channel state information (CSI) prediction is a promising strategy for ensuring reliable and efficient operation of massive multiple-input multiple-output (mMIMO) systems by providing timely downlink (DL) CSI. While deep learning-based methods have advanced beyond conventional model-driven and statistical approaches, they remain limited in robustness to practical non-Gaussian noise, generalization across diverse channel conditions, and computational efficiency. This paper introduces CSI-4CAST, a hybrid deep learning architecture that integrates 4 key components, i.e., Convolutional neural network residuals, Adaptive correction layers, ShuffleNet blocks, and Transformers, to efficiently capture both local and long-range dependencies in CSI prediction. To enable rigorous evaluation, this work further presents a comprehensive benchmark, CSI-RRG for Regular, Robustness and Generalization testing, which includes more than 300,000 samples across 3,060 realistic scenarios for both TDD and FDD systems. The dataset spans multiple channel models, a wide range of delay spreads and user velocities, and diverse noise types and intensity degrees. Experimental results show that CSI-4CAST achieves superior prediction accuracy with substantially lower computational cost, outperforming baselines in 88.9% of TDD scenarios and 43.8% of FDD scenario, the best performance among all evaluated models, while reducing FLOPs by 5x and 3x compared to LLM4CP, the strongest baseline. In addition, evaluation over CSI-RRG provides valuable insights into how different channel factors affect the performance and generalization capability of deep learning models. Both the dataset (https://huggingface.co/CSI-4CAST) and evaluation protocols (https://github.com/AI4OPT/CSI-4CAST) are publicly released to establish a standardized benchmark and to encourage further research on robust and efficient CSI prediction.

Authors:Maharnab Saikia
Title: VCTR: A Transformer-Based Model for Non-parallel Voice Conversion
Abstract:
Non-parallel voice conversion aims to convert voice from a source domain to a target domain without paired training data. Cycle-Consistent Generative Adversarial Networks (CycleGAN) and Variational Autoencoders (VAE) have been used for this task, but these models suffer from difficult training and unsatisfactory results. Later, Contrastive Voice Conversion (CVC) was introduced, utilizing a contrastive learning-based approach to address these issues. However, these methods use CNN-based generators, which can capture local semantics but lacks the ability to capture long-range dependencies necessary for global semantics. In this paper, we propose VCTR, an efficient method for non-parallel voice conversion that leverages the Hybrid Perception Block (HPB) and Dual Pruned Self-Attention (DPSA) along with a contrastive learning-based adversarial approach. The code can be found in https://github.com/Maharnab-Saikia/VCTR.

Authors:Xiao He, Huangxuan Zhao, Guojia Wan, Wei Zhou, Yanxing Liu, Juhua Liu, Yongchao Xu, Yong Luo, Dacheng Tao, Bo Du
Title: Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Abstract:
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.

Authors:Shouang Wei, Min Zhang, Xin Lin, Bo Jiang, Zhongxiang Dai, Kun Kuang
Title: EduDial: Constructing a Large-scale Multi-turn Teacher-Student Dialogue Corpus
Abstract:
Recently, several multi-turn dialogue benchmarks have been proposed to evaluate the conversational abilities of large language models (LLMs). As LLMs are increasingly recognized as a key technology for advancing intelligent education, owing to their ability to deeply understand instructional contexts and provide personalized guidance, the construction of dedicated teacher-student dialogue benchmarks has become particularly important. To this end, we present EduDial, a comprehensive multi-turn teacher-student dialogue dataset. EduDial covers 345 core knowledge points and consists of 34,250 dialogue sessions generated through interactions between teacher and student agents. Its design is guided by Bloom's taxonomy of educational objectives and incorporates ten questioning strategies, including situational questioning, zone of proximal development (ZPD) questioning, and metacognitive questioning-thus better capturing authentic classroom interactions. Furthermore, we design differentiated teaching strategies for students at different cognitive levels, thereby providing more targeted teaching guidance. Building on EduDial, we further develop EduDial-LLM 32B via training and propose an 11-dimensional evaluation framework that systematically measures the teaching abilities of LLMs, encompassing both overall teaching quality and content quality. Experiments on 17 mainstream LLMs reveal that most models struggle in student-centered teaching scenarios, whereas our EduDial-LLM achieves significant gains, consistently outperforming all baselines across all metrics. The code is available at https://github.com/Mind-Lab-ECNU/EduDial/tree/main.

Authors:Hancheng Ye, Zhengqi Gao, Mingyuan Ma, Qinsi Wang, Yuzhe Fu, Ming-Yu Chung, Yueqian Lin, Zhijian Liu, Jianyi Zhang, Danyang Zhuo, Yiran Chen
Title: KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems
Abstract:
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.

Authors:Imran Khan
Title: From Literal to Liberal: A Meta-Prompting Framework for Eliciting Human-Aligned Exception Handling in Large Language Models
Abstract:
Large Language Models (LLMs) are increasingly being deployed as the reasoning engines for agentic AI systems, yet they exhibit a critical flaw: a rigid adherence to explicit rules that leads to decisions misaligned with human common sense and intent. This "rule-rigidity" is a significant barrier to building trustworthy autonomous agents. While prior work has shown that supervised fine-tuning (SFT) with human explanations can mitigate this issue, SFT is computationally expensive and inaccessible to many practitioners. To address this gap, we introduce the Rule-Intent Distinction (RID) Framework, a novel, low-compute meta-prompting technique designed to elicit human-aligned exception handling in LLMs in a zero-shot manner. The RID framework provides the model with a structured cognitive schema for deconstructing tasks, classifying rules, weighing conflicting outcomes, and justifying its final decision. We evaluated the RID framework against baseline and Chain-of-Thought (CoT) prompting on a custom benchmark of 20 scenarios requiring nuanced judgment across diverse domains. Our human-verified results demonstrate that the RID framework significantly improves performance, achieving a 95% Human Alignment Score (HAS), compared to 80% for the baseline and 75% for CoT. Furthermore, it consistently produces higher-quality, intent-driven reasoning. This work presents a practical, accessible, and effective method for steering LLMs from literal instruction-following to liberal, goal-oriented reasoning, paving the way for more reliable and pragmatic AI agents.

Authors:Yingjia Wan, Haochen Tan, Xiao Zhu, Xinyu Zhou, Zhiwei Li, Qingsong Lv, Changxuan Sun, Jiaqi Zeng, Yi Xu, Jianqiao Lu, Yinhong Liu, Zhijiang Guo
Title: FaStFACT: Faster, Stronger Long-Form Factuality Evaluations in LLMs
Abstract:
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to accuracy issues and costly human assessment. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to complex pipeline components unsuitable for long LLM outputs, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence collection of one-line snippets. To address these limitations, we propose \name, a fast and strong evaluation framework that achieves the highest alignment with human evaluation and efficiency among existing baselines. \name first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the cost of web searching and inference calling while ensuring reliability. For searching and verification, it collects document-level evidence from crawled webpages and selectively retrieves it during verification, addressing the evidence insufficiency problem in previous pipelines. Extensive experiments based on an aggregated and manually annotated benchmark demonstrate the reliability of \name in both efficiently and effectively evaluating the factuality of long-form LLM generations. Code and benchmark data is available at https://github.com/Yingjia-Wan/FastFact.

Authors:Tabia Tanzin Prama, Christopher M. Danforth, Peter Sheridan Dodds
Title: BanglaMATH : A Bangla benchmark dataset for testing LLM mathematical reasoning at grades 6, 7, and 8
Abstract:
Large Language Models (LLMs) have tremendous potential to play a key role in supporting mathematical reasoning, with growing use in education and AI research. However, most existing benchmarks are limited to English, creating a significant gap for low-resource languages. For example, Bangla is spoken by nearly 250 million people who would collectively benefit from LLMs capable of native fluency. To address this, we present BanglaMATH, a dataset of 1.7k Bangla math word problems across topics such as Arithmetic, Algebra, Geometry, and Logical Reasoning, sourced from Bangla elementary school workbooks and annotated with details like grade level and number of reasoning steps. We have designed BanglaMATH to evaluate the mathematical capabilities of both commercial and open-source LLMs in Bangla, and we find that Gemini 2.5 Flash and DeepSeek V3 are the only models to achieve strong performance, with $\ge$ 80\% accuracy across three elementary school grades. Furthermore, we assess the robustness and language bias of these top-performing LLMs by augmenting the original problems with distracting information, and translating the problems into English. We show that both LLMs fail to maintain robustness and exhibit significant performance bias in Bangla. Our study underlines current limitations of LLMs in handling arithmetic and mathematical reasoning in low-resource languages, and highlights the need for further research on multilingual and equitable mathematical understanding. Dataset link: \href{https://github.com/TabiaTanzin/BanglaMATH-A-Bangla-benchmark-dataset-for-testing-LLM-mathematical-reasoning-at-grades-6-7-and-8.git}{https://github.com/BanglaMATH}

Authors:Kevin Li, Manuel Brack, Sudeep Katakol, Hareesh Ravi, Ajinkya Kale
Title: UniFusion: Vision-Language Model as Unified Encoder in Image Generation
Abstract:
Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.

Authors:Weiyang Jin, Yuwei Niu, Jiaqi Liao, Chengqi Duan, Aoxue Li, Shenghua Gao, Xihui Liu
Title: SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models
Abstract:
Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a \textbf{global reward} ensures the correctness of the overall visual semantics and layout, while a \textbf{local reward} refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to \textbf{88.37} and on T2I-ReasonBench from 43.82 to \textbf{46.75}. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.

Authors:Stefan Andreas Baumann, Nick Stracke, Timy Phan, Björn Ommer
Title: What If : Understanding Motion Through Sparse Interactions
Abstract:
Understanding the dynamics of a physical scene involves reasoning about the diverse ways it can potentially change, especially as a result of local interactions. We present the Flow Poke Transformer (FPT), a novel framework for directly predicting the distribution of local motion, conditioned on sparse interactions termed "pokes". Unlike traditional methods that typically only enable dense sampling of a single realization of scene dynamics, FPT provides an interpretable directly accessible representation of multi-modal scene motion, its dependency on physical interactions and the inherent uncertainties of scene dynamics. We also evaluate our model on several downstream tasks to enable comparisons with prior methods and highlight the flexibility of our approach. On dense face motion generation, our generic pre-trained model surpasses specialized baselines. FPT can be fine-tuned in strongly out-of-distribution tasks such as synthetic datasets to enable significant improvements over in-domain methods in articulated object motion estimation. Additionally, predicting explicit motion distributions directly enables our method to achieve competitive performance on tasks like moving part segmentation from pokes which further demonstrates the versatility of our FPT. Code and models are publicly available at https://compvis.github.io/flow-poke-transformer.

Authors:Fengzhi Guo, Chih-Chuan Hsu, Sihao Ding, Cheng Zhang
Title: Uncertainty Matters in Dynamic Gaussian Splatting for Monocular 4D Reconstruction
Abstract:
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our key insight is to estimate time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.

Authors:Thomas Wimmer, Prune Truong, Marie-Julie Rakotosaona, Michael Oechsle, Federico Tombari, Bernt Schiele, Jan Eric Lenssen
Title: AnyUp: Universal Feature Upsampling
Abstract:
We introduce AnyUp, a method for feature upsampling that can be applied to any vision feature at any resolution, without encoder-specific training. Existing learning-based upsamplers for features like DINO or CLIP need to be re-trained for every feature extractor and thus do not generalize to different feature types at inference time. In this work, we propose an inference-time feature-agnostic upsampling architecture to alleviate this limitation and improve upsampling quality. In our experiments, AnyUp sets a new state of the art for upsampled features, generalizes to different feature types, and preserves feature semantics while being efficient and easy to apply to a wide range of downstream tasks.

Authors:Zhuotong Cai, Tianyi Zeng, Jiazhen Zhang, Eléonore V. Lieffrig, Kathryn Fontaine, Chenyu You, Enette Mae Revilla, James S. Duncan, Jingmin Xin, Yihuan Lu, John A. Onofrey
Title: PET Head Motion Estimation Using Supervised Deep Learning with Attention
Abstract:
Head movement poses a significant challenge in brain positron emission tomography (PET) imaging, resulting in image artifacts and tracer uptake quantification inaccuracies. Effective head motion estimation and correction are crucial for precise quantitative image analysis and accurate diagnosis of neurological disorders. Hardware-based motion tracking (HMT) has limited applicability in real-world clinical practice. To overcome this limitation, we propose a deep-learning head motion correction approach with cross-attention (DL-HMC++) to predict rigid head motion from one-second 3D PET raw data. DL-HMC++ is trained in a supervised manner by leveraging existing dynamic PET scans with gold-standard motion measurements from external HMT. We evaluate DL-HMC++ on two PET scanners (HRRT and mCT) and four radiotracers (18F-FDG, 18F-FPEB, 11C-UCB-J, and 11C-LSN3172176) to demonstrate the effectiveness and generalization of the approach in large cohort PET studies. Quantitative and qualitative results demonstrate that DL-HMC++ consistently outperforms state-of-the-art data-driven motion estimation methods, producing motion-free images with clear delineation of brain structures and reduced motion artifacts that are indistinguishable from gold-standard HMT. Brain region of interest standard uptake value analysis exhibits average difference ratios between DL-HMC++ and gold-standard HMT to be 1.2 plus-minus 0.5% for HRRT and 0.5 plus-minus 0.2% for mCT. DL-HMC++ demonstrates the potential for data-driven PET head motion correction to remove the burden of HMT, making motion correction accessible to clinical populations beyond research settings. The code is available at https://github.com/maxxxxxxcai/DL-HMC-TMI.

Authors:Junhao Zhuang, Shi Guo, Xin Cai, Xiaohui Li, Yihao Liu, Chun Yuan, Tianfan Xue
Title: FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution
Abstract:
Diffusion models have recently advanced video restoration, but applying them to real-world video super-resolution (VSR) remains challenging due to high latency, prohibitive computation, and poor generalization to ultra-high resolutions. Our goal in this work is to make diffusion-based VSR practical by achieving efficiency, scalability, and real-time performance. To this end, we propose FlashVSR, the first diffusion-based one-step streaming framework towards real-time VSR. FlashVSR runs at approximately 17 FPS for 768x1408 videos on a single A100 GPU by combining three complementary innovations: (i) a train-friendly three-stage distillation pipeline that enables streaming super-resolution, (ii) locality-constrained sparse attention that cuts redundant computation while bridging the train-test resolution gap, and (iii) a tiny conditional decoder that accelerates reconstruction without sacrificing quality. To support large-scale training, we also construct VSR-120K, a new dataset with 120k videos and 180k images. Extensive experiments show that FlashVSR scales reliably to ultra-high resolutions and achieves state-of-the-art performance with up to 12x speedup over prior one-step diffusion VSR models. We will release the code, pretrained models, and dataset to foster future research in efficient diffusion-based VSR.

Authors:Sanghee J. Kim, Kanishka Misra
Title: Hey, wait a minute: on at-issue sensitivity in Language Models
Abstract:
Evaluating the naturalness of dialogue in language models (LMs) is not trivial: notions of 'naturalness' vary, and scalable quantitative metrics remain limited. This study leverages the linguistic notion of 'at-issueness' to assess dialogue naturalness and introduces a new method: Divide, Generate, Recombine, and Compare (DGRC). DGRC (i) divides a dialogue as a prompt, (ii) generates continuations for subparts using LMs, (iii) recombines the dialogue and continuations, and (iv) compares the likelihoods of the recombined sequences. This approach mitigates bias in linguistic analyses of LMs and enables systematic testing of discourse-sensitive behavior. Applying DGRC, we find that LMs prefer to continue dialogue on at-issue content, with this effect enhanced in instruct-tuned models. They also reduce their at-issue preference when relevant cues (e.g., "Hey, wait a minute") are present. Although instruct-tuning does not further amplify this modulation, the pattern reflects a hallmark of successful dialogue dynamics.

Authors:Ziyang Ma, Ruiyang Xu, Zhenghao Xing, Yunfei Chu, Yuxuan Wang, Jinzheng He, Jin Xu, Pheng-Ann Heng, Kai Yu, Junyang Lin, Eng Siong Chng, Xie Chen
Title: Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception
Abstract:
Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.

Authors:Kunyu Peng, Di Wen, Kailun Yang, Jia Fu, Yufan Chen, Ruiping Liu, Jiamin Wu, Junwei Zheng, M. Saquib Sarfraz, Luc Van Gool, Danda Pani Paudel, Rainer Stiefelhagen
Title: EReLiFM: Evidential Reliability-Aware Residual Flow Meta-Learning for Open-Set Domain Generalization under Noisy Labels
Abstract:
Open-Set Domain Generalization (OSDG) aims to enable deep learning models to recognize unseen categories in new domains, which is crucial for real-world applications. Label noise hinders open-set domain generalization by corrupting source-domain knowledge, making it harder to recognize known classes and reject unseen ones. While existing methods address OSDG under Noisy Labels (OSDG-NL) using hyperbolic prototype-guided meta-learning, they struggle to bridge domain gaps, especially with limited clean labeled data. In this paper, we propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM). We first introduce an unsupervised two-stage evidential loss clustering method to promote label reliability awareness. Then, we propose a residual flow matching mechanism that models structured domain- and category-conditioned residuals, enabling diverse and uncertainty-aware transfer paths beyond interpolation-based augmentation. During this meta-learning process, the model is optimized such that the update direction on the clean set maximizes the loss decrease on the noisy set, using pseudo labels derived from the most confident predicted class for supervision. Experimental results show that EReLiFM outperforms existing methods on OSDG-NL, achieving state-of-the-art performance. The source code is available at https://github.com/KPeng9510/ERELIFM.

Authors:Muhammad Ayub Sabir, Junbiao Pang, Jiaqi Wu, Fatima Ashraf
Title: Few Shot Semi-Supervised Learning for Abnormal Stop Detection from Sparse GPS Trajectories
Abstract:
Abnormal stop detection (ASD) in intercity coach transportation is critical for ensuring passenger safety, operational reliability, and regulatory compliance. However, two key challenges hinder ASD effectiveness: sparse GPS trajectories, which obscure short or unauthorized stops, and limited labeled data, which restricts supervised learning. Existing methods often assume dense sampling or regular movement patterns, limiting their applicability. To address data sparsity, we propose a Sparsity-Aware Segmentation (SAS) method that adaptively defines segment boundaries based on local spatial-temporal density. Building upon these segments, we introduce three domain-specific indicators to capture abnormal stop behaviors. To further mitigate the impact of sparsity, we develop Locally Temporal-Indicator Guided Adjustment (LTIGA), which smooths these indicators via local similarity graphs. To overcome label scarcity, we construct a spatial-temporal graph where each segment is a node with LTIGA-refined features. We apply label propagation to expand weak supervision across the graph, followed by a GCN to learn relational patterns. A final self-training module incorporates high-confidence pseudo-labels to iteratively improve predictions. Experiments on real-world coach data show an AUC of 0.854 and AP of 0.866 using only 10 labeled instances, outperforming prior methods. The code and dataset are publicly available at \href{https://github.com/pangjunbiao/Abnormal-Stop-Detection-SSL.git}

Authors:Ajith Anil Meera, Abian Torres, Pablo Lanillos
Title: Designing Tools with Control Confidence
Abstract:
Prehistoric humans invented stone tools for specialized tasks by not just maximizing the tool's immediate goal-completion accuracy, but also increasing their confidence in the tool for later use under similar settings. This factor contributed to the increased robustness of the tool, i.e., the least performance deviations under environmental uncertainties. However, the current autonomous tool design frameworks solely rely on performance optimization, without considering the agent's confidence in tool use for repeated use. Here, we take a step towards filling this gap by i) defining an optimization framework for task-conditioned autonomous hand tool design for robots, where ii) we introduce a neuro-inspired control confidence term into the optimization routine that helps the agent to design tools with higher robustness. Through rigorous simulations using a robotic arm, we show that tools designed with control confidence as the objective function are more robust to environmental uncertainties during tool use than a pure accuracy-driven objective. We further show that adding control confidence to the objective function for tool design provides a balance between the robustness and goal accuracy of the designed tools under control perturbations. Finally, we show that our CMAES-based evolutionary optimization strategy for autonomous tool design outperforms other state-of-the-art optimizers by designing the optimal tool within the fewest iterations. Code: https://github.com/ajitham123/Tool_design_control_confidence.

Authors:Siyuan Li, Aodu Wulianghai, Xi Lin, Guangyan Li, Xiang Chen, Jun Wu, Jianhua Li
Title: StyleDecipher: Robust and Explainable Detection of LLM-Generated Texts with Stylistic Analysis
Abstract:
With the increasing integration of large language models (LLMs) into open-domain writing, detecting machine-generated text has become a critical task for ensuring content authenticity and trust. Existing approaches rely on statistical discrepancies or model-specific heuristics to distinguish between LLM-generated and human-written text. However, these methods struggle in real-world scenarios due to limited generalization, vulnerability to paraphrasing, and lack of explainability, particularly when facing stylistic diversity or hybrid human-AI authorship. In this work, we propose StyleDecipher, a robust and explainable detection framework that revisits LLM-generated text detection using combined feature extractors to quantify stylistic differences. By jointly modeling discrete stylistic indicators and continuous stylistic representations derived from semantic embeddings, StyleDecipher captures distinctive style-level divergences between human and LLM outputs within a unified representation space. This framework enables accurate, explainable, and domain-agnostic detection without requiring access to model internals or labeled segments. Extensive experiments across five diverse domains, including news, code, essays, reviews, and academic abstracts, demonstrate that StyleDecipher consistently achieves state-of-the-art in-domain accuracy. Moreover, in cross-domain evaluations, it surpasses existing baselines by up to 36.30%, while maintaining robustness against adversarial perturbations and mixed human-AI content. Further qualitative and quantitative analysis confirms that stylistic signals provide explainable evidence for distinguishing machine-generated text. Our source code can be accessed at https://github.com/SiyuanLi00/StyleDecipher.

Authors:Chao Chen, Zhixin Ma, Yongqi Li, Yupeng Hu, Yinwei Wei, Wenjie Li, Liqiang Nie
Title: Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Abstract:
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilicate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M3CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches. Code available at https://github.com/FYYDCC/IVT-LR.

Authors:Yasaman Haghighi, Bastien van Delft, Mariam Hassan, Alexandre Alahi
Title: LayerSync: Self-aligning Intermediate Layers
Abstract:
We propose LayerSync, a domain-agnostic approach for improving the generation quality and the training efficiency of diffusion models. Prior studies have highlighted the connection between the quality of generation and the representations learned by diffusion models, showing that external guidance on model intermediate representations accelerates training. We reconceptualize this paradigm by regularizing diffusion models with their own intermediate representations. Building on the observation that representation quality varies across diffusion model layers, we show that the most semantically rich representations can act as an intrinsic guidance for weaker ones, reducing the need for external supervision. Our approach, LayerSync, is a self-sufficient, plug-and-play regularizer term with no overhead on diffusion model training and generalizes beyond the visual domain to other modalities. LayerSync requires no pretrained models nor additional data. We extensively evaluate the method on image generation and demonstrate its applicability to other domains such as audio, video, and motion generation. We show that it consistently improves the generation quality and the training efficiency. For example, we speed up the training of flow-based transformer by over 8.75x on ImageNet dataset and improved the generation quality by 23.6%. The code is available at https://github.com/vita-epfl/LayerSync.

Authors:Quang Nguyen, Tri Le, Baoru Huang, Minh Nhat Vu, Ngan Le, Thieu Vo, Anh Nguyen
Title: Learning Human Motion with Temporally Conditional Mamba
Abstract:
Learning human motion based on a time-dependent input signal presents a challenging yet impactful task with various applications. The goal of this task is to generate or estimate human movement that consistently reflects the temporal patterns of conditioning inputs. Existing methods typically rely on cross-attention mechanisms to fuse the condition with motion. However, this approach primarily captures global interactions and struggles to maintain step-by-step temporal alignment. To address this limitation, we introduce Temporally Conditional Mamba, a new mamba-based model for human motion generation. Our approach integrates conditional information into the recurrent dynamics of the Mamba block, enabling better temporally aligned motion. To validate the effectiveness of our method, we evaluate it on a variety of human motion tasks. Extensive experiments demonstrate that our model significantly improves temporal alignment, motion realism, and condition consistency over state-of-the-art approaches. Our project page is available at https://zquang2202.github.io/TCM.

Authors:Tianhao Li, Tingfa Xu, Ying Wang, Haolin Qin, Xu Lin, Jianan Li
Title: MMOT: The First Challenging Benchmark for Drone-based Multispectral Multi-Object Tracking
Abstract:
Drone-based multi-object tracking is essential yet highly challenging due to small targets, severe occlusions, and cluttered backgrounds. Existing RGB-based tracking algorithms heavily depend on spatial appearance cues such as color and texture, which often degrade in aerial views, compromising reliability. Multispectral imagery, capturing pixel-level spectral reflectance, provides crucial cues that enhance object discriminability under degraded spatial conditions. However, the lack of dedicated multispectral UAV datasets has hindered progress in this domain. To bridge this gap, we introduce MMOT, the first challenging benchmark for drone-based multispectral multi-object tracking. It features three key characteristics: (i) Large Scale - 125 video sequences with over 488.8K annotations across eight categories; (ii) Comprehensive Challenges - covering diverse conditions such as extreme small targets, high-density scenarios, severe occlusions, and complex motion; and (iii) Precise Oriented Annotations - enabling accurate localization and reduced ambiguity under aerial perspectives. To better extract spectral features and leverage oriented annotations, we further present a multispectral and orientation-aware MOT scheme adapting existing methods, featuring: (i) a lightweight Spectral 3D-Stem integrating spectral features while preserving compatibility with RGB pretraining; (ii) an orientation-aware Kalman filter for precise state estimation; and (iii) an end-to-end orientation-adaptive transformer. Extensive experiments across representative trackers consistently show that multispectral input markedly improves tracking performance over RGB baselines, particularly for small and densely packed objects. We believe our work will advance drone-based multispectral multi-object tracking research. Our MMOT, code, and benchmarks are publicly available at https://github.com/Annzstbl/MMOT.

Authors:Xiaoji Zheng, Ziyuan Yang, Yanhao Chen, Yuhang Peng, Yuanrong Tang, Gengyuan Liu, Bokui Chen, Jiangtao Gong
Title: CoIRL-AD: Collaborative-Competitive Imitation-Reinforcement Learning in Latent World Models for Autonomous Driving
Abstract:
End-to-end autonomous driving models trained solely with imitation learning (IL) often suffer from poor generalization. In contrast, reinforcement learning (RL) promotes exploration through reward maximization but faces challenges such as sample inefficiency and unstable convergence. A natural solution is to combine IL and RL. Moving beyond the conventional two-stage paradigm (IL pretraining followed by RL fine-tuning), we propose CoIRL-AD, a competitive dual-policy framework that enables IL and RL agents to interact during training. CoIRL-AD introduces a competition-based mechanism that facilitates knowledge exchange while preventing gradient conflicts. Experiments on the nuScenes dataset show an 18% reduction in collision rate compared to baselines, along with stronger generalization and improved performance on long-tail scenarios. Code is available at: https://github.com/SEU-zxj/CoIRL-AD.

Authors:Shurong Chai, Rahul Kumar JAIN, Rui Xu, Shaocong Mo, Ruibo Hou, Shiyu Teng, Jiaqing Liu, Lanfen Lin, Yen-Wei Chen
Title: A Text-Image Fusion Method with Data Augmentation Capabilities for Referring Medical Image Segmentation
Abstract:
Deep learning relies heavily on data augmentation to mitigate limited data, especially in medical imaging. Recent multimodal learning integrates text and images for segmentation, known as referring or text-guided image segmentation. However, common augmentations like rotation and flipping disrupt spatial alignment between image and text, weakening performance. To address this, we propose an early fusion framework that combines text and visual features before augmentation, preserving spatial consistency. We also design a lightweight generator that projects text embeddings into visual space, bridging semantic gaps. Visualization of generated pseudo-images shows accurate region localization. Our method is evaluated on three medical imaging tasks and four segmentation frameworks, achieving state-of-the-art results. Code is publicly available on GitHub: https://github.com/11yxk/MedSeg_EarlyFusion.

Authors:Andrei Chernov, Haroon Wahab, Oleg Novitskij
Title: Leveraging Language Semantics for Collaborative Filtering with TextGCN and TextGCN-MLP: Zero-Shot vs In-Domain Performance
Abstract:
In recent years, various approaches have been proposed to leverage large language models (LLMs) for incorporating textual information about items into recommender systems. Existing methods primarily focus on either fine-tuning LLMs to generate recommendations or integrating LLM-based embeddings into downstream models. In this work, we follow the latter direction and propose \textbf{TextGCN}, which applies parameter-free graph convolution layers directly over LLM-based item-title embeddings, instead of learning ID-based embeddings as in traditional methods. By combining language semantics with graph message passing, this architecture achieves state-of-the-art zero-shot performance, significantly outperforming prior approaches. Furthermore, we introduce \textbf{TextGCN-MLP}, which extends TextGCN with a trainable multilayer perceptron trained using a contrastive loss, achieving state-of-the-art in-domain performance on recommendation benchmarks. However, the zero-shot performance of TextGCN-MLP remains lower than that of TextGCN, highlighting the trade-off between in-domain specialization and zero-shot generalization. We release our code on github at \href{https://github.com/ChernovAndrey/TFCE}{github.com/ChernovAndrey/TFCE}.

Authors:Linfeng Gao, Baolong Bi, Zheng Yuan, Le Wang, Zerui Chen, Zhimin Wei, Shenghua Liu, Qinggang Zhang, Jinsong Su
Title: Probing Latent Knowledge Conflict for Faithful Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance the factuality of Large Language Models (LLMs). However, existing RAG systems often suffer from an unfaithfulness issue, where the model's response contradicts evidence from the retrieved context. Existing approaches to improving contextual faithfulness largely rely on external interventions, such as prompt engineering, decoding constraints, or reward-based fine-tuning. These works treat the LLM as a black box and overlook a crucial question: how does the LLM internally integrate retrieved evidence with its parametric memory, particularly under knowledge conflicts? To address this gap, we conduct a probing-based analysis of hidden-state representations in LLMs and observe three findings: knowledge integration occurs hierarchically, conflicts manifest as latent signals at the sentence level, and irrelevant context is often amplified when aligned with parametric knowledge. Building on these findings, we propose CLEAR (Conflict-Localized and Enhanced Attention for RAG), a framework that (i) decomposes context into fine-grained sentence-level knowledge, (ii) employs hidden-state probing to localize conflicting knowledge, and (iii) introduces conflict-aware fine-tuning to guide the model to accurately integrate retrieved evidence. Extensive experiments across three benchmarks demonstrate that CLEAR substantially improves both accuracy and contextual faithfulness, consistently outperforming strong baselines under diverse conflict conditions. The related resources are available at https://github.com/LinfengGao/CLEAR.

Authors:Chengyang Dong, Nan Guo
Title: Biased-Attention Guided Risk Prediction for Safe Decision-Making at Unsignalized Intersections
Abstract:
Autonomous driving decision-making at unsignalized intersections is highly challenging due to complex dynamic interactions and high conflict risks. To achieve proactive safety control, this paper proposes a deep reinforcement learning (DRL) decision-making framework integrated with a biased attention mechanism. The framework is built upon the Soft Actor-Critic (SAC) algorithm. Its core innovation lies in the use of biased attention to construct a traffic risk predictor. This predictor assesses the long-term risk of collision for a vehicle entering the intersection and transforms this risk into a dense reward signal to guide the SAC agent in making safe and efficient driving decisions. Finally, the simulation results demonstrate that the proposed method effectively improves both traffic efficiency and vehicle safety at the intersection, thereby proving the effectiveness of the intelligent decision-making framework in complex scenarios. The code of our work is available at https://github.com/hank111525/SAC-RWB.

Authors:Shunnosuke Yoshimura, Kento Kawaharazuka, Kei Okada
Title: M3D-skin: Multi-material 3D-printed Tactile Sensor with Hierarchical Infill Structures for Pressure Sensing
Abstract:
Tactile sensors have a wide range of applications, from utilization in robotic grippers to human motion measurement. If tactile sensors could be fabricated and integrated more easily, their applicability would further expand. In this study, we propose a tactile sensor-M3D-skin-that can be easily fabricated with high versatility by leveraging the infill patterns of a multi-material fused deposition modeling (FDM) 3D printer as the sensing principle. This method employs conductive and non-conductive flexible filaments to create a hierarchical structure with a specific infill pattern. The flexible hierarchical structure deforms under pressure, leading to a change in electrical resistance, enabling the acquisition of tactile information. We measure the changes in characteristics of the proposed tactile sensor caused by modifications to the hierarchical structure. Additionally, we demonstrate the fabrication and use of a multi-tile sensor. Furthermore, as applications, we implement motion pattern measurement on the sole of a foot, integration with a robotic hand, and tactile-based robotic operations. Through these experiments, we validate the effectiveness of the proposed tactile sensor.

Authors:Yunuo Liu, Dawei Zhu, Zena Al-Khalili, Dai Cheng, Yanjun Chen, Dietrich Klakow, Wei Zhang, Xiaoyu Shen
Title: PricingLogic: Evaluating LLMs Reasoning on Complex Tourism Pricing Tasks
Abstract:
We present PricingLogic, the first benchmark that probes whether Large Language Models(LLMs) can reliably automate tourism-related prices when multiple, overlapping fare rules apply. Travel agencies are eager to offload this error-prone task onto AI systems; however, deploying LLMs without verified reliability could result in significant financial losses and erode customer trust. PricingLogic comprises 300 natural-language questions based on booking requests derived from 42 real-world pricing policies, spanning two levels of difficulty: (i) basic customer-type pricing and (ii)bundled-tour calculations involving interacting discounts. Evaluations of a line of LLMs reveal a steep performance drop on the harder tier,exposing systematic failures in rule interpretation and arithmetic reasoning.These results highlight that, despite their general capabilities, today's LLMs remain unreliable in revenue-critical applications without further safeguards or domain adaptation. Our code and dataset are available at https://github.com/EIT-NLP/PricingLogic.

Authors:Masahiro Negishi, Hyunsoo Park, Kinga O. Mastej, Aron Walsh
Title: Continuous Uniqueness and Novelty Metrics for Generative Modeling of Inorganic Crystals
Abstract:
To address pressing scientific challenges such as climate change, increasingly sophisticated generative artificial intelligence models are being developed that can efficiently sample the large chemical space of possible functional materials. These models can quickly sample new chemical compositions paired with crystal structures. They are typically evaluated using uniqueness and novelty metrics, which depend on a chosen crystal distance function. However, the most prevalent distance function has four limitations: it fails to quantify the degree of similarity between compounds, cannot distinguish compositional difference and structural difference, lacks Lipschitz continuity against shifts in atomic coordinates, and results in a uniqueness metric that is not invariant against the permutation of generated samples. In this work, we propose using two continuous distance functions to evaluate uniqueness and novelty, which theoretically overcome these limitations. Our experiments show that these distances reveal insights missed by traditional distance functions, providing a more reliable basis for evaluating and comparing generative models for inorganic crystals.

Authors:Shengyin Sun, Chen Ma, Jiehao Chen
Title: Enhanced Pre-training of Graph Neural Networks for Million-Scale Heterogeneous Graphs
Abstract:
In recent years, graph neural networks (GNNs) have facilitated the development of graph data mining. However, training GNNs requires sufficient labeled task-specific data, which is expensive and sometimes unavailable. To be less dependent on labeled data, recent studies propose to pre-train GNNs in a self-supervised manner and then apply the pre-trained GNNs to downstream tasks with limited labeled data. However, most existing methods are designed solely for homogeneous graphs (real-world graphs are mostly heterogeneous) and do not consider semantic mismatch (the semantic difference between the original data and the ideal data containing more transferable semantic information). In this paper, we propose an effective framework to pre-train GNNs on the large-scale heterogeneous graph. We first design a structure-aware pre-training task, which aims to capture structural properties in heterogeneous graphs. Then, we design a semantic-aware pre-training task to tackle the mismatch. Specifically, we construct a perturbation subspace composed of semantic neighbors to help deal with the semantic mismatch. Semantic neighbors make the model focus more on the general knowledge in the semantic space, which in turn assists the model in learning knowledge with better transferability. Finally, extensive experiments are conducted on real-world large-scale heterogeneous graphs to demonstrate the superiority of the proposed method over state-of-the-art baselines. Code available at https://github.com/sunshy-1/PHE.

Authors:Junhyuk So, Chiwoong Lee, Shinyoung Lee, Jungseul Ok, Eunhyeok Park
Title: Improving Generative Behavior Cloning via Self-Guidance and Adaptive Chunking
Abstract:
Generative Behavior Cloning (GBC) is a simple yet effective framework for robot learning, particularly in multi-task settings. Recent GBC methods often employ diffusion policies with open-loop (OL) control, where actions are generated via a diffusion process and executed in multi-step chunks without replanning. While this approach has demonstrated strong success rates and generalization, its inherent stochasticity can result in erroneous action sampling, occasionally leading to unexpected task failures. Moreover, OL control suffers from delayed responses, which can degrade performance in noisy or dynamic environments. To address these limitations, we propose two novel techniques to enhance the consistency and reactivity of diffusion policies: (1) self-guidance, which improves action fidelity by leveraging past observations and implicitly promoting future-aware behavior; and (2) adaptive chunking, which selectively updates action sequences when the benefits of reactivity outweigh the need for temporal consistency. Extensive experiments show that our approach substantially improves GBC performance across a wide range of simulated and real-world robotic manipulation tasks. Our code is available at https://github.com/junhyukso/SGAC

Authors:Wenjing Bian, Axel Barroso-Laguna, Tommaso Cavallari, Victor Adrian Prisacariu, Eric Brachmann
Title: Scene Coordinate Reconstruction Priors
Abstract:
Scene coordinate regression (SCR) models have proven to be powerful implicit scene representations for 3D vision, enabling visual relocalization and structure-from-motion. SCR models are trained specifically for one scene. If training images imply insufficient multi-view constraints SCR models degenerate. We present a probabilistic reinterpretation of training SCR models, which allows us to infuse high-level reconstruction priors. We investigate multiple such priors, ranging from simple priors over the distribution of reconstructed depth values to learned priors over plausible scene coordinate configurations. For the latter, we train a 3D point cloud diffusion model on a large corpus of indoor scans. Our priors push predicted 3D scene points towards plausible geometry at each training step to increase their likelihood. On three indoor datasets our priors help learning better scene representations, resulting in more coherent scene point clouds, higher registration rates and better camera poses, with a positive effect on down-stream tasks such as novel view synthesis and camera relocalization.

Authors:Tim J. Schoonbeek, Shao-Hsuan Hung, Dan Lehman, Hans Onvlee, Jacek Kustra, Peter H. N. de With, Fons van der Sommen
Title: Learning to Recognize Correctly Completed Procedure Steps in Egocentric Assembly Videos through Spatio-Temporal Modeling
Abstract:
Procedure step recognition (PSR) aims to identify all correctly completed steps and their sequential order in videos of procedural tasks. The existing state-of-the-art models rely solely on detecting assembly object states in individual video frames. By neglecting temporal features, model robustness and accuracy are limited, especially when objects are partially occluded. To overcome these limitations, we propose Spatio-Temporal Occlusion-Resilient Modeling for Procedure Step Recognition (STORM-PSR), a dual-stream framework for PSR that leverages both spatial and temporal features. The assembly state detection stream operates effectively with unobstructed views of the object, while the spatio-temporal stream captures both spatial and temporal features to recognize step completions even under partial occlusion. This stream includes a spatial encoder, pre-trained using a novel weakly supervised approach to capture meaningful spatial representations, and a transformer-based temporal encoder that learns how these spatial features relate over time. STORM-PSR is evaluated on the MECCANO and IndustReal datasets, reducing the average delay between actual and predicted assembly step completions by 11.2% and 26.1%, respectively, compared to prior methods. We demonstrate that this reduction in delay is driven by the spatio-temporal stream, which does not rely on unobstructed views of the object to infer completed steps. The code for STORM-PSR, along with the newly annotated MECCANO labels, is made publicly available at https://timschoonbeek.github.io/stormpsr .

Authors:Zirui Guo, Xubin Ren, Lingrui Xu, Jiahao Zhang, Chao Huang
Title: RAG-Anything: All-in-One RAG Framework
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a fundamental paradigm for expanding Large Language Models beyond their static training limitations. However, a critical misalignment exists between current RAG capabilities and real-world information environments. Modern knowledge repositories are inherently multimodal, containing rich combinations of textual content, visual elements, structured tables, and mathematical expressions. Yet existing RAG frameworks are limited to textual content, creating fundamental gaps when processing multimodal documents. We present RAG-Anything, a unified framework that enables comprehensive knowledge retrieval across all modalities. Our approach reconceptualizes multimodal content as interconnected knowledge entities rather than isolated data types. The framework introduces dual-graph construction to capture both cross-modal relationships and textual semantics within a unified representation. We develop cross-modal hybrid retrieval that combines structural knowledge navigation with semantic matching. This enables effective reasoning over heterogeneous content where relevant evidence spans multiple modalities. RAG-Anything demonstrates superior performance on challenging multimodal benchmarks, achieving significant improvements over state-of-the-art methods. Performance gains become particularly pronounced on long documents where traditional approaches fail. Our framework establishes a new paradigm for multimodal knowledge access, eliminating the architectural fragmentation that constrains current systems. Our framework is open-sourced at: https://github.com/HKUDS/RAG-Anything.

Authors:Jianfeng Dong, Lei Huang, Daizong Liu, Xianke Chen, Xun Yang, Changting Lin, Xun Wang, Meng Wang
Title: Dual Learning with Dynamic Knowledge Distillation and Soft Alignment for Partially Relevant Video Retrieval
Abstract:
Almost all previous text-to-video retrieval works ideally assume that videos are pre-trimmed with short durations containing solely text-related content. However, in practice, videos are typically untrimmed in long durations with much more complicated background content. Therefore, in this paper, we focus on the more practical yet challenging task of Partially Relevant Video Retrieval (PRVR), which aims to retrieve partially relevant untrimmed videos with the given query. To tackle this task, we propose a novel framework that distills generalization knowledge from a powerful large-scale vision-language pre-trained model and transfers it to a lightweight, task-specific PRVR network. Specifically, we introduce a Dual Learning framework with Dynamic Knowledge Distillation (DL-DKD++), where a large teacher model provides supervision to a compact dual-branch student network. The student model comprises two branches: an inheritance branch that absorbs transferable knowledge from the teacher, and an exploration branch that learns task-specific information from the PRVR dataset to address domain gaps. To further enhance learning, we incorporate a dynamic soft-target construction mechanism. By replacing rigid hard-target supervision with adaptive soft targets that evolve during training, our method enables the model to better capture the fine-grained, partial relevance between videos and queries. Experiment results demonstrate that our proposed model achieves state-of-the-art performance on TVR, ActivityNet, and Charades-STA datasets for PRVR. The code is available at https://github.com/HuiGuanLab/DL-DKD.

Authors:Youhao Si, Yuan Liao, Qiushi Han, Yuhang Yang, Rui Dai, Liya Huang
Title: TFGA-Net: Temporal-Frequency Graph Attention Network for Brain-Controlled Speaker Extraction
Abstract:
The rapid development of auditory attention decoding (AAD) based on electroencephalography (EEG) signals offers the possibility EEG-driven target speaker extraction. However, how to effectively utilize the target-speaker common information between EEG and speech remains an unresolved problem. In this paper, we propose a model for brain-controlled speaker extraction, which utilizes the EEG recorded from the listener to extract the target speech. In order to effectively extract information from EEG signals, we derive multi-scale time--frequency features and further incorporate cortical topological structures that are selectively engaged during the task. Moreover, to effectively exploit the non-Euclidean structure of EEG signals and capture their global features, the graph convolutional networks and self-attention mechanism are used in the EEG encoder. In addition, to make full use of the fused EEG and speech feature and preserve global context and capture speech rhythm and prosody, we introduce MossFormer2 which combines MossFormer and RNN-Free Recurrent as separator. Experimental results on both the public Cocktail Party and KUL dataset in this paper show that our TFGA-Net model significantly outper-forms the state-of-the-art method in certain objective evaluation metrics. The source code is available at: https://github.com/LaoDa-X/TFGA-NET.

Authors:Chenghanyu Zhang, Zekun Li, Peipei Li, Xing Cui, Shuhan Xia, Weixiang Yan, Yiqiao Zhang, Qianyu Zhuang
Title: SpineBench: Benchmarking Multimodal LLMs for Spinal Pathology Analysis
Abstract:
With the increasing integration of Multimodal Large Language Models (MLLMs) into the medical field, comprehensive evaluation of their performance in various medical domains becomes critical. However, existing benchmarks primarily assess general medical tasks, inadequately capturing performance in nuanced areas like the spine, which relies heavily on visual input. To address this, we introduce SpineBench, a comprehensive Visual Question Answering (VQA) benchmark designed for fine-grained analysis and evaluation of MLLMs in the spinal domain. SpineBench comprises 64,878 QA pairs from 40,263 spine images, covering 11 spinal diseases through two critical clinical tasks: spinal disease diagnosis and spinal lesion localization, both in multiple-choice format. SpineBench is built by integrating and standardizing image-label pairs from open-source spinal disease datasets, and samples challenging hard negative options for each VQA pair based on visual similarity (similar but not the same disease), simulating real-world challenging scenarios. We evaluate 12 leading MLLMs on SpineBench. The results reveal that these models exhibit poor performance in spinal tasks, highlighting limitations of current MLLM in the spine domain and guiding future improvements in spinal medicine applications. SpineBench is publicly available at https://zhangchenghanyu.github.io/SpineBench.github.io/.

Authors:Blazej Manczak, Eric Lin, Francisco Eiras, James O' Neill, Vaikkunth Mugunthan
Title: Shallow Robustness, Deep Vulnerabilities: Multi-Turn Evaluation of Medical LLMs
Abstract:
Large language models (LLMs) are rapidly transitioning into medical clinical use, yet their reliability under realistic, multi-turn interactions remains poorly understood. Existing evaluation frameworks typically assess single-turn question answering under idealized conditions, overlooking the complexities of medical consultations where conflicting input, misleading context, and authority influence are common. We introduce MedQA-Followup, a framework for systematically evaluating multi-turn robustness in medical question answering. Our approach distinguishes between shallow robustness (resisting misleading initial context) and deep robustness (maintaining accuracy when answers are challenged across turns), while also introducing an indirect-direct axis that separates contextual framing (indirect) from explicit suggestion (direct). Using controlled interventions on the MedQA dataset, we evaluate five state-of-the-art LLMs and find that while models perform reasonably well under shallow perturbations, they exhibit severe vulnerabilities in multi-turn settings, with accuracy dropping from 91.2% to as low as 13.5% for Claude Sonnet 4. Counterintuitively, indirect, context-based interventions are often more harmful than direct suggestions, yielding larger accuracy drops across models and exposing a significant vulnerability for clinical deployment. Further compounding analyses reveal model differences, with some showing additional performance drops under repeated interventions while others partially recovering or even improving. These findings highlight multi-turn robustness as a critical but underexplored dimension for safe and reliable deployment of medical LLMs.

Authors:Changfu Xu, Jianxiong Guo, Yuzhu Liang, Haiyang Huang, Haodong Zou, Xi Zheng, Shui Yu, Xiaowen Chu, Jiannong Cao, Tian Wang
Title: Diffusion Models for Reinforcement Learning: Foundations, Taxonomy, and Development
Abstract:
Diffusion Models (DMs), as a leading class of generative models, offer key advantages for reinforcement learning (RL), including multi-modal expressiveness, stable training, and trajectory-level planning. This survey delivers a comprehensive and up-to-date synthesis of diffusion-based RL. We first provide an overview of RL, highlighting its challenges, and then introduce the fundamental concepts of DMs, investigating how they are integrated into RL frameworks to address key challenges in this research field. We establish a dual-axis taxonomy that organizes the field along two orthogonal dimensions: a function-oriented taxonomy that clarifies the roles DMs play within the RL pipeline, and a technique-oriented taxonomy that situates implementations across online versus offline learning regimes. We also provide a comprehensive examination of this progression from single-agent to multi-agent domains, thereby forming several frameworks for DM-RL integration and highlighting their practical utility. Furthermore, we outline several categories of successful applications of diffusion-based RL across diverse domains, discuss open research issues of current methodologies, and highlight key directions for future research to advance the field. Finally, we summarize the survey to identify promising future development directions. We are actively maintaining a GitHub repository (https://github.com/ChangfuXu/D4RL-FTD) for papers and other related resources to apply DMs for RL.

Authors:Tao Yin, Xiaohong Zhang, Jiacheng Zhang, Li Huang, Zhibin Zhang, Yuansong Zeng, Jin Xie, Meng Yan
Title: MoRA: On-the-fly Molecule-aware Low-Rank Adaptation Framework for LLM-based Multi-Modal Molecular Assistant
Abstract:
Effectively integrating molecular graph structures with Large Language Models (LLMs) is a key challenge in drug discovery. Most existing multi-modal alignment methods typically process these structures by fine-tuning the LLM or adding a static adapter simultaneously. However, these approaches have two main limitations: (1) it optimizes a shared parameter space across all molecular inputs, limiting the model's ability to capture instance-specific structural features; and (2) fine-tuning the LLM for molecular tasks can lead to catastrophic forgetting, undermining its general reasoning capabilities. In this paper, instead of static task-oriented adaptation, we propose an instance-specific parameter space alignment approach for each molecule on-the-fly. To this end, we introduce Molecule-aware Low-Rank Adaptation (MoRA) that produces a unique set of low-rank adaptation weights for each input molecular graph. These weights are then dynamically injected into a frozen LLM, allowing the model to adapt its reasoning to the structure of each molecular input, while preserving the LLM's core knowledge. Extensive experiments demonstrate that on key molecular tasks, such as chemical reaction prediction and molecular captioning, MoRA's instance-specific dynamic adaptation outperforms statically adapted baselines, including a 14.1% relative improvement in reaction prediction exact match and a 22% reduction in error for quantum property prediction. The code is available at https://github.com/jk-sounds/MoRA.

Authors:Yuehui Li, Yahao Lu, Haoyuan Wu, Sen Zhang, Liang Lin, Yukai Shi
Title: Ivan-ISTD: Rethinking Cross-domain Heteroscedastic Noise Perturbations in Infrared Small Target Detection
Abstract:
In the multimedia domain, Infrared Small Target Detection (ISTD) plays a important role in drone-based multi-modality sensing. To address the dual challenges of cross-domain shift and heteroscedastic noise perturbations in ISTD, we propose a doubly wavelet-guided Invariance learning framework(Ivan-ISTD). In the first stage, we generate training samples aligned with the target domain using Wavelet-guided Cross-domain Synthesis. This wavelet-guided alignment machine accurately separates the target background through multi-frequency wavelet filtering. In the second stage, we introduce Real-domain Noise Invariance Learning, which extracts real noise characteristics from the target domain to build a dynamic noise library. The model learns noise invariance through self-supervised loss, thereby overcoming the limitations of distribution bias in traditional artificial noise modeling. Finally, we create the Dynamic-ISTD Benchmark, a cross-domain dynamic degradation dataset that simulates the distribution shifts encountered in real-world applications. Additionally, we validate the versatility of our method using other real-world datasets. Experimental results demonstrate that our approach outperforms existing state-of-the-art methods in terms of many quantitative metrics. In particular, Ivan-ISTD demonstrates excellent robustness in cross-domain scenarios. The code for this work can be found at: https://github.com/nanjin1/Ivan-ISTD.

Authors:Chanwoo Kim, Jihwan Yoon, Hyeonseong Kim, Taemoon Jeong, Changwoo Yoo, Seungbeen Lee, Soohwan Byeon, Hoon Chung, Matthew Pan, Jean Oh, Kyungjae Lee, Sungjoon Choi
Title: Learning Social Navigation from Positive and Negative Demonstrations and Rule-Based Specifications
Abstract:
Mobile robot navigation in dynamic human environments requires policies that balance adaptability to diverse behaviors with compliance to safety constraints. We hypothesize that integrating data-driven rewards with rule-based objectives enables navigation policies to achieve a more effective balance of adaptability and safety. To this end, we develop a framework that learns a density-based reward from positive and negative demonstrations and augments it with rule-based objectives for obstacle avoidance and goal reaching. A sampling-based lookahead controller produces supervisory actions that are both safe and adaptive, which are subsequently distilled into a compact student policy suitable for real-time operation with uncertainty estimates. Experiments in synthetic and elevator co-boarding simulations show consistent gains in success rate and time efficiency over baselines, and real-world demonstrations with human participants confirm the practicality of deployment. A video illustrating this work can be found on our project page https://chanwookim971024.github.io/PioneeR/.

Authors:Muammer Bay, Timo von Marcard, Dren Fazlija
Title: The Impact of Synthetic Data on Object Detection Model Performance: A Comparative Analysis with Real-World Data
Abstract:
Recent advances in generative AI, particularly in computer vision (CV), offer new opportunities to optimize workflows across industries, including logistics and manufacturing. However, many AI applications are limited by a lack of expertise and resources, which forces a reliance on general-purpose models. Success with these models often requires domain-specific data for fine-tuning, which can be costly and inefficient. Thus, using synthetic data for fine-tuning is a popular, cost-effective alternative to gathering real-world data. This work investigates the impact of synthetic data on the performance of object detection models, compared to models trained on real-world data only, specifically within the domain of warehouse logistics. To this end, we examined the impact of synthetic data generated using the NVIDIA Omniverse Replicator tool on the effectiveness of object detection models in real-world scenarios. It comprises experiments focused on pallet detection in a warehouse setting, utilizing both real and various synthetic dataset generation strategies. Our findings provide valuable insights into the practical applications of synthetic image data in computer vision, suggesting that a balanced integration of synthetic and real data can lead to robust and efficient object detection models.

Authors:Linyi Yang, Yixuan Weng
Title: ResearStudio: A Human-Intervenable Framework for Building Controllable Deep-Research Agents
Abstract:
Current deep-research agents run in a ''fire-and-forget'' mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner-Executor writes every step to a live ''plan-as-document,'' a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume -- switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI's DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. The full code, protocol, and evaluation scripts are available at https://github.com/ResearAI/ResearStudio. We will continue to update the repository to encourage further work on safe and controllable research agents. Our live demo is publicly accessible at http://ai-researcher.net:3000/. We support the development of DeepScientist, which can be accessed at https://github.com/ResearAI/DeepScientist.

Authors:Shingo Yokoi, Kento Sasaki, Yu Yamaguchi
Title: Hierarchical Reasoning with Vision-Language Models for Incident Reports from Dashcam Videos
Abstract:
Recent advances in end-to-end (E2E) autonomous driving have been enabled by training on diverse large-scale driving datasets, yet autonomous driving models still struggle in out-of-distribution (OOD) scenarios. The COOOL benchmark targets this gap by encouraging hazard understanding beyond closed taxonomies, and the 2COOOL challenge extends it to generating human-interpretable incident reports. We present a hierarchical reasoning framework for incident report generation from dashcam videos that integrates frame-level captioning, incident frame detection, and fine-grained reasoning within vision-language models (VLMs). We further improve factual accuracy and readability through model ensembling and a Blind A/B Scoring selection protocol. On the official 2COOOL open leaderboard, our method ranks 2nd among 29 teams and achieves the best CIDEr-D score, producing accurate and coherent incident narratives. These results indicate that hierarchical reasoning with VLMs is a promising direction for accident analysis and for broader understanding of safety-critical traffic events. The implementation and code are available at https://github.com/riron1206/kaggle-2COOOL-2nd-Place-Solution.

Authors:Chengrui Xiang, Tengfei Ma, Xiangzheng Fu, Yiping Liu, Bosheng Song, Xiangxiang Zeng
Title: From Knowledge to Treatment: Large Language Model Assisted Biomedical Concept Representation for Drug Repurposing
Abstract:
Drug repurposing plays a critical role in accelerating treatment discovery, especially for complex and rare diseases. Biomedical knowledge graphs (KGs), which encode rich clinical associations, have been widely adopted to support this task. However, existing methods largely overlook common-sense biomedical concept knowledge in real-world labs, such as mechanistic priors indicating that certain drugs are fundamentally incompatible with specific treatments. To address this gap, we propose LLaDR, a Large Language Model-assisted framework for Drug Repurposing, which improves the representation of biomedical concepts within KGs. Specifically, we extract semantically enriched treatment-related textual representations of biomedical entities from large language models (LLMs) and use them to fine-tune knowledge graph embedding (KGE) models. By injecting treatment-relevant knowledge into KGE, LLaDR largely improves the representation of biomedical concepts, enhancing semantic understanding of under-studied or complex indications. Experiments based on benchmarks demonstrate that LLaDR achieves state-of-the-art performance across different scenarios, with case studies on Alzheimer's disease further confirming its robustness and effectiveness. Code is available at https://github.com/xiaomingaaa/LLaDR.

Authors:Ziqi Wang, Boye Niu, Zipeng Gao, Zhi Zheng, Tong Xu, Linghui Meng, Zhongli Li, Jing Liu, Yilong Chen, Chen Zhu, Hua Wu, Haifeng Wang, Enhong Chen
Title: A Survey on Parallel Reasoning
Abstract:
With the increasing capabilities of Large Language Models (LLMs), parallel reasoning has emerged as a new inference paradigm that enhances reasoning robustness by concurrently exploring multiple lines of thought before converging on a final answer. It has become a significant trend to explore parallel reasoning to overcome the fragility of standard sequential methods and improve practical performance. In this paper, we aim to survey and summarize the progress and challenges of parallel reasoning. We first present a formal definition of parallel reasoning and clarify its distinction from related concepts like Chain-of-Thought. Then, we organize and discuss advanced techniques based on a novel taxonomy, including non-interactive reasoning, interactive reasoning, and efficiency-focused decoding strategies. Additionally, we explore various application scenarios, such as solving complex problems and enhancing the reliability of LLM outputs.Finally, we highlight the core challenges of parallel reasoning and suggest potential directions for future research. We hope that our work can provide a useful roadmap for beginners and encourage more research on improving parallel reasoning methods. Related source can be avaliable in https://github.com/PPPP-kaqiu/Awesome-Parallel-Reasoning.

Authors:Rongzhi Zhang, Liqin Ye, Yuzhao Heng, Xiang Chen, Tong Yu, Lingkai Kong, Sudheer Chava, Chao Zhang
Title: Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing
Abstract:
Precise attribute intensity control--generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities--is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method's ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control

Authors:Ziyuan Luo, Yangyi Zhao, Ka Chun Cheung, Simon See, Renjie Wan
Title: ImageSentinel: Protecting Visual Datasets from Unauthorized Retrieval-Augmented Image Generation
Abstract:
The widespread adoption of Retrieval-Augmented Image Generation (RAIG) has raised significant concerns about the unauthorized use of private image datasets. While these systems have shown remarkable capabilities in enhancing generation quality through reference images, protecting visual datasets from unauthorized use in such systems remains a challenging problem. Traditional digital watermarking approaches face limitations in RAIG systems, as the complex feature extraction and recombination processes fail to preserve watermark signals during generation. To address these challenges, we propose ImageSentinel, a novel framework for protecting visual datasets in RAIG. Our framework synthesizes sentinel images that maintain visual consistency with the original dataset. These sentinels enable protection verification through randomly generated character sequences that serve as retrieval keys. To ensure seamless integration, we leverage vision-language models to generate the sentinel images. Experimental results demonstrate that ImageSentinel effectively detects unauthorized dataset usage while preserving generation quality for authorized applications. Code is available at https://github.com/luo-ziyuan/ImageSentinel.

Authors:Wenjie Li, Xiangyi Wang, Heng Guo, Guangwei Gao, Zhanyu Ma
Title: Self-Supervised Selective-Guided Diffusion Model for Old-Photo Face Restoration
Abstract:
Old-photo face restoration poses significant challenges due to compounded degradations such as breakage, fading, and severe blur. Existing pre-trained diffusion-guided methods either rely on explicit degradation priors or global statistical guidance, which struggle with localized artifacts or face color. We propose Self-Supervised Selective-Guided Diffusion (SSDiff), which leverages pseudo-reference faces generated by a pre-trained diffusion model under weak guidance. These pseudo-labels exhibit structurally aligned contours and natural colors, enabling region-specific restoration via staged supervision: structural guidance applied throughout the denoising process and color refinement in later steps, aligned with the coarse-to-fine nature of diffusion. By incorporating face parsing maps and scratch masks, our method selectively restores breakage regions while avoiding identity mismatch. We further construct VintageFace, a 300-image benchmark of real old face photos with varying degradation levels. SSDiff outperforms existing GAN-based and diffusion-based methods in perceptual quality, fidelity, and regional controllability. Code link: https://github.com/PRIS-CV/SSDiff.

Authors:Junfeng Ni, Yixin Chen, Zhifei Yang, Yu Liu, Ruijie Lu, Song-Chun Zhu, Siyuan Huang
Title: G4Splat: Geometry-Guided Gaussian Splatting with Generative Prior
Abstract:
Despite recent advances in leveraging generative prior from pre-trained diffusion models for 3D scene reconstruction, existing methods still face two critical limitations. First, due to the lack of reliable geometric supervision, they struggle to produce high-quality reconstructions even in observed regions, let alone in unobserved areas. Second, they lack effective mechanisms to mitigate multi-view inconsistencies in the generated images, leading to severe shape-appearance ambiguities and degraded scene geometry. In this paper, we identify accurate geometry as the fundamental prerequisite for effectively exploiting generative models to enhance 3D scene reconstruction. We first propose to leverage the prevalence of planar structures to derive accurate metric-scale depth maps, providing reliable supervision in both observed and unobserved regions. Furthermore, we incorporate this geometry guidance throughout the generative pipeline to improve visibility mask estimation, guide novel view selection, and enhance multi-view consistency when inpainting with video diffusion models, resulting in accurate and consistent scene completion. Extensive experiments on Replica, ScanNet++, and DeepBlending show that our method consistently outperforms existing baselines in both geometry and appearance reconstruction, particularly for unobserved regions. Moreover, our method naturally supports single-view inputs and unposed videos, with strong generalizability in both indoor and outdoor scenarios with practical real-world applicability. The project page is available at https://dali-jack.github.io/g4splat-web/.

Authors:Jianping Li, Dongyang Guo, Wenjie Li, Wei Zhao
Title: An Adaptive Edge-Guided Dual-Network Framework for Fast QR Code Motion Deblurring
Abstract:
Unlike general image deblurring that prioritizes perceptual quality, QR code deblurring focuses on ensuring successful decoding. QR codes are characterized by highly structured patterns with sharp edges, a robust prior for restoration. Yet existing deep learning methods rarely exploit these priors explicitly. To address this gap, we propose the Edge-Guided Attention Block (EGAB), which embeds explicit edge priors into a Transformer architecture. Based on EGAB, we develop Edge-Guided Restormer (EG-Restormer), an effective network that significantly boosts the decoding rate of severely blurred QR codes. For mildly blurred inputs, we design the Lightweight and Efficient Network (LENet) for fast deblurring. We further integrate these two networks into an Adaptive Dual-network (ADNet), which dynamically selects the suitable network based on input blur severity, making it ideal for resource-constrained mobile devices. Extensive experiments show that our EG-Restormer and ADNet achieve state-of-the-art performance with a competitive speed. Project page: https://github.com/leejianping/ADNet

Authors:Zaid Khan, Archiki Prasad, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Title: One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration
Abstract:
Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

Authors:Weixuan Li, Guang Yu, Quanjun Li, Junhua Zhou, Jiajun Chen, Yihang Dong, Mengqian Wang, Zimeng Li, Changwei Gong, Lin Tang, Xuhang Chen
Title: Elevating Medical Image Security: A Cryptographic Framework Integrating Hyperchaotic Map and GRU
Abstract:
Chaotic systems play a key role in modern image encryption due to their sensitivity to initial conditions, ergodicity, and complex dynamics. However, many existing chaos-based encryption methods suffer from vulnerabilities, such as inadequate permutation and diffusion, and suboptimal pseudorandom properties. This paper presents Kun-IE, a novel encryption framework designed to address these issues. The framework features two key contributions: the development of the 2D Sin-Cos Pi Hyperchaotic Map (2D-SCPHM), which offers a broader chaotic range and superior pseudorandom sequence generation, and the introduction of Kun-SCAN, a novel permutation strategy that significantly reduces pixel correlations, enhancing resistance to statistical attacks. Kun-IE is flexible and supports encryption for images of any size. Experimental results and security analyses demonstrate its robustness against various cryptanalytic attacks, making it a strong solution for secure image communication. The code is available at this \href{https://github.com/QuincyQAQ/Elevating-Medical-Image-Security-A-Cryptographic-Framework-Integrating-Hyperchaotic-Map-and-GRU}{link}.

Authors:Sangmin Jo, Jee Seok Yoon, Wootaek Jeong, Kwanseok Oh, Heung-Il Suk
Title: MEASURE: Multi-scale Minimal Sufficient Representation Learning for Domain Generalization in Sleep Staging
Abstract:
Deep learning-based automatic sleep staging has significantly advanced in performance and plays a crucial role in the diagnosis of sleep disorders. However, those models often struggle to generalize on unseen subjects due to variability in physiological signals, resulting in degraded performance in out-of-distribution scenarios. To address this issue, domain generalization approaches have recently been studied to ensure generalized performance on unseen domains during training. Among those techniques, contrastive learning has proven its validity in learning domain-invariant features by aligning samples of the same class across different domains. Despite its potential, many existing methods are insufficient to extract adequately domain-invariant representations, as they do not explicitly address domain characteristics embedded within the unshared information across samples. In this paper, we posit that mitigating such domain-relevant attributes-referred to as excess domain-relevant information-is key to bridging the domain gap. However, the direct strategy to mitigate the domain-relevant attributes often overfits features at the high-level information, limiting their ability to leverage the diverse temporal and spectral information encoded in the multiple feature levels. To address these limitations, we propose a novel MEASURE (Multi-scalE minimAl SUfficient Representation lEarning) framework, which effectively reduces domain-relevant information while preserving essential temporal and spectral features for sleep stage classification. In our exhaustive experiments on publicly available sleep staging benchmark datasets, SleepEDF-20 and MASS, our proposed method consistently outperformed state-of-the-art methods. Our code is available at : https://github.com/ku-milab/Measure

Authors:Sandeep Mishra, Oindrila Saha, Alan C. Bovik
Title: VIDMP3: Video Editing by Representing Motion with Pose and Position Priors
Abstract:
Motion-preserved video editing is crucial for creators, particularly in scenarios that demand flexibility in both the structure and semantics of swapped objects. Despite its potential, this area remains underexplored. Existing diffusion-based editing methods excel in structure-preserving tasks, using dense guidance signals to ensure content integrity. While some recent methods attempt to address structure-variable editing, they often suffer from issues such as temporal inconsistency, subject identity drift, and the need for human intervention. To address these challenges, we introduce VidMP3, a novel approach that leverages pose and position priors to learn a generalized motion representation from source videos. Our method enables the generation of new videos that maintain the original motion while allowing for structural and semantic flexibility. Both qualitative and quantitative evaluations demonstrate the superiority of our approach over existing methods. The code will be made publicly available at https://github.com/sandeep-sm/VidMP3.

Authors:Sunzhu Li, Zhiyu Lin, Shuling Yang, Jiale Zhao, Wei Chen
Title: ThinkPilot: Steering Reasoning Models via Automated Think-prefixes Optimization
Abstract:
Large Reasoning Models (LRMs) are powerful, but they still suffer from inefficient and off-target reasoning. Currently, training-free methods are limited to either rigid heuristics or descriptive, non-actionable analyses. In this paper, we introduce ThinkPilot, a training-free framework that automatically optimizes LRMs reasoning. It uses an evolutionary process to generate think-prefixes, which are instructions that evolve driven by a taxonomy of reasoning behaviors to guide models toward superior performance. Extensive experiments demonstrate ThinkPilot's broad effectiveness: it significantly improves the accuracy-length trade-off for efficient reasoning, drastically improves safety (for example, cutting the StrongREJECT score of DeepSeek-R1-Distill-Qwen-32B from 27.0% to 0.7), and enhances instruction following. It also synergizes with existing training-based methods. Our analysis reveals that think-prefixes can reliably control LRMs' reasoning behaviors, and that different tasks have strong preferences for specific behavioral distributions. By automatically identifying and eliciting these behaviors, ThinkPilot provides a generalizable framework for aligning LRMs reasoning with task demands. Data and code are available at https://github.com/teqkilla/ThinkPilot

Authors:Soohan Lim, Joonghyuk Hahn, Hyunwoo Park, Sang-Ki Ko, Yo-Sub Han
Title: Do Large Language Models Respect Contracts? Evaluating and Enforcing Contract-Adherence in Code Generation
Abstract:
Prevailing code generation benchmarks, such as HumanEval+ and MBPP+, primarily evaluate large language models (LLMs) with pass@k on functional correctness using well-formed inputs. However, they ignore a crucial aspect of real-world software: adherence to contracts-the preconditions and validity constraints that dictate how ill-formed inputs must be rejected. This critical oversight means that existing benchmarks fail to measure, and models consequently fail to generate, truly robust and reliable code snippets. We introduce PACT, a program assessment and contract-adherence evaluation framework, to bridge this gap. PACT is the first framework designed to systematically evaluate and enhance contract-adherence in LLM-generated code snippets alongside functional correctness. PACT's contributions are threefold: First, it provides a comprehensive test-suite corpus focused on contract violations, extending HumanEval+ and MBPP+. Second, it enables a systematic analysis of code generation under varied prompting conditions. This analysis demonstrates that augmenting prompts with contract-violating test cases significantly enhance a model's ability to respect contracts compared to using contract description alone. Finally, it introduces novel metrics to rigorously quantify contract adherence in both test generation and code generation. By revealing critical errors that conventional benchmarks overlook, PACT provides the rigorous and interpretable metrics to evaluate the robustness of LLM-generated code snippets in both functionality and contract-adherence. Our code and data are available at https://github.com/suhanmen/PACT.

Authors:Hatem Ibrahem, Ahmed Salem, Qinmin Vivian Hu, Guanghui Wang
Title: PanoTPS-Net: Panoramic Room Layout Estimation via Thin Plate Spline Transformation
Abstract:
Accurately estimating the 3D layout of rooms is a crucial task in computer vision, with potential applications in robotics, augmented reality, and interior design. This paper proposes a novel model, PanoTPS-Net, to estimate room layout from a single panorama image. Leveraging a Convolutional Neural Network (CNN) and incorporating a Thin Plate Spline (TPS) spatial transformation, the architecture of PanoTPS-Net is divided into two stages: First, a convolutional neural network extracts the high-level features from the input images, allowing the network to learn the spatial parameters of the TPS transformation. Second, the TPS spatial transformation layer is generated to warp a reference layout to the required layout based on the predicted parameters. This unique combination empowers the model to properly predict room layouts while also generalizing effectively to both cuboid and non-cuboid layouts. Extensive experiments on publicly available datasets and comparisons with state-of-the-art methods demonstrate the effectiveness of the proposed method. The results underscore the model's accuracy in room layout estimation and emphasize the compatibility between the TPS transformation and panorama images. The robustness of the model in handling both cuboid and non-cuboid room layout estimation is evident with a 3DIoU value of 85.49, 86.16, 81.76, and 91.98 on PanoContext, Stanford-2D3D, Matterport3DLayout, and ZInD datasets, respectively. The source code is available at: https://github.com/HatemHosam/PanoTPS_Net.

Authors:Shuo Chen, Zonggen Li, Zhen Han, Bailan He, Tong Liu, Haokun Chen, Georg Groh, Philip Torr, Volker Tresp, Jindong Gu
Title: Deep Research Brings Deeper Harm
Abstract:
Deep Research (DR) agents built on Large Language Models (LLMs) can perform complex, multi-step research by decomposing tasks, retrieving online information, and synthesizing detailed reports. However, the misuse of LLMs with such powerful capabilities can lead to even greater risks. This is especially concerning in high-stakes and knowledge-intensive domains such as biosecurity, where DR can generate a professional report containing detailed forbidden knowledge. Unfortunately, we have found such risks in practice: simply submitting a harmful query, which a standalone LLM directly rejects, can elicit a detailed and dangerous report from DR agents. This highlights the elevated risks and underscores the need for a deeper safety analysis. Yet, jailbreak methods designed for LLMs fall short in exposing such unique risks, as they do not target the research ability of DR agents. To address this gap, we propose two novel jailbreak strategies: Plan Injection, which injects malicious sub-goals into the agent's plan; and Intent Hijack, which reframes harmful queries as academic research questions. We conducted extensive experiments across different LLMs and various safety benchmarks, including general and biosecurity forbidden prompts. These experiments reveal 3 key findings: (1) Alignment of the LLMs often fail in DR agents, where harmful prompts framed in academic terms can hijack agent intent; (2) Multi-step planning and execution weaken the alignment, revealing systemic vulnerabilities that prompt-level safeguards cannot address; (3) DR agents not only bypass refusals but also produce more coherent, professional, and dangerous content, compared with standalone LLMs. These results demonstrate a fundamental misalignment in DR agents and call for better alignment techniques tailored to DR agents. Code and datasets are available at https://chenxshuo.github.io/deeper-harm.

Authors:Simin Li, Zihao Mao, Hanxiao Li, Zonglei Jing, Zhuohang bian, Jun Guo, Li Wang, Zhuoran Han, Ruixiao Xu, Xin Yu, Chengdong Ma, Yuqing Ma, Bo An, Yaodong Yang, Weifeng Lv, Xianglong Liu
Title: Empirical Study on Robustness and Resilience in Cooperative Multi-Agent Reinforcement Learning
Abstract:
In cooperative Multi-Agent Reinforcement Learning (MARL), it is a common practice to tune hyperparameters in ideal simulated environments to maximize cooperative performance. However, policies tuned for cooperation often fail to maintain robustness and resilience under real-world uncertainties. Building trustworthy MARL systems requires a deep understanding of robustness, which ensures stability under uncertainties, and resilience, the ability to recover from disruptions--a concept extensively studied in control systems but largely overlooked in MARL. In this paper, we present a large-scale empirical study comprising over 82,620 experiments to evaluate cooperation, robustness, and resilience in MARL across 4 real-world environments, 13 uncertainty types, and 15 hyperparameters. Our key findings are: (1) Under mild uncertainty, optimizing cooperation improves robustness and resilience, but this link weakens as perturbations intensify. Robustness and resilience also varies by algorithm and uncertainty type. (2) Robustness and resilience do not generalize across uncertainty modalities or agent scopes: policies robust to action noise for all agents may fail under observation noise on a single agent. (3) Hyperparameter tuning is critical for trustworthy MARL: surprisingly, standard practices like parameter sharing, GAE, and PopArt can hurt robustness, while early stopping, high critic learning rates, and Leaky ReLU consistently help. By optimizing hyperparameters only, we observe substantial improvement in cooperation, robustness and resilience across all MARL backbones, with the phenomenon also generalizing to robust MARL methods across these backbones. Code and results available at https://github.com/BUAA-TrustworthyMARL/adv_marl_benchmark .

Authors:Hongyu Lin, Haolin Pan, Haoran Luo, Yuchen Li, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: AwareCompiler: Agentic Context-Aware Compiler Optimization via a Synergistic Knowledge-Data Driven Framework
Abstract:
Compiler optimization is crucial for enhancing program performance by transforming the sequence of optimization passes while maintaining correctness. Despite the promising potential of large language models (LLMs)-based agent for software optimization, automating compiler optimization remains challenging due to: (1) semantic misalignment between abstract program representations and concrete optimization passes, (2) inefficient interaction mechanisms between agents and compiler environments, and (3) reward sparsity from the extensive decision-making process within large optimization spaces. This paper introduces \textbf{AwareCompiler}, an agentic framework for compiler optimization that addresses these challenges through three key innovations: structured knowledge integration and dataset construction, knowledge-driven adaptive pass generation, and data-driven hybrid training pipeline. Experimental results on standard benchmarks demonstrate that AwareCompiler significantly outperforms existing baselines in both performance and efficiency, highlighting the effectiveness of our synergistic knowledge-data-driven approach. Our code is publicly available at https://github.com/LHY-24/AwareCompiler.

Authors:Zhiyu Wang, Bingxin Zhou, Jing Wang, Yang Tan, Weishu Zhao, Pietro Liò, Liang Hong
Title: Fast and Interpretable Protein Substructure Alignment via Optimal Transport
Abstract:
Proteins are essential biological macromolecules that execute life functions. Local motifs within protein structures, such as active sites, are the most critical components for linking structure to function and are key to understanding protein evolution and enabling protein engineering. Existing computational methods struggle to identify and compare these local structures, which leaves a significant gap in understanding protein structures and harnessing their functions. This study presents PLASMA, the first deep learning framework for efficient and interpretable residue-level protein substructure alignment. We reformulate the problem as a regularized optimal transport task and leverage differentiable Sinkhorn iterations. For a pair of input protein structures, PLASMA outputs a clear alignment matrix with an interpretable overall similarity score. Through extensive quantitative evaluations and three biological case studies, we demonstrate that PLASMA achieves accurate, lightweight, and interpretable residue-level alignment. Additionally, we introduce PLASMA-PF, a training-free variant that provides a practical alternative when training data are unavailable. Our method addresses a critical gap in protein structure analysis tools and offers new opportunities for functional annotation, evolutionary studies, and structure-based drug design. Reproducibility is ensured via our official implementation at https://github.com/ZW471/PLASMA-Protein-Local-Alignment.git.

Authors:Jake Van Clief, Constantine Kyritsopoulos
Title: The Ethics Engine: A Modular Pipeline for Accessible Psychometric Assessment of Large Language Models
Abstract:
As Large Language Models increasingly mediate human communication and decision-making, understanding their value expression becomes critical for research across disciplines. This work presents the Ethics Engine, a modular Python pipeline that transforms psychometric assessment of LLMs from a technically complex endeavor into an accessible research tool. The pipeline demonstrates how thoughtful infrastructure design can expand participation in AI research, enabling investigators across cognitive science, political psychology, education, and other fields to study value expression in language models. Recent adoption by University of Edinburgh researchers studying authoritarianism validates its research utility, processing over 10,000 AI responses across multiple models and contexts. We argue that such tools fundamentally change the landscape of AI research by lowering technical barriers while maintaining scientific rigor. As LLMs increasingly serve as cognitive infrastructure, their embedded values shape millions of daily interactions. Without systematic measurement of these value expressions, we deploy systems whose moral influence remains uncharted. The Ethics Engine enables the rigorous assessment necessary for informed governance of these influential technologies.

Authors:Chengqi Duan, Kaiyue Sun, Rongyao Fang, Manyuan Zhang, Yan Feng, Ying Luo, Yufang Liu, Ke Wang, Peng Pei, Xunliang Cai, Hongsheng Li, Yi Ma, Xihui Liu
Title: CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images
Abstract:
Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.

Authors:Haoran Feng, Dizhe Zhang, Xiangtai Li, Bo Du, Lu Qi
Title: DiT360: High-Fidelity Panoramic Image Generation via Hybrid Training
Abstract:
In this work, we propose DiT360, a DiT-based framework that performs hybrid training on perspective and panoramic data for panoramic image generation. For the issues of maintaining geometric fidelity and photorealism in generation quality, we attribute the main reason to the lack of large-scale, high-quality, real-world panoramic data, where such a data-centric view differs from prior methods that focus on model design. Basically, DiT360 has several key modules for inter-domain transformation and intra-domain augmentation, applied at both the pre-VAE image level and the post-VAE token level. At the image level, we incorporate cross-domain knowledge through perspective image guidance and panoramic refinement, which enhance perceptual quality while regularizing diversity and photorealism. At the token level, hybrid supervision is applied across multiple modules, which include circular padding for boundary continuity, yaw loss for rotational robustness, and cube loss for distortion awareness. Extensive experiments on text-to-panorama, inpainting, and outpainting tasks demonstrate that our method achieves better boundary consistency and image fidelity across eleven quantitative metrics. Our code is available at https://github.com/Insta360-Research-Team/DiT360.

Authors:Sanghyeok Choi, Sarthak Mittal, Víctor Elvira, Jinkyoo Park, Nikolay Malkin
Title: Reinforced sequential Monte Carlo for amortised sampling
Abstract:
This paper proposes a synergy of amortised and particle-based methods for sampling from distributions defined by unnormalised density functions. We state a connection between sequential Monte Carlo (SMC) and neural sequential samplers trained by maximum-entropy reinforcement learning (MaxEnt RL), wherein learnt sampling policies and value functions define proposal kernels and twist functions. Exploiting this connection, we introduce an off-policy RL training procedure for the sampler that uses samples from SMC -- using the learnt sampler as a proposal -- as a behaviour policy that better explores the target distribution. We describe techniques for stable joint training of proposals and twist functions and an adaptive weight tempering scheme to reduce training signal variance. Furthermore, building upon past attempts to use experience replay to guide the training of neural samplers, we derive a way to combine historical samples with annealed importance sampling weights within a replay buffer. On synthetic multi-modal targets (in both continuous and discrete spaces) and the Boltzmann distribution of alanine dipeptide conformations, we demonstrate improvements in approximating the true distribution as well as training stability compared to both amortised and Monte Carlo methods.

Authors:Zhaochen Yu, Ling Yang, Jiaru Zou, Shuicheng Yan, Mengdi Wang
Title: Demystifying Reinforcement Learning in Agentic Reasoning
Abstract:
Recently, the emergence of agentic RL has showcased that RL could also effectively improve the agentic reasoning ability of LLMs, yet the key design principles and optimal practices remain unclear. In this work, we conduct a comprehensive and systematic investigation to demystify reinforcement learning in agentic reasoning from three key perspectives: data, algorithm, and reasoning mode. We highlight our key insights: (i) Replacing stitched synthetic trajectories with real end-to-end tool-use trajectories yields a far stronger SFT initialization; high-diversity, model-aware datasets sustain exploration and markedly improve RL performance. (ii) Exploration-friendly techniques are crucial for agentic RL, such as clip higher, overlong reward shaping, and maintaining adequate policy entropy could improve the training efficiency. (iii) A deliberative strategy with fewer tool calls outperforms frequent tool calls or verbose self-reasoning, improving tool efficiency and final accuracy. Together, these simple practices consistently enhance agentic reasoning and training efficiency, achieving strong results on challenging benchmarks with smaller models, and establishing a practical baseline for future agentic RL research. Beyond these empirical insights, we further contribute a high-quality, real end-to-end agentic SFT dataset along with a high-quality RL dataset, and demonstrate the effectiveness of our insights in boosting the agentic reasoning ability of LLMs across four challenging benchmarks, including AIME2024/AIME2025, GPQA-Diamond, and LiveCodeBench-v6. With our recipes, 4B-sized models could also achieve superior agentic reasoning performance compared to 32B-sized models. Code and models: https://github.com/Gen-Verse/Open-AgentRL

Authors:Wei Huang, Yi Ge, Shuai Yang, Yicheng Xiao, Huizi Mao, Yujun Lin, Hanrong Ye, Sifei Liu, Ka Chun Cheung, Hongxu Yin, Yao Lu, Xiaojuan Qi, Song Han, Yukang Chen
Title: QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
Abstract:
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.

Authors:Chenghao Xiao, Hou Pong Chan, Hao Zhang, Weiwen Xu, Mahani Aljunied, Yu Rong
Title: Scaling Language-Centric Omnimodal Representation Learning
Abstract:
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.

Authors:Yi Yang, Kefan Gu, Yuqing Wen, Hebei Li, Yucheng Zhao, Tiancai Wang, Xudong Liu
Title: ManiAgent: An Agentic Framework for General Robotic Manipulation
Abstract:
While Vision-Language-Action (VLA) models have demonstrated impressive capabilities in robotic manipulation, their performance in complex reasoning and long-horizon task planning is limited by data scarcity and model capacity. To address this, we introduce ManiAgent, an agentic architecture for general manipulation tasks that achieves end-to-end output from task descriptions and environmental inputs to robotic manipulation actions. In this framework, multiple agents involve inter-agent communication to perform environmental perception, sub-task decomposition and action generation, enabling efficient handling of complex manipulation scenarios. Evaluations show ManiAgent achieves an 86.8% success rate on the SimplerEnv benchmark and 95.8% on real-world pick-and-place tasks, enabling efficient data collection that yields VLA models with performance comparable to those trained on human-annotated datasets.The project webpage is available at https://yi-yang929.github.io/ManiAgent/.

Authors:Yinan Chen, Jiangning Zhang, Teng Hu, Yuxiang Zeng, Zhucun Xue, Qingdong He, Chengjie Wang, Yong Liu, Xiaobin Hu, Shuicheng Yan
Title: IVEBench: Modern Benchmark Suite for Instruction-Guided Video Editing Assessment
Abstract:
Instruction-guided video editing has emerged as a rapidly advancing research direction, offering new opportunities for intuitive content transformation while also posing significant challenges for systematic evaluation. Existing video editing benchmarks fail to support the evaluation of instruction-guided video editing adequately and further suffer from limited source diversity, narrow task coverage and incomplete evaluation metrics. To address the above limitations, we introduce IVEBench, a modern benchmark suite specifically designed for instruction-guided video editing assessment. IVEBench comprises a diverse database of 600 high-quality source videos, spanning seven semantic dimensions, and covering video lengths ranging from 32 to 1,024 frames. It further includes 8 categories of editing tasks with 35 subcategories, whose prompts are generated and refined through large language models and expert review. Crucially, IVEBench establishes a three-dimensional evaluation protocol encompassing video quality, instruction compliance and video fidelity, integrating both traditional metrics and multimodal large language model-based assessments. Extensive experiments demonstrate the effectiveness of IVEBench in benchmarking state-of-the-art instruction-guided video editing methods, showing its ability to provide comprehensive and human-aligned evaluation outcomes.

Authors:Jingyuan Xing, Mingru Yang, Zhipeng Li, Xiaofen Xing, Xiangmin Xu
Title: BridgeCode: A Dual Speech Representation Paradigm for Autoregressive Zero-Shot Text-to-Speech Synthesis
Abstract:
Autoregressive (AR) frameworks have recently achieved remarkable progress in zero-shot text-to-speech (TTS) by leveraging discrete speech tokens and large language model techniques. Despite their success, existing AR-based zero-shot TTS systems face two critical limitations: (i) an inherent speed-quality trade-off, as sequential token generation either reduces frame rates at the cost of expressiveness or enriches tokens at the cost of efficiency, and (ii) a text-oriented supervision mismatch, as cross-entropy loss penalizes token errors uniformly without considering the fine-grained acoustic similarity among adjacent tokens. To address these challenges, we propose BridgeTTS, a novel AR-TTS framework built upon the dual speech representation paradigm BridgeCode. BridgeTTS reduces AR iterations by predicting sparse tokens while reconstructing rich continuous features for high-quality synthesis. Joint optimization of token-level and feature-level objectives further enhances naturalness and intelligibility. Experiments demonstrate that BridgeTTS achieves competitive quality and speaker similarity while significantly accelerating synthesis. Speech demos are available at https://test1562.github.io/demo/.

Authors:Peijian Zeng, Guan Wang, Haohao Gu, Xiaoguang Hu, TiezhuGao, Zhuowei Wang, Aimin Yang, Xiaoyu Song
Title: LRQ-Solver: A Transformer-Based Neural Operator for Fast and Accurate Solving of Large-scale 3D PDEs
Abstract:
Solving large-scale Partial Differential Equations (PDEs) on complex three-dimensional geometries represents a central challenge in scientific and engineering computing, often impeded by expensive pre-processing stages and substantial computational overhead. We introduce Low-Rank Query-based PDE Solver (LRQ-Solver), a physics-integrated framework engineered for rapid, accurate, and highly scalable simulations of industrial-grade models. This framework is built upon two primary technical innovations. First, our Parameter Conditioned Lagrangian Modeling (PCLM) approach explicitly couples local physical states with global design parameters, enabling robust predictions across varied simulation configurations. By embedding physical consistency directly into the learning architecture, PCLM ensures that predictions remain physically meaningful even under unseen design conditions, significantly enhancing generalization and reliability. Second, the Low-Rank Query Attention (LR-QA) module leverages the second-order statistics of physical fields to construct a global coherence kernel, reducing the computational complexity of attention from O(N2) to O(NC2 + C3). By replacing point-wise clustering with covariance decomposition, LRQ-Solver achieves exceptional scalability efficiently processing up to 2 million points on a single GPU. Validated on standard benchmarks, LRQ-Solver achieves a 38.9% error reduction on the DrivAer++ dataset and 28.76% on the 3D Beam dataset, alongside a training speedup of up to 50 times. Our results establish that LRQ-Solver offers a powerful paradigm for multi-configuration physics simulations, delivering a SOTA combination of accuracy, scalability, and efficiency. Code to reproduce the experiments is available at https://github.com/LilaKen/LRQ-Solver.

Authors:Feng Zhang, Haoyou Deng, Zhiqiang Li, Lida Li, Bin Xu, Qingbo Lu, Zisheng Cao, Minchen Wei, Changxin Gao, Nong Sang, Xiang Bai
Title: High-resolution Photo Enhancement in Real-time: A Laplacian Pyramid Network
Abstract:
Photo enhancement plays a crucial role in augmenting the visual aesthetics of a photograph. In recent years, photo enhancement methods have either focused on enhancement performance, producing powerful models that cannot be deployed on edge devices, or prioritized computational efficiency, resulting in inadequate performance for real-world applications. To this end, this paper introduces a pyramid network called LLF-LUT++, which integrates global and local operators through closed-form Laplacian pyramid decomposition and reconstruction. This approach enables fast processing of high-resolution images while also achieving excellent performance. Specifically, we utilize an image-adaptive 3D LUT that capitalizes on the global tonal characteristics of downsampled images, while incorporating two distinct weight fusion strategies to achieve coarse global image enhancement. To implement this strategy, we designed a spatial-frequency transformer weight predictor that effectively extracts the desired distinct weights by leveraging frequency features. Additionally, we apply local Laplacian filters to adaptively refine edge details in high-frequency components. After meticulously redesigning the network structure and transformer model, LLF-LUT++ not only achieves a 2.64 dB improvement in PSNR on the HDR+ dataset, but also further reduces runtime, with 4K resolution images processed in just 13 ms on a single GPU. Extensive experimental results on two benchmark datasets further show that the proposed approach performs favorably compared to state-of-the-art methods. The source code will be made publicly available at https://github.com/fengzhang427/LLF-LUT.

Authors:Shiqi Zhang, Xinbei Ma, Yunqing Xu, Zouying Cao, Pengrui Lu, Haobo Yuan, Tiancheng Shen, Zhuosheng Zhang, Hai Zhao, Ming-Hsuan Yang
Title: ParaCook: On Time-Efficient Planning for Multi-Agent Systems
Abstract:
Large Language Models (LLMs) exhibit strong reasoning abilities for planning long-horizon, real-world tasks, yet existing agent benchmarks focus on task completion while neglecting time efficiency in parallel and asynchronous operations. To address this, we present ParaCook, a benchmark for time-efficient collaborative planning. Inspired by the Overcooked game, ParaCook provides an environment for various challenging interaction planning of multi-agent systems that are instantiated as cooking tasks, with a simplified action space to isolate the core challenge of strategic parallel planning. Through a comprehensive evaluation of state-of-the-art LLMs, we find that current approaches achieve suboptimal plans, which struggle with parallel actions or coordination. Our analysis also reveals LLMs' potential on abstract tasks where they can focus on high-level parallel optimization. ParaCook provides a scalable evaluation framework with adjustable complexity, establishing a foundation for developing and assessing time efficiency-aware multi-agent planning. The code and data are available at https://github.com/zsq259/ParaCook.

Authors:Yicheng Xu, Yue Wu, Jiashuo Yu, Ziang Yan, Tianxiang Jiang, Yinan He, Qingsong Zhao, Kai Chen, Yu Qiao, Limin Wang, Manabu Okumura, Yi Wang
Title: ExpVid: A Benchmark for Experiment Video Understanding & Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) hold promise for accelerating scientific discovery by interpreting complex experimental procedures. However, their true capabilities are poorly understood, as existing benchmarks neglect the fine-grained and long-horizon nature of authentic laboratory work, especially in wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark designed to systematically evaluate MLLMs on scientific experiment videos. Curated from peer-reviewed video publications, ExpVid features a new three-level task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of tools, materials, and actions; (2) Procedural Understanding of step order and completeness; and (3) Scientific Reasoning that connects the full experiment to its published conclusions. Our vision-centric annotation pipeline, combining automated generation with multi-disciplinary expert validation, ensures that tasks require visual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while they excel at coarse-grained recognition, they struggle with disambiguating fine details, tracking state changes over time, and linking experimental procedures to scientific outcomes. Our results reveal a notable performance gap between proprietary and open-source models, particularly in high-order reasoning. ExpVid not only provides a diagnostic tool but also charts a roadmap for developing MLLMs capable of becoming trustworthy partners in scientific experimentation.

Authors:Leonard Bruns, Axel Barroso-Laguna, Tommaso Cavallari, Áron Monszpart, Sowmya Munukutla, Victor Adrian Prisacariu, Eric Brachmann
Title: ACE-G: Improving Generalization of Scene Coordinate Regression Through Query Pre-Training
Abstract:
Scene coordinate regression (SCR) has established itself as a promising learning-based approach to visual relocalization. After mere minutes of scene-specific training, SCR models estimate camera poses of query images with high accuracy. Still, SCR methods fall short of the generalization capabilities of more classical feature-matching approaches. When imaging conditions of query images, such as lighting or viewpoint, are too different from the training views, SCR models fail. Failing to generalize is an inherent limitation of previous SCR frameworks, since their training objective is to encode the training views in the weights of the coordinate regressor itself. The regressor essentially overfits to the training views, by design. We propose to separate the coordinate regressor and the map representation into a generic transformer and a scene-specific map code. This separation allows us to pre-train the transformer on tens of thousands of scenes. More importantly, it allows us to train the transformer to generalize from mapping images to unseen query images during pre-training. We demonstrate on multiple challenging relocalization datasets that our method, ACE-G, leads to significantly increased robustness while keeping the computational footprint attractive.

Authors:Israel Mason-Williams, Gabryel Mason-Williams
Title: Reproducibility: The New Frontier in AI Governance
Abstract:
AI policymakers are responsible for delivering effective governance mechanisms that can provide safe, aligned and trustworthy AI development. However, the information environment offered to policymakers is characterised by an unnecessarily low Signal-To-Noise Ratio, favouring regulatory capture and creating deep uncertainty and divides on which risks should be prioritised from a governance perspective. We posit that the current publication speeds in AI combined with the lack of strong scientific standards, via weak reproducibility protocols, effectively erodes the power of policymakers to enact meaningful policy and governance protocols. Our paper outlines how AI research could adopt stricter reproducibility guidelines to assist governance endeavours and improve consensus on the AI risk landscape. We evaluate the forthcoming reproducibility crisis within AI research through the lens of crises in other scientific domains; providing a commentary on how adopting preregistration, increased statistical power and negative result publication reproducibility protocols can enable effective AI governance. While we maintain that AI governance must be reactive due to AI's significant societal implications we argue that policymakers and governments must consider reproducibility protocols as a core tool in the governance arsenal and demand higher standards for AI research. Code to replicate data and figures: https://github.com/IFMW01/reproducibility-the-new-frontier-in-ai-governance

Authors:Zihao Zhao, Christopher Yeh, Lingkai Kong, Kai Wang
Title: Diffusion-DFL: Decision-focused Diffusion Models for Stochastic Optimization
Abstract:
Decision-focused learning (DFL) integrates predictive modeling and optimization by training predictors to optimize the downstream decision target rather than merely minimizing prediction error. To date, existing DFL methods typically rely on deterministic point predictions, which are often insufficient to capture the intrinsic stochasticity of real-world environments. To address this challenge, we propose the first diffusion-based DFL approach, which trains a diffusion model to represent the distribution of uncertain parameters and optimizes the decision by solving a stochastic optimization with samples drawn from the diffusion model. Our contributions are twofold. First, we formulate diffusion DFL using the reparameterization trick, enabling end-to-end training through diffusion. While effective, it is memory and compute-intensive due to the need to differentiate through the diffusion sampling process. Second, we propose a lightweight score function estimator that uses only several forward diffusion passes and avoids backpropagation through the sampling. This follows from our results that backpropagating through stochastic optimization can be approximated by a weighted score function formulation. We empirically show that our diffusion DFL approach consistently outperforms strong baselines in decision quality. The source code for all experiments is available at the project repository: https://github.com/GT-KOALA/Diffusion_DFL.

Authors:Hongyu Zhu, Lin Chen, Mounim A. El-Yacoubi, Mingsheng Shang
Title: MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.

Authors:Shuo Chen, Zhen Han, Haokun Chen, Bailan He, Shengyun Si, Jingpei Wu, Philip Torr, Volker Tresp, Jindong Gu
Title: Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Abstract:
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.

Authors:Kuanning Wang, Yongchong Gu, Yuqian Fu, Zeyu Shangguan, Sicheng He, Xiangyang Xue, Yanwei Fu, Daniel Seita
Title: SCOOP'D: Learning Mixed-Liquid-Solid Scooping via Sim2Real Generative Policy
Abstract:
Scooping items with tools such as spoons and ladles is common in daily life, ranging from assistive feeding to retrieving items from environmental disaster sites. However, developing a general and autonomous robotic scooping policy is challenging since it requires reasoning about complex tool-object interactions. Furthermore, scooping often involves manipulating deformable objects, such as granular media or liquids, which is challenging due to their infinite-dimensional configuration spaces and complex dynamics. We propose a method, SCOOP'D, which uses simulation from OmniGibson (built on NVIDIA Omniverse) to collect scooping demonstrations using algorithmic procedures that rely on privileged state information. Then, we use generative policies via diffusion to imitate demonstrations from observational input. We directly apply the learned policy in diverse real-world scenarios, testing its performance on various item quantities, item characteristics, and container types. In zero-shot deployment, our method demonstrates promising results across 465 trials in diverse scenarios, including objects of different difficulty levels that we categorize as "Level 1" and "Level 2." SCOOP'D outperforms all baselines and ablations, suggesting that this is a promising approach to acquiring robotic scooping skills. Project page is at https://scoopdiff.github.io/.

Authors:Aniket Gupta, Hanhui Wang, Charles Saunders, Aruni RoyChowdhury, Hanumant Singh, Huaizu Jiang
Title: SNAP: Towards Segmenting Anything in Any Point Cloud
Abstract:
Interactive 3D point cloud segmentation enables efficient annotation of complex 3D scenes through user-guided prompts. However, current approaches are typically restricted in scope to a single domain (indoor or outdoor), and to a single form of user interaction (either spatial clicks or textual prompts). Moreover, training on multiple datasets often leads to negative transfer, resulting in domain-specific tools that lack generalizability. To address these limitations, we present \textbf{SNAP} (\textbf{S}egment a\textbf{N}ything in \textbf{A}ny \textbf{P}oint cloud), a unified model for interactive 3D segmentation that supports both point-based and text-based prompts across diverse domains. Our approach achieves cross-domain generalizability by training on 7 datasets spanning indoor, outdoor, and aerial environments, while employing domain-adaptive normalization to prevent negative transfer. For text-prompted segmentation, we automatically generate mask proposals without human intervention and match them against CLIP embeddings of textual queries, enabling both panoptic and open-vocabulary segmentation. Extensive experiments demonstrate that SNAP consistently delivers high-quality segmentation results. We achieve state-of-the-art performance on 8 out of 9 zero-shot benchmarks for spatial-prompted segmentation and demonstrate competitive results on all 5 text-prompted benchmarks. These results show that a unified model can match or exceed specialized domain-specific approaches, providing a practical tool for scalable 3D annotation. Project page is at, https://neu-vi.github.io/SNAP/

Authors:Caglar Demir, Alkid Baci, N'Dah Jean Kouagou, Leonie Nora Sieger, Stefan Heindorf, Simon Bin, Lukas Blübaum, Alexander Bigerl, Axel-Cyrille Ngonga Ngomo
Title: Ontolearn-A Framework for Large-scale OWL Class Expression Learning in Python
Abstract:
In this paper, we present Ontolearn-a framework for learning OWL class expressions over large knowledge graphs. Ontolearn contains efficient implementations of recent stateof-the-art symbolic and neuro-symbolic class expression learners including EvoLearner and DRILL. A learned OWL class expression can be used to classify instances in the knowledge graph. Furthermore, Ontolearn integrates a verbalization module based on an LLM to translate complex OWL class expressions into natural language sentences. By mapping OWL class expressions into respective SPARQL queries, Ontolearn can be easily used to operate over a remote triplestore. The source code of Ontolearn is available at https://github.com/dice-group/Ontolearn.

Authors:Yuchen Yan, Zhihua Liu, Hao Wang, Weiming Li, Xiaoshuai Hao
Title: Query-Specific GNN: A Comprehensive Graph Representation Learning Method for Retrieval Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has demonstrated its ability to enhance Large Language Models (LLMs) by integrating external knowledge sources. However, multi-hop questions, which require the identification of multiple knowledge targets to form a synthesized answer, raise new challenges for RAG systems. Under the multi-hop settings, existing methods often struggle to fully understand the questions with complex semantic structures and are susceptible to irrelevant noise during the retrieval of multiple information targets. To address these limitations, we propose a novel graph representation learning framework for multi-hop question retrieval. We first introduce a Multi-information Level Knowledge Graph (Multi-L KG) to model various information levels for a more comprehensive understanding of multi-hop questions. Based on this, we design a Query-Specific Graph Neural Network (QSGNN) for representation learning on the Multi-L KG. QSGNN employs intra/inter-level message passing mechanisms, and in each message passing the information aggregation is guided by the query, which not only facilitates multi-granular information aggregation but also significantly reduces the impact of noise. To enhance its ability to learn robust representations, we further propose two synthesized data generation strategies for pre-training the QSGNN. Extensive experimental results demonstrate the effectiveness of our framework in multi-hop scenarios, especially in high-hop questions the improvement can reach 33.8\%. The code is available at: https://github.com/Jerry2398/QSGNN.

Authors:Yusheng Song, Lirong Qiu, Xi Zhang, Zhihao Tang
Title: Hallucination Detection via Internal States and Structured Reasoning Consistency in Large Language Models
Abstract:
The detection of sophisticated hallucinations in Large Language Models (LLMs) is hampered by a ``Detection Dilemma'': methods probing internal states (Internal State Probing) excel at identifying factual inconsistencies but fail on logical fallacies, while those verifying externalized reasoning (Chain-of-Thought Verification) show the opposite behavior. This schism creates a task-dependent blind spot: Chain-of-Thought Verification fails on fact-intensive tasks like open-domain QA where reasoning is ungrounded, while Internal State Probing is ineffective on logic-intensive tasks like mathematical reasoning where models are confidently wrong. We resolve this with a unified framework that bridges this critical gap. However, unification is hindered by two fundamental challenges: the Signal Scarcity Barrier, as coarse symbolic reasoning chains lack signals directly comparable to fine-grained internal states, and the Representational Alignment Barrier, a deep-seated mismatch between their underlying semantic spaces. To overcome these, we introduce a multi-path reasoning mechanism to obtain more comparable, fine-grained signals, and a segment-aware temporalized cross-attention module to adaptively fuse these now-aligned representations, pinpointing subtle dissonances. Extensive experiments on three diverse benchmarks and two leading LLMs demonstrate that our framework consistently and significantly outperforms strong baselines. Our code is available: https://github.com/peach918/HalluDet.

Authors:Kedi Ying, Ruiping Liu, Chongyan Chen, Mingzhe Tao, Hao Shi, Kailun Yang, Jiaming Zhang, Rainer Stiefelhagen
Title: mmWalk: Towards Multi-modal Multi-view Walking Assistance
Abstract:
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.

Authors:Ruiping Liu, Junwei Zheng, Yufan Chen, Zirui Wang, Kunyu Peng, Kailun Yang, Jiaming Zhang, Marc Pollefeys, Rainer Stiefelhagen
Title: Situat3DChange: Situated 3D Change Understanding Dataset for Multimodal Large Language Model
Abstract:
Physical environments and circumstances are fundamentally dynamic, yet current 3D datasets and evaluation benchmarks tend to concentrate on either dynamic scenarios or dynamic situations in isolation, resulting in incomplete comprehension. To overcome these constraints, we introduce Situat3DChange, an extensive dataset supporting three situation-aware change understanding tasks following the perception-action model: 121K question-answer pairs, 36K change descriptions for perception tasks, and 17K rearrangement instructions for the action task. To construct this large-scale dataset, Situat3DChange leverages 11K human observations of environmental changes to establish shared mental models and shared situational awareness for human-AI collaboration. These observations, enriched with egocentric and allocentric perspectives as well as categorical and coordinate spatial relations, are integrated using an LLM to support understanding of situated changes. To address the challenge of comparing pairs of point clouds from the same scene with minor changes, we propose SCReasoner, an efficient 3D MLLM approach that enables effective point cloud comparison with minimal parameter overhead and no additional tokens required for the language decoder. Comprehensive evaluation on Situat3DChange tasks highlights both the progress and limitations of MLLMs in dynamic scene and situation understanding. Additional experiments on data scaling and cross-domain transfer demonstrate the task-agnostic effectiveness of using Situat3DChange as a training dataset for MLLMs.

Authors:Marco Braga, Gian Carlo Milanese, Gabriella Pasi
Title: Investigating Large Language Models' Linguistic Abilities for Text Preprocessing
Abstract:
Text preprocessing is a fundamental component of Natural Language Processing, involving techniques such as stopword removal, stemming, and lemmatization to prepare text as input for further processing and analysis. Despite the context-dependent nature of the above techniques, traditional methods usually ignore contextual information. In this paper, we investigate the idea of using Large Language Models (LLMs) to perform various preprocessing tasks, due to their ability to take context into account without requiring extensive language-specific annotated resources. Through a comprehensive evaluation on web-sourced data, we compare LLM-based preprocessing (specifically stopword removal, lemmatization and stemming) to traditional algorithms across multiple text classification tasks in six European languages. Our analysis indicates that LLMs are capable of replicating traditional stopword removal, lemmatization, and stemming methods with accuracies reaching 97%, 82%, and 74%, respectively. Additionally, we show that ML algorithms trained on texts preprocessed by LLMs achieve an improvement of up to 6% with respect to the $F_1$ measure compared to traditional techniques. Our code, prompts, and results are publicly available at https://github.com/GianCarloMilanese/llm_pipeline_wi-iat.

Authors:Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu
Title: VA-GS: Enhancing the Geometric Representation of Gaussian Splatting via View Alignment
Abstract:
3D Gaussian Splatting has recently emerged as an efficient solution for high-quality and real-time novel view synthesis. However, its capability for accurate surface reconstruction remains underexplored. Due to the discrete and unstructured nature of Gaussians, supervision based solely on image rendering loss often leads to inaccurate geometry and inconsistent multi-view alignment. In this work, we propose a novel method that enhances the geometric representation of 3D Gaussians through view alignment (VA). Specifically, we incorporate edge-aware image cues into the rendering loss to improve surface boundary delineation. To enforce geometric consistency across views, we introduce a visibility-aware photometric alignment loss that models occlusions and encourages accurate spatial relationships among Gaussians. To further mitigate ambiguities caused by lighting variations, we incorporate normal-based constraints to refine the spatial orientation of Gaussians and improve local surface estimation. Additionally, we leverage deep image feature embeddings to enforce cross-view consistency, enhancing the robustness of the learned geometry under varying viewpoints and illumination. Extensive experiments on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis. The source code is available at https://github.com/LeoQLi/VA-GS.

Authors:Tianpei Zhang, Jufeng Zhao, Yiming Zhu, Guangmang Cui
Title: Coupled Degradation Modeling and Fusion: A VLM-Guided Degradation-Coupled Network for Degradation-Aware Infrared and Visible Image Fusion
Abstract:
Existing Infrared and Visible Image Fusion (IVIF) methods typically assume high-quality inputs. However, when handing degraded images, these methods heavily rely on manually switching between different pre-processing techniques. This decoupling of degradation handling and image fusion leads to significant performance degradation. In this paper, we propose a novel VLM-Guided Degradation-Coupled Fusion network (VGDCFusion), which tightly couples degradation modeling with the fusion process and leverages vision-language models (VLMs) for degradation-aware perception and guided suppression. Specifically, the proposed Specific-Prompt Degradation-Coupled Extractor (SPDCE) enables modality-specific degradation awareness and establishes a joint modeling of degradation suppression and intra-modal feature extraction. In parallel, the Joint-Prompt Degradation-Coupled Fusion (JPDCF) facilitates cross-modal degradation perception and couples residual degradation filtering with complementary cross-modal feature fusion. Extensive experiments demonstrate that our VGDCFusion significantly outperforms existing state-of-the-art fusion approaches under various degraded image scenarios. Our code is available at https://github.com/Lmmh058/VGDCFusion.

Authors:Yujiang Wu, Shanshan Zhong, Yubin Kim, Chenyan Xiong
Title: What Generative Search Engines Like and How to Optimize Web Content Cooperatively
Abstract:
By employing large language models (LLMs) to retrieve documents and generate natural language responses, Generative Engines, such as Google AI overview and ChatGPT, provide significantly enhanced user experiences and have rapidly become the new form of search. Their rapid adoption also drives the needs of Generative Engine Optimization (GEO), as content providers are eager to gain more traction from them. In this paper, we introduce AutoGEO, a framework to automatically learn generative engine preferences when using retrieved contents for response generation, and rewrite web contents for more such traction. AutoGEO first prompts frontier LLMs to explain generative engine preferences and extract meaningful preference rules from these explanations. Then it uses preference rules as context engineering for AutoGEO$_\text{API}$, a prompt-based GEO system, and as rule-based rewards to train AutoGEO$_\text{Mini}$, a cost-effective GEO model. Experiments on the standard GEO-Bench and two newly constructed benchmarks using real user queries demonstrate the effectiveness of AutoGEO in enhancing content traction while preserving search utility. Analyses confirm the learned rules' robustness and abilities to capture unique preferences in variant domains, and AutoGEO systems' ability to embed them in content optimization. The code is released at https://github.com/cxcscmu/AutoGEO.

Authors:Yijun Hu, Bing Fan, Xin Gu, Haiqing Ren, Dongfang Liu, Heng Fan, Libo Zhang
Title: Robust Ego-Exo Correspondence with Long-Term Memory
Abstract:
Establishing object-level correspondence between egocentric and exocentric views is essential for intelligent assistants to deliver precise and intuitive visual guidance. However, this task faces numerous challenges, including extreme viewpoint variations, occlusions, and the presence of small objects. Existing approaches usually borrow solutions from video object segmentation models, but still suffer from the aforementioned challenges. Recently, the Segment Anything Model 2 (SAM 2) has shown strong generalization capabilities and excellent performance in video object segmentation. Yet, when simply applied to the ego-exo correspondence (EEC) task, SAM 2 encounters severe difficulties due to ineffective ego-exo feature fusion and limited long-term memory capacity, especially for long videos. Addressing these problems, we propose a novel EEC framework based on SAM 2 with long-term memories by presenting a dual-memory architecture and an adaptive feature routing module inspired by Mixture-of-Experts (MoE). Compared to SAM 2, our approach features (i) a Memory-View MoE module which consists of a dual-branch routing mechanism to adaptively assign contribution weights to each expert feature along both channel and spatial dimensions, and (ii) a dual-memory bank system with a simple yet effective compression strategy to retain critical long-term information while eliminating redundancy. In the extensive experiments on the challenging EgoExo4D benchmark, our method, dubbed LM-EEC, achieves new state-of-the-art results and significantly outperforms existing methods and the SAM 2 baseline, showcasing its strong generalization across diverse scenarios. Our code and model are available at https://github.com/juneyeeHu/LM-EEC.

Authors:Wenyuan Zhang, Jimin Tang, Weiqi Zhang, Yi Fang, Yu-Shen Liu, Zhizhong Han
Title: MaterialRefGS: Reflective Gaussian Splatting with Multi-view Consistent Material Inference
Abstract:
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.

Authors:Zhao Huang, Boyang Sun, Alexandros Delitzas, Jiaqi Chen, Marc Pollefeys
Title: REACT3D: Recovering Articulations for Interactive Physical 3D Scenes
Abstract:
Interactive 3D scenes are increasingly vital for embodied intelligence, yet existing datasets remain limited due to the labor-intensive process of annotating part segmentation, kinematic types, and motion trajectories. We present REACT3D, a scalable zero-shot framework that converts static 3D scenes into simulation-ready interactive replicas with consistent geometry, enabling direct use in diverse downstream tasks. Our contributions include: (i) openable-object detection and segmentation to extract candidate movable parts from static scenes, (ii) articulation estimation that infers joint types and motion parameters, (iii) hidden-geometry completion followed by interactive object assembly, and (iv) interactive scene integration in widely supported formats to ensure compatibility with standard simulation platforms. We achieve state-of-the-art performance on detection/segmentation and articulation metrics across diverse indoor scenes, demonstrating the effectiveness of our framework and providing a practical foundation for scalable interactive scene generation, thereby lowering the barrier to large-scale research on articulated scene understanding. Our project page is \textit{\hypersetup{urlcolor=black}\href{https://react3d.github.io/}{react3d.github.io}}.

Authors:KiHyun Nam, Jongmin Choi, Hyeongkeun Lee, Jungwoo Heo, Joon Son Chung
Title: Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap
Abstract:
Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link

Authors:Chenxi Wang, Yixuan Zhang, Ruiji Yu, Yufei Zheng, Lang Gao, Zirui Song, Zixiang Xu, Gus Xia, Huishuai Zhang, Dongyan Zhao, Xiuying Chen
Title: Do LLMs "Feel"? Emotion Circuits Discovery and Control
Abstract:
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.

Authors:Junhua Zhou, Quanjun Li, Weixuan Li, Guang Yu, Yihua Shao, Yihang Dong, Mengqian Wang, Zimeng Li, Changwei Gong, Xuhang Chen
Title: TDADL-IE: A Deep Learning-Driven Cryptographic Architecture for Medical Image Security
Abstract:
The rise of digital medical imaging, like MRI and CT, demands strong encryption to protect patient data in telemedicine and cloud storage. Chaotic systems are popular for image encryption due to their sensitivity and unique characteristics, but existing methods often lack sufficient security. This paper presents the Three-dimensional Diffusion Algorithm and Deep Learning Image Encryption system (TDADL-IE), built on three key elements. First, we propose an enhanced chaotic generator using an LSTM network with a 1D-Sine Quadratic Chaotic Map (1D-SQCM) for better pseudorandom sequence generation. Next, a new three-dimensional diffusion algorithm (TDA) is applied to encrypt permuted images. TDADL-IE is versatile for images of any size. Experiments confirm its effectiveness against various security threats. The code is available at \href{https://github.com/QuincyQAQ/TDADL-IE}{https://github.com/QuincyQAQ/TDADL-IE}.

Authors:Guangyu Wei, Ke Han, Yueming Lyu, Yu Luo, Yue Jiang, Caifeng Shan, Nicu Sebe
Title: Towards Real-Time Fake News Detection under Evidence Scarcity
Abstract:
Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.

Authors:Weixuan Li, Quanjun Li, Guang Yu, Song Yang, Zimeng Li, Chi-Man Pun, Yupeng Liu, Xuhang Chen
Title: DTEA: Dynamic Topology Weaving and Instability-Driven Entropic Attenuation for Medical Image Segmentation
Abstract:
In medical image segmentation, skip connections are used to merge global context and reduce the semantic gap between encoder and decoder. Current methods often struggle with limited structural representation and insufficient contextual modeling, affecting generalization in complex clinical scenarios. We propose the DTEA model, featuring a new skip connection framework with the Semantic Topology Reconfiguration (STR) and Entropic Perturbation Gating (EPG) modules. STR reorganizes multi-scale semantic features into a dynamic hypergraph to better model cross-resolution anatomical dependencies, enhancing structural and semantic representation. EPG assesses channel stability after perturbation and filters high-entropy channels to emphasize clinically important regions and improve spatial attention. Extensive experiments on three benchmark datasets show our framework achieves superior segmentation accuracy and better generalization across various clinical settings. The code is available at \href{https://github.com/LWX-Research/DTEA}{https://github.com/LWX-Research/DTEA}.

Authors:Pengyu Zhu, Lijun Li, Yaxing Lyu, Li Sun, Sen Su, Jing Shao
Title: Collaborative Shadows: Distributed Backdoor Attacks in LLM-Based Multi-Agent Systems
Abstract:
LLM-based multi-agent systems (MAS) demonstrate increasing integration into next-generation applications, but their safety in backdoor attacks remains largely underexplored. However, existing research has focused exclusively on single-agent backdoor attacks, overlooking the novel attack surfaces introduced by agent collaboration in MAS. To bridge this gap, we present the first Distributed Backdoor Attack tailored to MAS. We decompose the backdoor into multiple distributed attack primitives that are embedded within MAS tools. These primitives remain dormant individually but collectively activate only when agents collaborate in a specific sequence, thereby assembling the full backdoor to execute targeted attacks such as data exfiltration. To fully assess this threat, we introduce a benchmark for multi-role collaborative tasks and a sandboxed framework to evaluate. Extensive experiments demonstrate that our attack achieves an attack success rate exceeding 95% without degrading performance on benign tasks. This work exposes novel backdoor attack surfaces that exploit agent collaboration, underscoring the need to move beyond single-agent protection. Code and benchmark are available at https://github.com/whfeLingYu/Distributed-Backdoor-Attacks-in-MAS.

Authors:Rohit Gupta, Anirban Roy, Claire Christensen, Sujeong Kim, Sarah Gerard, Madeline Cincebeaux, Ajay Divakaran, Todd Grindal, Mubarak Shah
Title: Class Prototypes based Contrastive Learning for Classifying Multi-Label and Fine-Grained Educational Videos
Abstract:
The recent growth in the consumption of online media by children during early childhood necessitates data-driven tools enabling educators to filter out appropriate educational content for young learners. This paper presents an approach for detecting educational content in online videos. We focus on two widely used educational content classes: literacy and math. For each class, we choose prominent codes (sub-classes) based on the Common Core Standards. For example, literacy codes include `letter names', `letter sounds', and math codes include `counting', `sorting'. We pose this as a fine-grained multilabel classification problem as videos can contain multiple types of educational content and the content classes can get visually similar (e.g., `letter names' vs `letter sounds'). We propose a novel class prototypes based supervised contrastive learning approach that can handle fine-grained samples associated with multiple labels. We learn a class prototype for each class and a loss function is employed to minimize the distances between a class prototype and the samples from the class. Similarly, distances between a class prototype and the samples from other classes are maximized. As the alignment between visual and audio cues are crucial for effective comprehension, we consider a multimodal transformer network to capture the interaction between visual and audio cues in videos while learning the embedding for videos. For evaluation, we present a dataset, APPROVE, employing educational videos from YouTube labeled with fine-grained education classes by education researchers. APPROVE consists of 193 hours of expert-annotated videos with 19 classes. The proposed approach outperforms strong baselines on APPROVE and other benchmarks such as Youtube-8M, and COIN. The dataset is available at https://github.com/rohit-gupta/MMContrast/tree/main/APPROVE

Authors:Marco Pintore, Giorgio Piras, Angelo Sotgiu, Maura Pintor, Battista Biggio
Title: Evaluating Line-level Localization Ability of Learning-based Code Vulnerability Detection Models
Abstract:
To address the extremely concerning problem of software vulnerability, system security is often entrusted to Machine Learning (ML) algorithms. Despite their now established detection capabilities, such models are limited by design to flagging the entire input source code function as vulnerable, rather than precisely localizing the concerned code lines. However, the detection granularity is crucial to support human operators during software development, ensuring that such predictions reflect the true code semantics to help debug, evaluate, and fix the detected vulnerabilities. To address this issue, recent work made progress toward improving the detector's localization ability, thus narrowing down the vulnerability detection "window" and providing more fine-grained predictions. Such approaches, however, implicitly disregard the presence of spurious correlations and biases in the data, which often predominantly influence the performance of ML algorithms. In this work, we investigate how detectors comply with this requirement by proposing an explainability-based evaluation procedure. Our approach, defined as Detection Alignment (DA), quantifies the agreement between the input source code lines that most influence the prediction and the actual localization of the vulnerability as per the ground truth. Through DA, which is model-agnostic and adaptable to different detection tasks, not limited to our use case, we analyze multiple learning-based vulnerability detectors and datasets. As a result, we show how the predictions of such models are consistently biased by non-vulnerable lines, ultimately highlighting the high impact of biases and spurious correlations. The code is available at https://github.com/pralab/vuln-localization-eval.

Authors:Peiming Li, Zhiyuan Hu, Yang Tang, Shiyu Li, Xi Chen
Title: Aligning Deep Implicit Preferences by Learning to Reason Defensively
Abstract:
Personalized alignment is crucial for enabling Large Language Models (LLMs) to engage effectively in user-centric interactions. However, current methods face a dual challenge: they fail to infer users' deep implicit preferences (including unstated goals, semantic context and risk tolerances), and they lack the defensive reasoning required to navigate real-world ambiguity. This cognitive gap leads to responses that are superficial, brittle and short-sighted. To address this, we propose Critique-Driven Reasoning Alignment (CDRA), which reframes alignment from a scalar reward-matching task into a structured reasoning process. First, to bridge the preference inference gap, we introduce the DeepPref benchmark. This dataset, comprising 3000 preference-query pairs across 20 topics, is curated by simulating a multi-faceted cognitive council that produces critique-annotated reasoning chains to deconstruct query semantics and reveal latent risks. Second, to instill defensive reasoning, we introduce the Personalized Generative Process Reward Model (Pers-GenPRM), which frames reward modeling as a personalized reasoning task. It generates a critique chain to evaluate a response's alignment with user preferences before outputting a final score based on this rationale. Ultimately, this interpretable, structured reward signal guides policy model through Critique-Driven Policy Alignment, a process-level online reinforcement learning algorithm integrating both numerical and natural language feedback. Experiments demonstrate that CDRA excels at discovering and aligning with users' true preferences while executing robust reasoning. Our code and dataset are available at https://github.com/Zephyrian-Hugh/Deep-pref.

Authors:Shengming Yuan, Xinyu Lyu, Shuailong Wang, Beitao Chen, Jingkuan Song, Lianli Gao
Title: FlexAC: Towards Flexible Control of Associative Reasoning in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) face an inherent trade-off between faithfulness and creativity, as different tasks require varying degrees of associative reasoning. However, existing methods lack the flexibility to modulate this reasoning strength, limiting MLLMs' adaptability across factual and creative scenarios. To bridge this gap, we propose equipping MLLMs with mechanisms that enable flexible control over associative reasoning. We begin by investigating the internal mechanisms underlying associative behavior in MLLMs and find that: (1) middle layers play a pivotal role in shaping model's associative tendencies, (2) modifying representations in these layers effectively regulates associative reasoning strength, and (3) hallucinations can be exploited to derive steering vectors that guide this modulation. Building on these findings, we introduce Flexible Association Control (FlexAC), a lightweight and training-free framework for modulating associative behavior in MLLMs. FlexAC first induces hallucination-guided intermediate representations to encode associative directions. Then, it selects high-association instances to construct effective associative steering vectors, whose strengths are adaptively calibrated to balance creative guidance with output stability. Finally, recognizing the multi-dimensional nature of associative reasoning, FlexAC incorporates task-specific associative vectors derived from a forward pass on a few target-domain samples, enabling models to follow diverse associative directions and better adapt to creative tasks. Notably, our method achieves up to a 5.8x improvement in creativity on Creation-MMBench and a 29% reduction in hallucination rate on CHAIR, surpassing existing baselines and demonstrating its effectiveness in enabling flexible control over associative reasoning in MLLMs. Our code is available at https://github.com/ylhz/FlexAC.

Authors:Zhenyu Lu, Liupeng Li, Jinpeng Wang, Yan Feng, Bin Chen, Ke Chen, Yaowei Wang
Title: CoPRS: Learning Positional Prior from Chain-of-Thought for Reasoning Segmentation
Abstract:
Existing works on reasoning segmentation either connect hidden features from a language model directly to a mask decoder or represent positions in text, which limits interpretability and semantic detail. To solve this, we present CoPRS, a Multi-modal Chain-of-Thought (MCoT)-based positional perception model that bridges language reasoning to segmentation through a differentiable and interpretable positional prior instantiated as a heatmap. By making the reasoning process clear via MCoT and expressing it as a dense, differentiable heatmap, this interface enhances interpretability and diagnostic analysis and yields more concentrated evidence on the target. A learnable concentration token aggregates features of the image and reasoning text to generate this positional prior, which is decoded to precise masks through a lightweight decoder, providing a direct connection between reasoning and segmentation. Across the RefCOCO series and ReasonSeg, CoPRS matches or surpasses the best reported metrics on each standard split under comparable protocols, with performance at or above prior state of the art across both validation and test partitions. Extensive experiments reveal that the quality of the heatmap strongly influences the resulting mask quality, supporting a consistent association between the reasoning output and downstream mask generation. Collectively, these findings support the utility of this paradigm in bridging reasoning and segmentation and show advantages in concentration driven by reasoning and predicting masks more precisely. Code, checkpoints and logs are released at https://github.com/ZhenyuLU-Heliodore/CoPRS.git.

Authors:Louis Berthier, Ahmed Shokry, Maxime Moreaud, Guillaume Ramelet, Eric Moulines
Title: torchsom: The Reference PyTorch Library for Self-Organizing Maps
Abstract:
This paper introduces torchsom, an open-source Python library that provides a reference implementation of the Self-Organizing Map (SOM) in PyTorch. This package offers three main features: (i) dimensionality reduction, (ii) clustering, and (iii) friendly data visualization. It relies on a PyTorch backend, enabling (i) fast and efficient training of SOMs through GPU acceleration, and (ii) easy and scalable integrations with PyTorch ecosystem. Moreover, torchsom follows the scikit-learn API for ease of use and extensibility. The library is released under the Apache 2.0 license with 90% test coverage, and its source code and documentation are available at https://github.com/michelin/TorchSOM.

Authors:Yingnan Liu, Rui Qiao, Mong Li Lee, Wynne Hsu
Title: Test-Time Adaptation by Causal Trimming
Abstract:
Test-time adaptation aims to improve model robustness under distribution shifts by adapting models with access to unlabeled target samples. A primary cause of performance degradation under such shifts is the model's reliance on features that lack a direct causal relationship with the prediction target. We introduce Test-time Adaptation by Causal Trimming (TACT), a method that identifies and removes non-causal components from representations for test distributions. TACT applies data augmentations that preserve causal features while varying non-causal ones. By analyzing the changes in the representations using Principal Component Analysis, TACT identifies the highest variance directions associated with non-causal features. It trims the representations by removing their projections on the identified directions, and uses the trimmed representations for the predictions. During adaptation, TACT continuously tracks and refines these directions to get a better estimate of non-causal features. We theoretically analyze the effectiveness of this approach and empirically validate TACT on real-world out-of-distribution benchmarks. TACT consistently outperforms state-of-the-art methods by a significant margin.

Authors:Xiucheng Wang, Zien Wang, Nan Cheng, Wenchao Xu, Wei Quan, Xuemin Shen
Title: Graph Neural Network-Based Multicast Routing for On-Demand Streaming Services in 6G Networks
Abstract:
The increase of bandwidth-intensive applications in sixth-generation (6G) wireless networks, such as real-time volumetric streaming and multi-sensory extended reality, demands intelligent multicast routing solutions capable of delivering differentiated quality-of-service (QoS) at scale. Traditional shortest-path and multicast routing algorithms are either computationally prohibitive or structurally rigid, and they often fail to support heterogeneous user demands, leading to suboptimal resource utilization. Neural network-based approaches, while offering improved inference speed, typically lack topological generalization and scalability. To address these limitations, this paper presents a graph neural network (GNN)-based multicast routing framework that jointly minimizes total transmission cost and supports user-specific video quality requirements. The routing problem is formulated as a constrained minimum-flow optimization task, and a reinforcement learning algorithm is developed to sequentially construct efficient multicast trees by reusing paths and adapting to network dynamics. A graph attention network (GAT) is employed as the encoder to extract context-aware node embeddings, while a long short-term memory (LSTM) module models the sequential dependencies in routing decisions. Extensive simulations demonstrate that the proposed method closely approximates optimal dynamic programming-based solutions while significantly reducing computational complexity. The results also confirm strong generalization to large-scale and dynamic network topologies, highlighting the method's potential for real-time deployment in 6G multimedia delivery scenarios. Code is available at https://github.com/UNIC-Lab/GNN-Routing.

Authors:Ans Munir, Faisal Z. Qureshi, Mohsen Ali, Muhammad Haris Khan
Title: Compositional Zero-Shot Learning: A Survey
Abstract:
Compositional Zero-Shot Learning (CZSL) is a critical task in computer vision that enables models to recognize unseen combinations of known attributes and objects during inference, addressing the combinatorial challenge of requiring training data for every possible composition. This is particularly challenging because the visual appearance of primitives is highly contextual; for example, ``small'' cats appear visually distinct from ``older'' ones, and ``wet'' cars differ significantly from ``wet'' cats. Effectively modeling this contextuality and the inherent compositionality is crucial for robust compositional zero-shot recognition. This paper presents, to our knowledge, the first comprehensive survey specifically focused on Compositional Zero-Shot Learning. We systematically review the state-of-the-art CZSL methods, introducing a taxonomy grounded in disentanglement, with four families of approaches: no explicit disentanglement, textual disentanglement, visual disentanglement, and cross-modal disentanglement. We provide a detailed comparative analysis of these methods, highlighting their core advantages and limitations in different problem settings, such as closed-world and open-world CZSL. Finally, we identify the most significant open challenges and outline promising future research directions. This survey aims to serve as a foundational resource to guide and inspire further advancements in this fascinating and important field. Papers studied in this survey with their official code are available on our github: https://github.com/ans92/Compositional-Zero-Shot-Learning

Authors:Huayi Wang, Wentao Zhang, Runyi Yu, Tao Huang, Junli Ren, Feiyu Jia, Zirui Wang, Xiaojie Niu, Xiao Chen, Jiahe Chen, Qifeng Chen, Jingbo Wang, Jiangmiao Pang
Title: PhysHSI: Towards a Real-World Generalizable and Natural Humanoid-Scene Interaction System
Abstract:
Deploying humanoid robots to interact with real-world environments--such as carrying objects or sitting on chairs--requires generalizable, lifelike motions and robust scene perception. Although prior approaches have advanced each capability individually, combining them in a unified system is still an ongoing challenge. In this work, we present a physical-world humanoid-scene interaction system, PhysHSI, that enables humanoids to autonomously perform diverse interaction tasks while maintaining natural and lifelike behaviors. PhysHSI comprises a simulation training pipeline and a real-world deployment system. In simulation, we adopt adversarial motion prior-based policy learning to imitate natural humanoid-scene interaction data across diverse scenarios, achieving both generalization and lifelike behaviors. For real-world deployment, we introduce a coarse-to-fine object localization module that combines LiDAR and camera inputs to provide continuous and robust scene perception. We validate PhysHSI on four representative interactive tasks--box carrying, sitting, lying, and standing up--in both simulation and real-world settings, demonstrating consistently high success rates, strong generalization across diverse task goals, and natural motion patterns.

Authors:Yujie Zhao, Lanxiang Hu, Yang Wang, Minmin Hou, Hao Zhang, Ke Ding, Jishen Zhao
Title: Stronger Together: On-Policy Reinforcement Learning for Collaborative LLMs
Abstract:
Multi-agent systems (MAS) and reinforcement learning (RL) are widely used to enhance the agentic capabilities of large language models (LLMs). MAS improves task performance through role-based orchestration, while RL uses environmental rewards to learn stronger policies, such as GRPO-style optimization. However, applying on-policy RL to MAS remains underexplored and presents unique challenges. Algorithmically, standard GRPO grouping assumptions break down because prompts vary by role and by turn. System-wise, the training stack must support MAS-workflow rollouts and on-policy updates for both single-policy and multi-policy models. We propose AT-GRPO, which includes (i) an agent- and turn-wise grouped RL algorithm tailored to MAS and (ii) a training system that supports both single- and multi-policy regimes. Across game, planning, coding, and math tasks, AT-GRPO delivers substantial gains. On long-horizon planning, it increases accuracy from a 14.0 to 47.0 percent single-agent RL baseline to 96.0 to 99.5 percent. It also improves reasoning performance, with average gains of 3.87 to 7.62 percent on coding tasks and 9.0 to 17.93 percent on math. Code and environments are available at: https://github.com/pettingllms-ai/PettingLLMs.

Authors:Hongxiang Li, Yaowei Li, Bin Lin, Yuwei Niu, Yuhang Yang, Xiaoshuang Huang, Jiayin Cai, Xiaolong Jiang, Yao Hu, Long Chen
Title: GIR-Bench: Versatile Benchmark for Generating Images with Reasoning
Abstract:
Unified multimodal models integrate the reasoning capacity of large language models with both image understanding and generation, showing great promise for advanced multimodal intelligence. However, the community still lacks a rigorous reasoning-centric benchmark to systematically evaluate the alignment between understanding and generation, and their generalization potential in complex visual tasks. To this end, we introduce \textbf{GIR-Bench}, a comprehensive benchmark that evaluates unified models across three complementary perspectives. Firstly, we investigate understanding-generation consistency (GIR-Bench-UGC), asking whether models can consistently leverage the same knowledge in both understanding and generation tasks. Secondly, we investigate whether models can perform reasoning-centric text-to-image generation that requires applying logical constraints and implicit knowledge to generate faithful visual content (GIR-Bench-T2I). Thirdly, we evaluate whether models can handle multi-step reasoning in editing (GIR-Bench-Edit). For each subset, we carefully design different task-specific evaluation pipelines tailored for each task. This enables fine-grained and interpretable evaluation while mitigating biases from the prevalent MLLM-as-a-Judge paradigm. Extensive ablations over various unified models and generation-only systems have shown that: Although unified models are more capable of reasoning-driven visual tasks, they still exhibit a persistent gap between understanding and generation. The data and code for GIR-Bench are available at \href{https://hkust-longgroup.github.io/GIR-Bench}{https://hkust-longgroup.github.io/GIR-Bench}.

Authors:Bingjie Tang, Iretiayo Akinola, Jie Xu, Bowen Wen, Dieter Fox, Gaurav S. Sukhatme, Fabio Ramos, Abhishek Gupta, Yashraj Narang
Title: Refinery: Active Fine-tuning and Deployment-time Optimization for Contact-Rich Policies
Abstract:
Simulation-based learning has enabled policies for precise, contact-rich tasks (e.g., robotic assembly) to reach high success rates (~80%) under high levels of observation noise and control error. Although such performance may be sufficient for research applications, it falls short of industry standards and makes policy chaining exceptionally brittle. A key limitation is the high variance in individual policy performance across diverse initial conditions. We introduce Refinery, an effective framework that bridges this performance gap, robustifying policy performance across initial conditions. We propose Bayesian Optimization-guided fine-tuning to improve individual policies, and Gaussian Mixture Model-based sampling during deployment to select initializations that maximize execution success. Using Refinery, we improve mean success rates by 10.98% over state-of-the-art methods in simulation-based learning for robotic assembly, reaching 91.51% in simulation and comparable performance in the real world. Furthermore, we demonstrate that these fine-tuned policies can be chained to accomplish long-horizon, multi-part assembly$\unicode{x2013}$successfully assembling up to 8 parts without requiring explicit multi-step training.

Authors:Haoran Liang, Yufa Zhou, Mohammad Talebi Kalaleh, Qipei Mei
Title: Automating Structural Engineering Workflows with Large Language Model Agents
Abstract:
We introduce $\textbf{MASSE}$, the first Multi-Agent System for Structural Engineering, effectively integrating large language model (LLM)-based agents with real-world engineering workflows. Structural engineering is a fundamental yet traditionally stagnant domain, with core workflows remaining largely unchanged for decades despite its substantial economic impact and global market size. Recent advancements in LLMs have significantly enhanced their ability to perform complex reasoning, long-horizon planning, and precise tool utilization -- capabilities well aligned with structural engineering tasks such as interpreting design codes, executing load calculations, and verifying structural capacities. We present a proof-of-concept showing that most real-world structural engineering workflows can be fully automated through a training-free LLM-based multi-agent system. MASSE enables immediate deployment in professional environments, and our comprehensive validation on real-world case studies demonstrates that it can reduce expert workload from approximately two hours to mere minutes, while enhancing both reliability and accuracy in practical engineering scenarios.

Authors:Ruihang Xu, Dewei Zhou, Fan Ma, Yi Yang
Title: ContextGen: Contextual Layout Anchoring for Identity-Consistent Multi-Instance Generation
Abstract:
Multi-instance image generation (MIG) remains a significant challenge for modern diffusion models due to key limitations in achieving precise control over object layout and preserving the identity of multiple distinct subjects. To address these limitations, we introduce ContextGen, a novel Diffusion Transformer framework for multi-instance generation that is guided by both layout and reference images. Our approach integrates two key technical contributions: a Contextual Layout Anchoring (CLA) mechanism that incorporates the composite layout image into the generation context to robustly anchor the objects in their desired positions, and Identity Consistency Attention (ICA), an innovative attention mechanism that leverages contextual reference images to ensure the identity consistency of multiple instances. Recognizing the lack of large-scale, hierarchically-structured datasets for this task, we introduce IMIG-100K, the first dataset with detailed layout and identity annotations. Extensive experiments demonstrate that ContextGen sets a new state-of-the-art, outperforming existing methods in control precision, identity fidelity, and overall visual quality.

Authors:Wei-Chieh Huang, Henry Peng Zou, Yaozu Wu, Dongyuan Li, Yankai Chen, Weizhi Zhang, Yangning Li, Angelo Zangari, Jizhou Guo, Chunyu Miao, Liancheng Fang, Langzhou He, Renhe Jiang, Philip S. Yu
Title: DeepResearchGuard: Deep Research with Open-Domain Evaluation and Multi-Stage Guardrails for Safety
Abstract:
Deep research frameworks have shown promising capabilities in synthesizing comprehensive reports from web sources. While deep research possesses significant potential to address complex issues through planning and research cycles, existing frameworks are deficient in sufficient evaluation procedures and stage-specific protections. They typically treat evaluation as exact match accuracy of question-answering, but overlook crucial aspects of report quality such as credibility, coherence, breadth, depth, and safety. This oversight may result in hazardous or malicious sources being integrated into the final report. To address these issues, we introduce DEEPRESEARCHGUARD, a comprehensive framework featuring four-stage safeguards with open-domain evaluation of references and reports. We assess performance across multiple metrics, e.g., defense success rate and over-refusal rate, and five key report dimensions. In the absence of a suitable safety benchmark, we introduce DRSAFEBENCH, a stage-wise benchmark for deep research safety. Our evaluation spans diverse state-of-the-art LLMs, including GPT-4o, Gemini-2.5-flash, DeepSeek-v3, and o4-mini. DEEPRESEARCHGUARD achieves an average defense success rate improvement of 18.16% while reducing over-refusal rate by 6%. The input guard provides the most substantial early-stage protection by filtering out obvious risks, while the plan and research guards enhance citation discipline and source credibility. Through extensive experiments, we show that DEEPRESEARCHGUARD enables comprehensive open-domain evaluation and stage-aware defenses that effectively block harmful content propagation, while systematically improving report quality without excessive over-refusal rates. The code can be found via https://github.com/Jasonya/DeepResearchGuard.

Authors:Huanjin Yao, Ruifei Zhang, Jiaxing Huang, Jingyi Zhang, Yibo Wang, Bo Fang, Ruolin Zhu, Yongcheng Jing, Shunyu Liu, Guanbin Li, Dacheng Tao
Title: A Survey on Agentic Multimodal Large Language Models
Abstract:
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.

Authors:Hyeseon Ahn, Shinwoo Park, Yo-Sub Han
Title: DITTO: A Spoofing Attack Framework on Watermarked LLMs via Knowledge Distillation
Abstract:
The promise of LLM watermarking rests on a core assumption that a specific watermark proves authorship by a specific model. We demonstrate that this assumption is dangerously flawed. We introduce the threat of watermark spoofing, a sophisticated attack that allows a malicious model to generate text containing the authentic-looking watermark of a trusted, victim model. This enables the seamless misattribution of harmful content, such as disinformation, to reputable sources. The key to our attack is repurposing watermark radioactivity, the unintended inheritance of data patterns during fine-tuning, from a discoverable trait into an attack vector. By distilling knowledge from a watermarked teacher model, our framework allows an attacker to steal and replicate the watermarking signal of the victim model. This work reveals a critical security gap in text authorship verification and calls for a paradigm shift towards technologies capable of distinguishing authentic watermarks from expertly imitated ones. Our code is available at https://github.com/hsannn/ditto.git.

Authors:Zihan Wang, Zhiyong Ma, Zhongkui Ma, Shuofeng Liu, Akide Liu, Derui Wang, Minhui Xue, Guangdong Bai
Title: Catch-Only-One: Non-Transferable Examples for Model-Specific Authorization
Abstract:
Recent AI regulations call for data that remain useful for innovation while resistant to misuse, balancing utility with protection at the model level. Existing approaches either perturb data to make it unlearnable or retrain models to suppress transfer, but neither governs inference by unknown models, and both typically require control over training. We propose non-transferable examples (NEs), a training-free and data-agnostic input-side usage-control mechanism. We recode inputs within a model-specific low-sensitivity subspace, preserving outputs for the authorized model while reducing performance on unauthorized models through subspace misalignment. We establish formal bounds that guarantee utility for the authorized model and quantify deviation for unauthorized ones, with the Hoffman-Wielandt inequality linking degradation to spectral differences. Empirically, NEs retain performance on diverse vision backbones and state-of-the-art vision-language models under common preprocessing, whereas non-target models collapse even with reconstruction attempts. These results establish NEs as a practical means to preserve intended data utility while preventing unauthorized exploitation. Our project is available at https://trusted-system-lab.github.io/model-specificity

Authors:Taiqiang Wu, Runming Yang, Tao Liu, Jiahao Wang, Ngai Wong
Title: Revisiting Model Interpolation for Efficient Reasoning
Abstract:
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.

Authors:Yejin Lee, Hyeseon Ahn, Yo-Sub Han
Title: RV-HATE: Reinforced Multi-Module Voting for Implicit Hate Speech Detection
Abstract:
Hate speech remains prevalent in human society and continues to evolve in its forms and expressions. Modern advancements in internet and online anonymity accelerate its rapid spread and complicate its detection. However, hate speech datasets exhibit diverse characteristics primarily because they are constructed from different sources and platforms, each reflecting different linguistic styles and social contexts. Despite this diversity, prior studies on hate speech detection often rely on fixed methodologies without adapting to data-specific features. We introduce RV-HATE, a detection framework designed to account for the dataset-specific characteristics of each hate speech dataset. RV-HATE consists of multiple specialized modules, where each module focuses on distinct linguistic or contextual features of hate speech. The framework employs reinforcement learning to optimize weights that determine the contribution of each module for a given dataset. A voting mechanism then aggregates the module outputs to produce the final decision. RV-HATE offers two primary advantages: (1)~it improves detection accuracy by tailoring the detection process to dataset-specific attributes, and (2)~it also provides interpretable insights into the distinctive features of each dataset. Consequently, our approach effectively addresses implicit hate speech and achieves superior performance compared to conventional static methods. Our code is available at https://github.com/leeyejin1231/RV-HATE.

Authors:Zhuo Li, Yuege Feng, Dandan Guo, Jinpeng Hu, Anningzhe Gao, Xiang Wan
Title: APLOT: Robust Reward Modeling via Adaptive Preference Learning with Optimal Transport
Abstract:
The reward model (RM) plays a crucial role in aligning Large Language Models (LLMs) with human preferences through Reinforcement Learning, where the Bradley-Terry (BT) objective has been recognized as simple yet powerful, specifically for pairwise preference learning. However, BT-based RMs often struggle to effectively distinguish between similar preference responses, leading to insufficient separation between preferred and non-preferred outputs. Consequently, they may easily overfit easy samples and cannot generalize well to Out-Of-Distribution (OOD) samples, resulting in suboptimal performance. To address these challenges, this paper introduces an effective enhancement to BT-based RMs through an adaptive margin mechanism. Specifically, we design to dynamically adjust the RM focus on more challenging samples through margins, based on both semantic similarity and model-predicted reward differences, which is approached from a distributional perspective solvable with Optimal Transport (OT). By incorporating these factors into a principled OT cost matrix design, our adaptive margin enables the RM to better capture distributional differences between chosen and rejected responses, yielding significant improvements in performance, convergence speed, and generalization capabilities. Experimental results across multiple benchmarks demonstrate that our method outperforms several existing RM techniques, showcasing enhanced performance in both In-Distribution (ID) and OOD settings. Moreover, RLHF experiments support our practical effectiveness in better aligning LLMs with human preferences. Our code is available at https://github.com/BIRlz/APLOT

Authors:Yejin Lee, Su-Hyeon Kim, Hyundong Jin, Dayoung Kim, Yeonsoo Kim, Yo-Sub Han
Title: KOTOX: A Korean Toxic Dataset for Deobfuscation and Detoxification
Abstract:
Toxic content has become an increasingly critical social issue with the rapid expansion of online communication. While numerous studies explored methods for detecting and detoxifying such content, most have focused primarily on English, leaving low-resource language underrepresented. Consequently, Large Language Models~(LLMs) often struggle to identify and neutralize toxic expressions in these languages. This challenge becomes even more pronounced when user employ obfuscation techniques to evade detection systems. Therefore, we propose a \textbf{KOTOX: Korean Toxic Dataset} for deobfuscation and detoxicification to address this issue. We categorize various obfuscation approaches based on linguistic characteristics of Korean and define a set of transformation rules grounded in real-word examples. Using these rules, we construct three dataset versions (easy, normal, and hard) representing different levels of obfuscation difficulty. This is the first dataset that simultaneously supports deobfuscation and detoxification for the Korean language. We expect it to facilitate better understanding and mitigating of obfuscated toxic content in LLM for low-resource languages. Our code and data are available at https://github.com/leeyejin1231/KOTOX.

Authors:Dong Hu, Fenqing Hu, Lidong Yang, Chao Huang
Title: Game-Theoretic Risk-Shaped Reinforcement Learning for Safe Autonomous Driving
Abstract:
Ensuring safety in autonomous driving (AD) remains a significant challenge, especially in highly dynamic and complex traffic environments where diverse agents interact and unexpected hazards frequently emerge. Traditional reinforcement learning (RL) methods often struggle to balance safety, efficiency, and adaptability, as they primarily focus on reward maximization without explicitly modeling risk or safety constraints. To address these limitations, this study proposes a novel game-theoretic risk-shaped RL (GTR2L) framework for safe AD. GTR2L incorporates a multi-level game-theoretic world model that jointly predicts the interactive behaviors of surrounding vehicles and their associated risks, along with an adaptive rollout horizon that adjusts dynamically based on predictive uncertainty. Furthermore, an uncertainty-aware barrier mechanism enables flexible modulation of safety boundaries. A dedicated risk modeling approach is also proposed, explicitly capturing both epistemic and aleatoric uncertainty to guide constrained policy optimization and enhance decision-making in complex environments. Extensive evaluations across diverse and safety-critical traffic scenarios show that GTR2L significantly outperforms state-of-the-art baselines, including human drivers, in terms of success rate, collision and violation reduction, and driving efficiency. The code is available at https://github.com/DanielHu197/GTR2L.

Authors:Namhoon Kim, Sara Fridovich-Keil
Title: Towards Distribution-Shift Uncertainty Estimation for Inverse Problems with Generative Priors
Abstract:
Generative models have shown strong potential as data-driven priors for solving inverse problems such as reconstructing medical images from undersampled measurements. While these priors improve reconstruction quality with fewer measurements, they risk hallucinating features when test images lie outside the training distribution. Existing uncertainty quantification methods in this setting (i) require an in-distribution calibration dataset, which may not be available, (ii) provide heuristic rather than statistical estimates, or (iii) quantify uncertainty from model capacity or limited measurements rather than distribution shift. We propose an instance-level, calibration-free uncertainty indicator that is sensitive to distribution shift, requires no knowledge of the training distribution, and incurs no retraining cost. Our key hypothesis is that reconstructions of in-distribution images remain stable under random measurement variations, while reconstructions of out-of-distribution (OOD) images exhibit greater instability. We use this stability as a proxy for detecting distribution shift. Our proposed OOD indicator is efficiently computable for any computational imaging inverse problem; we demonstrate it on tomographic reconstruction of MNIST digits, where a learned proximal network trained only on digit "0" is evaluated on all ten digits. Reconstructions of OOD digits show higher variability and correspondingly higher reconstruction error, validating this indicator. These results suggest a deployment strategy that pairs generative priors with lightweight guardrails, enabling aggressive measurement reduction for in-distribution cases while automatically warning when priors are applied out of distribution.

Authors:Daoyu Wang, Mingyue Cheng, Qi Liu, Shuo Yu, Zirui Liu, Ze Guo
Title: PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature
Abstract:
Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.

Authors:Shuanghao Bai, Wenxuan Song, Jiayi Chen, Yuheng Ji, Zhide Zhong, Jin Yang, Han Zhao, Wanqi Zhou, Wei Zhao, Zhe Li, Pengxiang Ding, Cheng Chi, Haoang Li, Chang Xu, Xiaolong Zheng, Donglin Wang, Shanghang Zhang, Badong Chen
Title: Towards a Unified Understanding of Robot Manipulation: A Comprehensive Survey
Abstract:
Embodied intelligence has witnessed remarkable progress in recent years, driven by advances in computer vision, natural language processing, and the rise of large-scale multimodal models. Among its core challenges, robot manipulation stands out as a fundamental yet intricate problem, requiring the seamless integration of perception, planning, and control to enable interaction within diverse and unstructured environments. This survey presents a comprehensive overview of robotic manipulation, encompassing foundational background, task-organized benchmarks and datasets, and a unified taxonomy of existing methods. We extend the classical division between high-level planning and low-level control by broadening high-level planning to include language, code, motion, affordance, and 3D representations, while introducing a new taxonomy of low-level learning-based control grounded in training paradigms such as input modeling, latent learning, and policy learning. Furthermore, we provide the first dedicated taxonomy of key bottlenecks, focusing on data collection, utilization, and generalization, and conclude with an extensive review of real-world applications. Compared with prior surveys, our work offers both a broader scope and deeper insight, serving as an accessible roadmap for newcomers and a structured reference for experienced researchers. All related resources, including research papers, open-source datasets, and projects, are curated for the community at https://github.com/BaiShuanghao/Awesome-Robotics-Manipulation.

Authors:Zhaofang Qian, Hardy Chen, Zeyu Wang, Li Zhang, Zijun Wang, Xiaoke Huang, Hui Liu, Xianfeng Tang, Zeyu Zheng, Haoqin Tu, Cihang Xie, Yuyin Zhou
Title: Where on Earth? A Vision-Language Benchmark for Probing Model Geolocation Skills Across Scales
Abstract:
Vision-language models (VLMs) have advanced rapidly, yet their capacity for image-grounded geolocation in open-world conditions, a task that is challenging and of demand in real life, has not been comprehensively evaluated. We present EarthWhere, a comprehensive benchmark for VLM image geolocation that evaluates visual recognition, step-by-step reasoning, and evidence use. EarthWhere comprises 810 globally distributed images across two complementary geolocation scales: WhereCountry (i.e., 500 multiple-choice question-answering, with country-level answer and panoramas) and WhereStreet (i.e., 310 fine-grained street-level identification tasks requiring multi-step reasoning with optional web search). For evaluation, we adopt the final-prediction metrics: location accuracies within k km (Acc@k) for coordinates and hierarchical path scores for textual localization. Beyond this, we propose to explicitly score intermediate reasoning chains using human-verified key visual clues and a Shapley-reweighted thinking score that attributes credit to each clue's marginal contribution. We benchmark 13 state-of-the-art VLMs with web searching tools on our EarthWhere and report different types of final answer accuracies as well as the calibrated model thinking scores. Overall, Gemini-2.5-Pro achieves the best average accuracy at 56.32%, while the strongest open-weight model, GLM-4.5V, reaches 34.71%. We reveal that web search and reasoning do not guarantee improved performance when visual clues are limited, and models exhibit regional biases, achieving up to 42.7% higher scores in certain areas than others. These findings highlight not only the promise but also the persistent challenges of models to mitigate bias and achieve robust, fine-grained localization. We open-source our benchmark at https://github.com/UCSC-VLAA/EarthWhere.

Authors:Soroush Mehraban, Andrea Iaboni, Babak Taati
Title: FastHMR: Accelerating Human Mesh Recovery via Token and Layer Merging with Diffusion Decoding
Abstract:
Recent transformer-based models for 3D Human Mesh Recovery (HMR) have achieved strong performance but often suffer from high computational cost and complexity due to deep transformer architectures and redundant tokens. In this paper, we introduce two HMR-specific merging strategies: Error-Constrained Layer Merging (ECLM) and Mask-guided Token Merging (Mask-ToMe). ECLM selectively merges transformer layers that have minimal impact on the Mean Per Joint Position Error (MPJPE), while Mask-ToMe focuses on merging background tokens that contribute little to the final prediction. To further address the potential performance drop caused by merging, we propose a diffusion-based decoder that incorporates temporal context and leverages pose priors learned from large-scale motion capture datasets. Experiments across multiple benchmarks demonstrate that our method achieves up to 2.3x speed-up while slightly improving performance over the baseline.

Authors:Zhenghan Tai, Hanwei Wu, Qingchen Hu, Jijun Chi, Hailin He, Lei Ding, Tung Sum Thomas Kwok, Bohuai Xiao, Yuchen Hua, Suyuchen Wang, Peng Lu, Muzhi Li, Yihong Wu, Liheng Ma, Jerry Huang, Jiayi Zhang, Gonghao Zhang, Chaolong Jiang, Jingrui Tian, Sicheng Lyu, Zeyu Li, Boyu Han, Fengran Mo, Xinyue Yu, Yufei Cui, Ling Zhou, Xinyu Wang
Title: VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) is becoming increasingly essential for Question Answering (QA) in the financial sector, where accurate and contextually grounded insights from complex public disclosures are crucial. However, existing financial RAG systems face two significant challenges: (1) they struggle to process heterogeneous data formats, such as text, tables, and figures; and (2) they encounter difficulties in balancing general-domain applicability with company-specific adaptation. To overcome these challenges, we present VeritasFi, an innovative hybrid RAG framework that incorporates a multi-modal preprocessing pipeline alongside a cutting-edge two-stage training strategy for its re-ranking component. VeritasFi enhances financial QA through three key innovations: (1) A multi-modal preprocessing pipeline that seamlessly transforms heterogeneous data into a coherent, machine-readable format. (2) A tripartite hybrid retrieval engine that operates in parallel, combining deep multi-path retrieval over a semantically indexed document corpus, real-time data acquisition through tool utilization, and an expert-curated memory bank for high-frequency questions, ensuring comprehensive scope, accuracy, and efficiency. (3) A two-stage training strategy for the document re-ranker, which initially constructs a general, domain-specific model using anonymized data, followed by rapid fine-tuning on company-specific data for targeted applications. By integrating our proposed designs, VeritasFi presents a groundbreaking framework that greatly enhances the adaptability and robustness of financial RAG systems, providing a scalable solution for both general-domain and company-specific QA tasks. Code accompanying this work is available at https://github.com/simplew4y/VeritasFi.git.

Authors:Ali Atiah Alzahrani
Title: Crisis-Aware Regime-Conditioned Diffusion with CVaR Allocation
Abstract:
We study whether regime-conditioned generative scenarios, coupled with a convex CVaR allocator, improve portfolio decisions under regime shifts. We introduce Multi-Agent Regime-Conditioned Diffusion (MARCD), which (i) infers latent regimes via a Gaussian HMM, (ii) trains a diffusion model with a tail-weighted objective and a regime-specialized mixture-of-experts (MoE) denoiser to enrich crisis co-movements, and (iii) feeds the generated scenarios into a turnover-aware CVaR epigraph quadratic program with explicit governance. In strict walk-forward tests on liquid multi-asset ETFs (2005-2025), MARCD outperforms standard allocators and improves calibration relative to popular generators. Over 2020-2025 out-of-sample (monthly; 10 bps), MARCD attains Sharpe 1.23 (BL 1.02) and MaxDD 9.3 percent (BL 14.1 percent), a 34 percent reduction, at comparable turnover; stationary block-bootstrap intervals indicate the Sharpe uplift is significant at 5 percent. We provide theory linking tail-weighted diffusion to spectral-risk control of the decision-relevant CVaR gap, oracle/consistency results for the regime-MoE denoiser, and Lipschitz/regret guarantees for the allocator. Together, MARCD offers a reproducible bridge from tail-faithful scenario modeling to governed portfolio decisions with materially improved drawdown control.

Authors:Douglas Hutchings, Luai Abuelsamen, Karthik Rajgopal
Title: Two-Layer Voronoi Coverage Control for Hybrid Aerial-Ground Robot Teams in Emergency Response: Implementation and Analysis
Abstract:
We present a comprehensive two-layer Voronoi coverage control approach for coordinating hybrid aerial-ground robot teams in hazardous material emergency response scenarios. Traditional Voronoi coverage control methods face three critical limitations in emergency contexts: heterogeneous agent capabilities with vastly different velocities, clustered initial deployment configurations, and urgent time constraints requiring rapid response rather than eventual convergence. Our method addresses these challenges through a decoupled two-layer architecture that separately optimizes aerial and ground robot positioning, with aerial agents delivering ground sensors via airdrop to high-priority locations. We provide detailed implementation of bounded Voronoi cell computation, efficient numerical integration techniques for importance-weighted centroids, and robust control strategies that prevent agent trapping. Simulation results demonstrate an 88% reduction in response time, achieving target sensor coverage (18.5% of initial sensor loss) in 25 seconds compared to 220 seconds for ground-only deployment. Complete implementation code is available at https://github.com/dHutchings/ME292B.

Authors:Christopher D. Hsu, Pratik Chaudhari
Title: Real2USD: Scene Representations in Universal Scene Description Language
Abstract:
Large Language Models (LLMs) can help robots reason about abstract task specifications. This requires augmenting classical representations of the environment used by robots with natural language-based priors. There are a number of existing approaches to doing so, but they are tailored to specific tasks, e.g., visual-language models for navigation, language-guided neural radiance fields for mapping, etc. This paper argues that the Universal Scene Description (USD) language is an effective and general representation of geometric, photometric and semantic information in the environment for LLM-based robotics tasks. Our argument is simple: a USD is an XML-based scene graph, readable by LLMs and humans alike, and rich enough to support essentially any task -- Pixar developed this language to store assets, scenes and even movies. We demonstrate a ``Real to USD'' system using a Unitree Go2 quadruped robot carrying LiDAR and a RGB camera that (i) builds an explicit USD representation of indoor environments with diverse objects and challenging settings with lots of glass, and (ii) parses the USD using Google's Gemini to demonstrate scene understanding, complex inferences, and planning. We also study different aspects of this system in simulated warehouse and hospital settings using Nvidia's Issac Sim. Code is available at https://github.com/grasp-lyrl/Real2USD .

Authors:Andrey Veprikov, Arman Bolatov, Samuel Horváth, Aleksandr Beznosikov, Martin Takáč, Slavomir Hanzely
Title: Preconditioned Norms: A Unified Framework for Steepest Descent, Quasi-Newton and Adaptive Methods
Abstract:
Optimization lies at the core of modern deep learning, yet existing methods often face a fundamental trade-off between adapting to problem geometry and leveraging curvature utilization. Steepest descent algorithms adapt to different geometries through norm choices but remain strictly first-order, whereas quasi-Newton and adaptive optimizers incorporate curvature information but are restricted to Frobenius geometry, limiting their applicability across diverse architectures. In this work, we propose a unified framework generalizing steepest descent, quasi-Newton methods, and adaptive methods through the novel notion of preconditioned matrix norms. This abstraction reveals that widely used optimizers such as SGD and Adam, as well as more advanced approaches like Muon and KL-Shampoo, and recent hybrids including SOAP and SPlus, all emerge as special cases of the same principle. Within this framework, we provide the first systematic treatment of affine and scale invariance in the matrix-parameterized setting, establishing necessary and sufficient conditions under generalized norms. Building on this foundation, we introduce two new methods, $\texttt{MuAdam}$ and $\texttt{MuAdam-SANIA}$, which combine the spectral geometry of Muon with Adam-style preconditioning. Our experiments demonstrate that these optimizers are competitive with, and in some cases outperform, existing state-of-the-art methods. Our code is available at https://github.com/brain-lab-research/LIB/tree/quasi_descent

Authors:Yuan Xu, Zimu Zhang, Xiaoxuan Ma, Wentao Zhu, Yu Qiao, Yizhou Wang
Title: Seeing My Future: Predicting Situated Interaction Behavior in Virtual Reality
Abstract:
Virtual and augmented reality systems increasingly demand intelligent adaptation to user behaviors for enhanced interaction experiences. Achieving this requires accurately understanding human intentions and predicting future situated behaviors - such as gaze direction and object interactions - which is vital for creating responsive VR/AR environments and applications like personalized assistants. However, accurate behavioral prediction demands modeling the underlying cognitive processes that drive human-environment interactions. In this work, we introduce a hierarchical, intention-aware framework that models human intentions and predicts detailed situated behaviors by leveraging cognitive mechanisms. Given historical human dynamics and the observation of scene contexts, our framework first identifies potential interaction targets and forecasts fine-grained future behaviors. We propose a dynamic Graph Convolutional Network (GCN) to effectively capture human-environment relationships. Extensive experiments on challenging real-world benchmarks and live VR environment demonstrate the effectiveness of our approach, achieving superior performance across all metrics and enabling practical applications for proactive VR systems that anticipate user behaviors and adapt virtual environments accordingly.

Authors:Ali Atiah Alzahrani
Title: Deep Signature and Neural RDE Methods for Path-Dependent Portfolio Optimization
Abstract:
We present a deep BSDE and 2BSDE solver that combines truncated log signatures with a neural rough differential equation backbone for high dimensional, path dependent valuation and control. The design aligns stochastic analysis with sequence to path learning, using a CVaR tilted objective to emphasize left tail risk and an optional second order head for risk sensitive control. Under equal compute and parameter budgets, the method improves accuracy, tail fidelity, and training stability across Asian and barrier option pricing and portfolio control tasks. At 200 dimensions, it achieves CVaR(0.99) = 9.8 percent compared to 12.0-13.1 percent for strong baselines, while attaining low HJB residuals and small RMSE for Z and Gamma. Ablations confirm complementary gains from the sequence to path representation and the second order structure. Overall, the results show that combining stochastic analysis with modern deep learning expands the class of solvable path dependent financial models at scale.

Authors:Shelly Golan, Yotam Nitzan, Zongze Wu, Or Patashnik
Title: VLM-Guided Adaptive Negative Prompting for Creative Generation
Abstract:
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.

Authors:Mamoona Ghafoor, Tatsuya Akutsu
Title: Designing ReLU Generative Networks to Enumerate Trees with a Given Tree Edit Distance
Abstract:
The generation of trees with a specified tree edit distance has significant applications across various fields, including computational biology, structured data analysis, and image processing. Recently, generative networks have been increasingly employed to synthesize new data that closely resembles the original datasets. However, the appropriate size and depth of generative networks required to generate data with a specified tree edit distance remain unclear. In this paper, we theoretically establish the existence and construction of generative networks capable of producing trees similar to a given tree with respect to the tree edit distance. Specifically, for a given rooted, ordered, and vertex-labeled tree T of size n + 1 with labels from an alphabet Σ, and a non-negative integer d, we prove that all rooted, ordered, and vertex-labeled trees over Σwith tree edit distance at most d from T can be generated using a ReLU-based generative network with size O(n^3 ) and constant depth. The proposed networks were implemented and evaluated for generating trees with up to 21 nodes. Due to their deterministic architecture, the networks successfully generated all valid trees within the specified tree edit distance. In contrast, state-of-the-art graph generative models GraphRNN and GraphGDP, which rely on non-deterministic mechanisms, produced significantly fewer valid trees, achieving validation rates of only up to 35% and 48%, respectively. These findings provide a theoretical foundation towards construction of compact generative models and open new directions for exact and valid tree-structured data generation. An implementation of the proposed networks is available at https://github.com/MGANN-KU/TreeGen_ReLUNetworks.

Authors:Zichun Yu, Chenyan Xiong
Title: RePro: Training Language Models to Faithfully Recycle the Web for Pretraining
Abstract:
High-quality pretraining data is the fossil fuel of large language models (LLMs), yet its reserves are running low for frontier models. In this paper, we introduce RePro, a novel web recycling method that trains a relatively small LM with reinforcement learning to generate effective and faithful rephrasings of pretraining data. Specifically, we design one quality reward and three faithfulness rewards, optimizing the LM rephraser to convert organic data into high-quality rephrasings while maintaining its core semantics and structure. In our experiment, we train a 4B rephraser to recycle 72B tokens sampled from DCLM-RefinedWeb. Pretraining results on 400M and 1.4B models demonstrate that RePro delivers 4.7%-14.0% relative accuracy gains over organic-only baseline on 22 downstream tasks. RePro also outperforms ReWire, the state-of-the-art web recycling method that prompts a 70B rephraser, as well as the organic baseline with a 4x larger data pool. Experiments with different amounts of recycled data highlight that RePro improves organic data efficiency by 2-3x. Individual and distributional analyses validate that RePro preserves more critical information and faithfully reflects the characteristics of organic data compared to prompting-based methods. Together, these results show that RePro provides an efficient and controllable path to effectively harness the fossil fuel of LLM pretraining. We open-source our code, rephraser, and recycled data at https://github.com/cxcscmu/RePro.

Authors:Yuxiang Luo, Qing Xu, Hai Huang, Yuqi Ouyang, Zhen Chen, Wenting Duan
Title: MSM-Seg: A Modality-and-Slice Memory Framework with Category-Agnostic Prompting for Multi-Modal Brain Tumor Segmentation
Abstract:
Multi-modal brain tumor segmentation is critical for clinical diagnosis, and it requires accurate identification of distinct internal anatomical subregions. While the recent prompt-based segmentation paradigms enable interactive experiences for clinicians, existing methods ignore cross-modal correlations and rely on labor-intensive category-specific prompts, limiting their applicability in real-world scenarios. To address these issues, we propose a MSM-Seg framework for multi-modal brain tumor segmentation. The MSM-Seg introduces a novel dual-memory segmentation paradigm that synergistically integrates multi-modal and inter-slice information with the efficient category-agnostic prompt for brain tumor understanding. To this end, we first devise a modality-and-slice memory attention (MSMA) to exploit the cross-modal and inter-slice relationships among the input scans. Then, we propose a multi-scale category-agnostic prompt encoder (MCP-Encoder) to provide tumor region guidance for decoding. Moreover, we devise a modality-adaptive fusion decoder (MF-Decoder) that leverages the complementary decoding information across different modalities to improve segmentation accuracy. Extensive experiments on different MRI datasets demonstrate that our MSM-Seg framework outperforms state-of-the-art methods in multi-modal metastases and glioma tumor segmentation. The code is available at https://github.com/xq141839/MSM-Seg.

Authors:Mukul Lokhande, Tanushree Dewangan, Mohd Sharik Mansoori, Tejas Chaudhari, Akarsh J., Damayanti Lokhande, Adam Teman, Santosh Kumar Vishvakarma
Title: Bhasha-Rupantarika: Algorithm-Hardware Co-design approach for Multilingual Neural Machine Translation
Abstract:
This paper introduces Bhasha-Rupantarika, a light and efficient multilingual translation system tailored through algorithm-hardware codesign for resource-limited settings. The method investigates model deployment at sub-octet precision levels (FP8, INT8, INT4, and FP4), with experimental results indicating a 4.1x reduction in model size (FP4) and a 4.2x speedup in inference speed, which correlates with an increased throughput of 66 tokens/s (improvement by 4.8x). This underscores the importance of ultra-low precision quantization for real-time deployment in IoT devices using FPGA accelerators, achieving performance on par with expectations. Our evaluation covers bidirectional translation between Indian and international languages, showcasing its adaptability in low-resource linguistic contexts. The FPGA deployment demonstrated a 1.96x reduction in LUTs and a 1.65x decrease in FFs, resulting in a 2.2x enhancement in throughput compared to OPU and a 4.6x enhancement compared to HPTA. Overall, the evaluation provides a viable solution based on quantisation-aware translation along with hardware efficiency suitable for deployable multilingual AI systems. The entire codes [https://github.com/mukullokhande99/Bhasha-Rupantarika/] and dataset for reproducibility are publicly available, facilitating rapid integration and further development by researchers.

Authors:Gaojian Wang, Feng Lin, Tong Wu, Zhisheng Yan, Kui Ren
Title: Scalable Face Security Vision Foundation Model for Deepfake, Diffusion, and Spoofing Detection
Abstract:
With abundant, unlabeled real faces, how can we learn robust and transferable facial representations to boost generalization across various face security tasks? We make the first attempt and propose FS-VFM, a scalable self-supervised pre-training framework, to learn fundamental representations of real face images. We introduce three learning objectives, namely 3C, that synergize masked image modeling (MIM) and instance discrimination (ID), empowering FS-VFM to encode both local patterns and global semantics of real faces. Specifically, we formulate various facial masking strategies for MIM and devise a simple yet effective CRFR-P masking, which explicitly prompts the model to pursue meaningful intra-region Consistency and challenging inter-region Coherency. We present a reliable self-distillation mechanism that seamlessly couples MIM with ID to establish underlying local-to-global Correspondence. After pre-training, vanilla vision transformers (ViTs) serve as universal Vision Foundation Models for downstream Face Security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forensics. To efficiently transfer the pre-trained FS-VFM, we further propose FS-Adapter, a lightweight plug-and-play bottleneck atop the frozen backbone with a novel real-anchor contrastive objective. Extensive experiments on 11 public benchmarks demonstrate that our FS-VFM consistently generalizes better than diverse VFMs, spanning natural and facial domains, fully, weakly, and self-supervised paradigms, small, base, and large ViT scales, and even outperforms SOTA task-specific methods, while FS-Adapter offers an excellent efficiency-performance trade-off. The code and models are available on https://fsfm-3c.github.io/fsvfm.html.

Authors:Hao Shan, Ruikai Li, Han Jiang, Yizhe Fan, Ziyang Yan, Bohan Li, Xiaoshuai Hao, Hao Zhao, Zhiyong Cui, Yilong Ren, Haiyang Yu
Title: Stability Under Scrutiny: Benchmarking Representation Paradigms for Online HD Mapping
Abstract:
As one of the fundamental modules in autonomous driving, online high-definition (HD) maps have attracted significant attention due to their cost-effectiveness and real-time capabilities. Since vehicles always cruise in highly dynamic environments, spatial displacement of onboard sensors inevitably causes shifts in real-time HD mapping results, and such instability poses fundamental challenges for downstream tasks. However, existing online map construction models tend to prioritize improving each frame's mapping accuracy, while the mapping stability has not yet been systematically studied. To fill this gap, this paper presents the first comprehensive benchmark for evaluating the temporal stability of online HD mapping models. We propose a multi-dimensional stability evaluation framework with novel metrics for Presence, Localization, and Shape Stability, integrated into a unified mean Average Stability (mAS) score. Extensive experiments on 42 models and variants show that accuracy (mAP) and stability (mAS) represent largely independent performance dimensions. We further analyze the impact of key model design choices on both criteria, identifying architectural and training factors that contribute to high accuracy, high stability, or both. To encourage broader focus on stability, we will release a public benchmark. Our work highlights the importance of treating temporal stability as a core evaluation criterion alongside accuracy, advancing the development of more reliable autonomous driving systems. The benchmark toolkit, code, and models will be available at https://stablehdmap.github.io/.

Authors:Chenlong He, Zijing Dong, Min Li, Zhijian Hao, Leilei Huang, Xiaoyang Zeng, Yibo Fan
Title: JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding
Abstract:
Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available at https://github.com/viplab-fudan/FJNDF-Pytorch.

Authors:Piyush Pant, Marcellius William Suntoro, Ayesha Siddiqua, Muhammad Shehryaar Sharif, Daniyal Ahmed
Title: Equity-Aware Geospatial AI for Forecasting Demand-Driven Hospital Locations in Germany
Abstract:
This paper presents EA-GeoAI, an integrated framework for demand forecasting and equitable hospital planning in Germany through 2030. We combine district-level demographic shifts, aging population density, and infrastructure balances into a unified Equity Index. An interpretable Agentic AI optimizer then allocates beds and identifies new facility sites to minimize unmet need under budget and travel-time constraints. This approach bridges GeoAI, long-term forecasting, and equity measurement to deliver actionable recommendations for policymakers.

Authors:Shaoning Li, Le Zhuo, Yusong Wang, Mingyu Li, Xinheng He, Fandi Wu, Hongsheng Li, Pheng-Ann Heng
Title: ProteinAE: Protein Diffusion Autoencoders for Structure Encoding
Abstract:
Developing effective representations of protein structures is essential for advancing protein science, particularly for protein generative modeling. Current approaches often grapple with the complexities of the SE(3) manifold, rely on discrete tokenization, or the need for multiple training objectives, all of which can hinder the model optimization and generalization. We introduce ProteinAE, a novel and streamlined protein diffusion autoencoder designed to overcome these challenges by directly mapping protein backbone coordinates from E(3) into a continuous, compact latent space. ProteinAE employs a non-equivariant Diffusion Transformer with a bottleneck design for efficient compression and is trained end-to-end with a single flow matching objective, substantially simplifying the optimization pipeline. We demonstrate that ProteinAE achieves state-of-the-art reconstruction quality, outperforming existing autoencoders. The resulting latent space serves as a powerful foundation for a latent diffusion model that bypasses the need for explicit equivariance. This enables efficient, high-quality structure generation that is competitive with leading structure-based approaches and significantly outperforms prior latent-based methods. Code is available at https://github.com/OnlyLoveKFC/ProteinAE_v1.

Authors:Bowei He, Lihao Yin, Huiling Zhen, Shuqi Liu, Han Wu, Xiaokun Zhang, Mingxuan Yuan, Chen Ma
Title: Preserving LLM Capabilities through Calibration Data Curation: From Analysis to Optimization
Abstract:
Post-training compression has been a widely employed approach to scale down large language model (LLM) and facilitate efficient inference. In various proposed compression methods, including pruning and quantization, calibration data plays a vital role by informing the weight importance and activation dynamic ranges. However, how calibration data impacts the LLM capability after compression is less explored. Few of the existing works, though recognizing the significance of this study, only investigate the language modeling or commonsense reasoning performance degradation from limited angles, like the data sources or sample amounts. More systematic research is still needed to examine the impacts on different LLM capabilities in terms of compositional properties and domain correspondence of calibration data. In this work, we aim at bridging this gap and further analyze underlying influencing mechanisms from the activation pattern perspective. Especially, we explore the calibration data's impacts on high-level complex reasoning capabilities, like math problem solving and code generation. Delving into the underlying mechanism, we find that the representativeness and diversity in activation space more fundamentally determine the quality of calibration data. Finally, we propose a calibration data curation framework based on such observations and analysis, enhancing the performance of existing post-training compression methods on preserving critical LLM capabilities. Our code is provided in \href{https://github.com/BokwaiHo/COLA.git}{Link}.

Authors:Jingchao Wang, Wenlong Zhang, Dingjiang Huang, Hong Wang, Yefeng Zheng
Title: A Simple and Better Baseline for Visual Grounding
Abstract:
Visual grounding aims to predict the locations of target objects specified by textual descriptions. For this task with linguistic and visual modalities, there is a latest research line that focuses on only selecting the linguistic-relevant visual regions for object localization to reduce the computational overhead. Albeit achieving impressive performance, it is iteratively performed on different image scales, and at every iteration, linguistic features and visual features need to be stored in a cache, incurring extra overhead. To facilitate the implementation, in this paper, we propose a feature selection-based simple yet effective baseline for visual grounding, called FSVG. Specifically, we directly encapsulate the linguistic and visual modalities into an overall network architecture without complicated iterative procedures, and utilize the language in parallel as guidance to facilitate the interaction between linguistic modal and visual modal for extracting effective visual features. Furthermore, to reduce the computational cost, during the visual feature learning, we introduce a similarity-based feature selection mechanism to only exploit language-related visual features for faster prediction. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that the proposed FSVG achieves a better balance between accuracy and efficiency beyond the current state-of-the-art methods. Code is available at https://github.com/jcwang0602/FSVG.

Authors:Liang Li, Zhou Yang, Xiaofei Zhu
Title: Multi-Granularity Sequence Denoising with Weakly Supervised Signal for Sequential Recommendation
Abstract:
Sequential recommendation aims to predict the next item based on user interests in historical interaction sequences. Historical interaction sequences often contain irrelevant noisy items, which significantly hinders the performance of recommendation systems. Existing research employs unsupervised methods that indirectly identify item-granularity irrelevant noise by predicting the ground truth item. Since these methods lack explicit noise labels, they are prone to misidentify users' interested items as noise. Additionally, while these methods focus on removing item-granularity noise driven by the ground truth item, they overlook interest-granularity noise, limiting their ability to perform broader denoising based on user interests. To address these issues, we propose Multi-Granularity Sequence Denoising with Weakly Supervised Signal for Sequential Recommendation(MGSD-WSS). MGSD-WSS first introduces the Multiple Gaussian Kernel Perceptron module to map the original and enhance sequence into a common representation space and utilizes weakly supervised signals to accurately identify noisy items in the historical interaction sequence. Subsequently, it employs the item-granularity denoising module with noise-weighted contrastive learning to obtain denoised item representations. Then, it extracts target interest representations from the ground truth item and applies noise-weighted contrastive learning to obtain denoised interest representations. Finally, based on the denoised item and interest representations, MGSD-WSS predicts the next item. Extensive experiments on five datasets demonstrate that the proposed method significantly outperforms state-of-the-art sequence recommendation and denoising models. Our code is available at https://github.com/lalunex/MGSD-WSS.

Authors:Binyu Zhao, Wei Zhang, Zhaonian Zou
Title: MCE: Towards a General Framework for Handling Missing Modalities under Imbalanced Missing Rates
Abstract:
Multi-modal learning has made significant advances across diverse pattern recognition applications. However, handling missing modalities, especially under imbalanced missing rates, remains a major challenge. This imbalance triggers a vicious cycle: modalities with higher missing rates receive fewer updates, leading to inconsistent learning progress and representational degradation that further diminishes their contribution. Existing methods typically focus on global dataset-level balancing, often overlooking critical sample-level variations in modality utility and the underlying issue of degraded feature quality. We propose Modality Capability Enhancement (MCE) to tackle these limitations. MCE includes two synergistic components: i) Learning Capability Enhancement (LCE), which introduces multi-level factors to dynamically balance modality-specific learning progress, and ii) Representation Capability Enhancement (RCE), which improves feature semantics and robustness through subset prediction and cross-modal completion tasks. Comprehensive evaluations on four multi-modal benchmarks show that MCE consistently outperforms state-of-the-art methods under various missing configurations. The journal preprint version is now available at https://doi.org/10.1016/j.patcog.2025.112591. Our code is available at https://github.com/byzhaoAI/MCE.

Authors:Zihan Zhang, Xize Cheng, Zhennan Jiang, Dongjie Fu, Jingyuan Chen, Zhou Zhao, Tao Jin
Title: MARS-Sep: Multimodal-Aligned Reinforced Sound Separation
Abstract:
Universal sound separation faces a fundamental misalignment: models optimized for low-level signal metrics often produce semantically contaminated outputs, failing to suppress perceptually salient interference from acoustically similar sources. To bridge this gap, we introduce MARS-Sep, a reinforcement learning framework that reformulates separation as decision making. Instead of simply regressing ground-truth masks, MARS-Sep learns a factorized Beta mask policy that is optimized by a clipped trust-region surrogate with entropy regularization and group-relative advantage normalization. Concretely, we sample masks from a frozen old policy, reconstruct waveforms, and update the current policy using clipped importance ratios-yielding substantially more stable and sample-efficient learning. Multimodal rewards, derived from an audio-text-vision encoder, directly incentivize semantic consistency with query prompts. We further propose a progressive alignment scheme to fine-tune this encoder, boosting its cross-modal discriminability and improving reward faithfulness. Extensive experiments on multiple benchmarks demonstrate consistent gains in Text-, Audio-, and Image-Queried separation, with notable improvements in signal metrics and semantic quality. Our code is available at https://anonymous.4open.science/r/MARS-Sep. Sound separation samples are available at https://mars-sep.github.io/.

Authors:Yuteng Ye, Zheng Zhang, Qinchuan Zhang, Di Wang, Youjia Zhang, Wenxiao Zhang, Wei Yang, Yuan Liu
Title: Jigsaw3D: Disentangled 3D Style Transfer via Patch Shuffling and Masking
Abstract:
Controllable 3D style transfer seeks to restyle a 3D asset so that its textures match a reference image while preserving the integrity and multi-view consistency. The prevalent methods either rely on direct reference style token injection or score-distillation from 2D diffusion models, which incurs heavy per-scene optimization and often entangles style with semantic content. We introduce Jigsaw3D, a multi-view diffusion based pipeline that decouples style from content and enables fast, view-consistent stylization. Our key idea is to leverage the jigsaw operation - spatial shuffling and random masking of reference patches - to suppress object semantics and isolate stylistic statistics (color palettes, strokes, textures). We integrate these style cues into a multi-view diffusion model via reference-to-view cross-attention, producing view-consistent stylized renderings conditioned on the input mesh. The renders are then style-baked onto the surface to yield seamless textures. Across standard 3D stylization benchmarks, Jigsaw3D achieves high style fidelity and multi-view consistency with substantially lower latency, and generalizes to masked partial reference stylization, multi-object scene styling, and tileable texture generation. Project page is available at: https://babahui.github.io/jigsaw3D.github.io/

Authors:Norbert Tihanyi, Bilel Cherif, Richard A. Dubniczky, Mohamed Amine Ferrag, Tamás Bisztray
Title: The Hidden DNA of LLM-Generated JavaScript: Structural Patterns Enable High-Accuracy Authorship Attribution
Abstract:
In this paper, we present the first large-scale study exploring whether JavaScript code generated by Large Language Models (LLMs) can reveal which model produced it, enabling reliable authorship attribution and model fingerprinting. With the rapid rise of AI-generated code, attribution is playing a critical role in detecting vulnerabilities, flagging malicious content, and ensuring accountability. While AI-vs-human detection usually treats AI as a single category we show that individual LLMs leave unique stylistic signatures, even among models belonging to the same family or parameter size. To this end, we introduce LLM-NodeJS, a dataset of 50,000 Node.js back-end programs from 20 large language models. Each has four transformed variants, yielding 250,000 unique JavaScript samples and two additional representations (JSIR and AST) for diverse research applications. Using this dataset, we benchmark traditional machine learning classifiers against fine-tuned Transformer encoders and introduce CodeT5-JSA, a custom architecture derived from the 770M-parameter CodeT5 model with its decoder removed and a modified classification head. It achieves 95.8% accuracy on five-class attribution, 94.6% on ten-class, and 88.5% on twenty-class tasks, surpassing other tested models such as BERT, CodeBERT, and Longformer. We demonstrate that classifiers capture deeper stylistic regularities in program dataflow and structure, rather than relying on surface-level features. As a result, attribution remains effective even after mangling, comment removal, and heavy code transformations. To support open science and reproducibility, we release the LLM-NodeJS dataset, Google Colab training scripts, and all related materials on GitHub: https://github.com/LLM-NodeJS-dataset.

Authors:Yunlong Deng, Guangyi Chen, Tianpei Gu, Lingjing Kong, Yan Li, Zeyu Tang, Kun Zhang
Title: Towards Self-Refinement of Vision-Language Models with Triangular Consistency
Abstract:
Vision-Language Models (VLMs) integrate visual knowledge with the analytical capabilities of Large Language Models (LLMs) through supervised visual instruction tuning, using image-question-answer triplets. However, the potential of VLMs trained without supervised instruction remains largely unexplored. This study validates that VLMs possess inherent self-refinement capabilities, enabling them to generate high-quality supervised data without external inputs and thereby learn autonomously. Specifically, to stimulate the self-refinement ability of VLMs, we propose a self-refinement framework based on a Triangular Consistency principle: within the image-query-answer triangle, any masked elements should be consistently and accurately reconstructed. The framework involves three steps: (1) We enable the instruction generation ability of VLMs by adding multi-task instruction tuning like image$\rightarrow$question-answer or image-answer$\rightarrow$question. (2) We generate image-query-answer triplets from unlabeled images and use the Triangular Consistency principle for filtering. (3) The model is further updated using the filtered synthetic data. To investigate the underlying mechanisms behind this self-refinement capability, we conduct a theoretical analysis from a causal perspective. Using the widely recognized LLaVA-1.5 as our baseline, our experiments reveal that the model can autonomously achieve consistent, though deliberately modest, improvements across multiple benchmarks without any external supervision, such as human annotations or environmental feedback. We expect that the insights of this study on the self-refinement ability of VLMs can inspire future research on the learning mechanism of VLMs. Code is available at https://github.com/dengyl20/SRF-LLaVA-1.5.

Authors:Zhijian Zhou, Liuhua Peng, Xunye Tian, Feng Liu
Title: Anchor-based Maximum Discrepancy for Relative Similarity Testing
Abstract:
The relative similarity testing aims to determine which of the distributions, P or Q, is closer to an anchor distribution U. Existing kernel-based approaches often test the relative similarity with a fixed kernel in a manually specified alternative hypothesis, e.g., Q is closer to U than P. Although kernel selection is known to be important to kernel-based testing methods, the manually specified hypothesis poses a significant challenge for kernel selection in relative similarity testing: Once the hypothesis is specified first, we can always find a kernel such that the hypothesis is rejected. This challenge makes relative similarity testing ill-defined when we want to select a good kernel after the hypothesis is specified. In this paper, we cope with this challenge via learning a proper hypothesis and a kernel simultaneously, instead of learning a kernel after manually specifying the hypothesis. We propose an anchor-based maximum discrepancy (AMD), which defines the relative similarity as the maximum discrepancy between the distances of (U, P) and (U, Q) in a space of deep kernels. Based on AMD, our testing incorporates two phases. In Phase I, we estimate the AMD over the deep kernel space and infer the potential hypothesis. In Phase II, we assess the statistical significance of the potential hypothesis, where we propose a unified testing framework to derive thresholds for tests over different possible hypotheses from Phase I. Lastly, we validate our method theoretically and demonstrate its effectiveness via extensive experiments on benchmark datasets. Codes are publicly available at: https://github.com/zhijianzhouml/AMD.

Authors:Qiran Zou, Hou Hei Lam, Wenhao Zhao, Yiming Tang, Tingting Chen, Samson Yu, Tianyi Zhang, Chang Liu, Xiangyang Ji, Dianbo Liu
Title: FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth
Abstract:
Large language models (LLMs) have sparked growing interest in automatic machine learning research agents. Among them, agents capable of autonomously proposing ideas and conducting machine learning experiments are particularly promising, as they maximize research automation and accelerate scientific progress by iteratively refining ideas based on experimental results. However, comprehensively evaluating such agents remains challenging. Existing benchmarks tend to overemphasize engineering aspects while neglecting academic rigor, creating barriers that obscure a clear assessment of an agent's scientific capabilities in machine learning research. They also suffer from limited task diversity, an overemphasis on application-oriented tasks over fundamental research problems, and limited scalability to realistic research settings. To address these limitations, we introduce FML-bench, a benchmark designed to evaluate automatic machine learning research agents on 8 diverse and fundamental machine learning research problems. It reduces coding burden, emphasizes fundamental problems rather than specific use cases, offers high task diversity, and is extensible to real-world machine learning GitHub repositories. Furthermore, we present a unified evaluation framework with five complementary metrics, designed to comprehensively assess agent performance on our benchmark. We evaluate state-of-the-art automatic research agents on FML-bench, and find that agents employing broad research exploration strategies outperform those focusing on narrow but deep exploration. These findings suggest that emphasizing the breadth of exploration may lead to more effective research outcomes than focusing solely on incremental refinement. Our benchmark is available at https://github.com/qrzou/FML-bench.

Authors:Zhichao Xu, Minheng Wang, Yawei Wang, Wenqian Ye, Yuntao Du, Yunpu Ma, Yijun Tian
Title: RECON: Reasoning with Condensation for Efficient Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) systems trained using reinforcement learning (RL) with reasoning are hampered by inefficient context management, where long, noisy retrieved documents increase costs and degrade performance. We introduce RECON (REasoning with CONdensation), a framework that integrates an explicit summarization module to compress evidence within the reasoning loop. Our summarizer is trained via a two-stage process: relevance pretraining on QA datasets, followed by multi-aspect distillation from proprietary LLMs to ensure factuality and clarity. Integrated into the Search-R1 pipeline, RECON reduces total context length by 35\%, leading to improved training speed and inference latency, while simultaneously improving RAG performance on downstream QA benchmarks. Notably, it boosts the average EM score of the 3B model by 14.5\% and the 7B model by 3.0\%, showing particular strength in multi-hop QA. RECON demonstrates that learned context compression is essential for building practical, scalable, and performant RAG systems. Our code implementation is made available at https://github.com/allfornancy/RECON.

Authors:Zixiang Xu, Menghui Zhou, Jun Qi, Xuanhan Fan, Yun Yang, Po Yang
Title: Multi-Task Learning with Feature-Similarity Laplacian Graphs for Predicting Alzheimer's Disease Progression
Abstract:
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder in aging populations, posing a significant and escalating burden on global healthcare systems. While Multi-Tusk Learning (MTL) has emerged as a powerful computational paradigm for modeling longitudinal AD data, existing frameworks do not account for the time-varying nature of feature correlations. To address this limitation, we propose a novel MTL framework, named Feature Similarity Laplacian graph Multi-Task Learning (MTL-FSL). Our framework introduces a novel Feature Similarity Laplacian (FSL) penalty that explicitly models the time-varying relationships between features. By simultaneously considering temporal smoothness among tasks and the dynamic correlations among features, our model enhances both predictive accuracy and biological interpretability. To solve the non-smooth optimization problem arising from our proposed penalty terms, we adopt the Alternating Direction Method of Multipliers (ADMM) algorithm. Experiments conducted on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed MTL-FSL framework achieves state-of-the-art performance, outperforming various baseline methods. The implementation source can be found at https://github.com/huatxxx/MTL-FSL.

Authors:Geunyeong Jeong, Juoh Sun, Seonghee Lee, Harksoo Kim
Title: STEAM: A Semantic-Level Knowledge Editing Framework for Large Language Models
Abstract:
Large Language Models store extensive factual knowledge acquired during large-scale pre-training. However, this knowledge is inherently static, reflecting only the state of the world at the time of training. Knowledge editing has emerged as a promising solution for updating outdated or incorrect facts without full retraining. However, most existing locate-and-edit methods primarily focus on token-level likelihood optimization without addressing semantic coherence. Our analysis reveals that such edited knowledge is often encoded as isolated residual streams in the model's latent space, distinct from pre-existing knowledge and bypassing natural reasoning process. To address this, we propose \textsc{Steam}, a semantic-level knowledge editing framework that enhances integration of updated knowledge into the model's knowledge structure. \textsc{Steam} first identifies target representations as semantic anchors for the updated factual association, then guides the internal representation of the edited fact towards these anchors through an alignment loss during optimization. Experimental results demonstrate that \textsc{Steam} improves model's ability to reason with edited knowledge and enhances semantic coherence, underscoring the importance of latent-space alignment for reliable and coherent knowledge editing. The code is available at https://github.com/GY-Jeong/STEAM.

Authors:Rohan Gupta, Trevor Asbery, Zain Merchant, Abrar Anwar, Jesse Thomason
Title: RobotFleet: An Open-Source Framework for Centralized Multi-Robot Task Planning
Abstract:
Coordinating heterogeneous robot fleets to achieve multiple goals is challenging in multi-robot systems. We introduce an open-source and extensible framework for centralized multi-robot task planning and scheduling that leverages LLMs to enable fleets of heterogeneous robots to accomplish multiple tasks. RobotFleet provides abstractions for planning, scheduling, and execution across robots deployed as containerized services to simplify fleet scaling and management. The framework maintains a shared declarative world state and two-way communication for task execution and replanning. By modularizing each layer of the autonomy stack and using LLMs for open-world reasoning, RobotFleet lowers the barrier to building scalable multi-robot systems. The code can be found here: https://github.com/therohangupta/robot-fleet.

Authors:Kenichi Satoh
Title: Applying non-negative matrix factorization with covariates to label matrix for classification
Abstract:
Non-negative matrix factorization (NMF) is widely used for dimensionality reduction and interpretable analysis, but standard formulations are unsupervised and cannot directly exploit class labels. Existing supervised or semi-supervised extensions usually incorporate labels only via penalties or graph constraints, still requiring an external classifier. We propose \textit{NMF-LAB} (Non-negative Matrix Factorization for Label Matrix), which redefines classification as the inverse problem of non-negative matrix tri-factorization (tri-NMF). Unlike joint NMF methods, which reconstruct both features and labels, NMF-LAB directly factorizes the label matrix $Y$ as the observation, while covariates $A$ are treated as given explanatory variables. This yields a direct probabilistic mapping from covariates to labels, distinguishing our method from label-matrix factorization approaches that mainly model label correlations or impute missing labels. Our inversion offers two key advantages: (i) class-membership probabilities are obtained directly from the factorization without a separate classifier, and (ii) covariates, including kernel-based similarities, can be seamlessly integrated to generalize predictions to unseen samples. In addition, unlabeled data can be encoded as uniform distributions, supporting semi-supervised learning. Experiments on diverse datasets, from small-scale benchmarks to the large-scale MNIST dataset, demonstrate that NMF-LAB achieves competitive predictive accuracy, robustness to noisy or incomplete labels, and scalability to high-dimensional problems, while preserving interpretability. By unifying regression and classification within the tri-NMF framework, NMF-LAB provides a novel, probabilistic, and scalable approach to modern classification tasks.

Authors:Ling Zhang, Shaleen Deep, Jignesh M. Patel, Karthikeyan Sankaralingam
Title: Regular Expression Indexing for Log Analysis. Extended Version
Abstract:
In this paper, we present the design and architecture of REI, a novel system for indexing log data for regular expression queries. Our main contribution is an $n$-gram-based indexing strategy and an efficient storage mechanism that results in a speedup of up to 14x compared to state-of-the-art regex processing engines that do not use indexing, using only 2.1% of extra space. We perform a detailed study that analyzes the space usage of the index and the improvement in workload execution time, uncovering interesting insights. Specifically, we show that even an optimized implementation of strategies such as inverted indexing, which are widely used in text processing libraries, may lead to suboptimal performance for regex indexing on log analysis tasks. Overall, the REI approach presented in this paper provides a significant boost when evaluating regular expression queries on log data. REI is also modular and can work with existing regular expression packages, making it easy to deploy in a variety of settings. The code of REI is available at https://github.com/mush-zhang/REI-Regular-Expression-Indexing.

Authors:Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou, Yilun Chen, Jia Zeng, Ya-Qin Zhang, Jiangmiao Pang, Jingjing Liu, Tai Wang, Xianyuan Zhan
Title: X-VLA: Soft-Prompted Transformer as Scalable Cross-Embodiment Vision-Language-Action Model
Abstract:
Successful generalist Vision-Language-Action (VLA) models rely on effective training across diverse robotic platforms with large-scale, cross-embodiment, heterogeneous datasets. To facilitate and leverage the heterogeneity in rich, diverse robotic data sources, we propose a novel Soft Prompt approach with minimally added parameters, by infusing prompt learning concepts into cross-embodiment robot learning and introducing separate sets of learnable embeddings for each distinct data source. These embeddings serve as embodiment-specific prompts, which in unity empower VLA models with effective exploitation of varying cross-embodiment features. Our new X-VLA, a neat flow-matching-based VLA architecture, relies exclusively on soft-prompted standard Transformer encoders, enjoying both scalability and simplicity. Evaluated across 6 simulations as well as 3 real-world robots, our 0.9B instantiation-X-VLA-0.9B simultaneously achieves SOTA performance over a sweep of benchmarks, demonstrating superior results on a wide axes of capabilities, from flexible dexterity to quick adaptation across embodiments, environments, and tasks. Website: https://thu-air-dream.github.io/X-VLA/

Authors:Vincent Schoenbach, Marvin Wiedemann, Raphael Memmesheimer, Malte Mosbach, Sven Behnke
Title: Integration of the TIAGo Robot into Isaac Sim with Mecanum Drive Modeling and Learned S-Curve Velocity Profiles
Abstract:
Efficient physics simulation has significantly accelerated research progress in robotics applications such as grasping and assembly. The advent of GPU-accelerated simulation frameworks like Isaac Sim has particularly empowered learning-based methods, enabling them to tackle increasingly complex tasks. The PAL Robotics TIAGo++ Omni is a versatile mobile manipulator equipped with a mecanum-wheeled base, allowing omnidirectional movement and a wide range of task capabilities. However, until now, no model of the robot has been available in Isaac Sim. In this paper, we introduce such a model, calibrated to approximate the behavior of the real robot, with a focus on its omnidirectional drive dynamics. We present two control models for the omnidirectional drive: a physically accurate model that replicates real-world wheel dynamics and a lightweight velocity-based model optimized for learning-based applications. With these models, we introduce a learning-based calibration approach to approximate the real robot's S-shaped velocity profile using minimal trajectory data recordings. This simulation should allow researchers to experiment with the robot and perform efficient learning-based control in diverse environments. We provide the integration publicly at https://github.com/AIS-Bonn/tiago_isaac.

Authors:Jian Zhu, Zhidong Lin, Wensheng Gan, Ruichu Cai, Zhifeng Hao, Philip S. Yu
Title: Efficient Mining of Low-Utility Sequential Patterns
Abstract:
Discovering valuable insights from rich data is a crucial task for exploratory data analysis. Sequential pattern mining (SPM) has found widespread applications across various domains. In recent years, low-utility sequential pattern mining (LUSPM) has shown strong potential in applications such as intrusion detection and genomic sequence analysis. However, existing research in utility-based SPM focuses on high-utility sequential patterns, and the definitions and strategies used in high-utility SPM cannot be directly applied to LUSPM. Moreover, no algorithms have yet been developed specifically for mining low-utility sequential patterns. To address these problems, we formalize the LUSPM problem, redefine sequence utility, and introduce a compact data structure called the sequence-utility chain to efficiently record utility information. Furthermore, we propose three novel algorithm--LUSPM_b, LUSPM_s, and LUSPM_e--to discover the complete set of low-utility sequential patterns. LUSPM_b serves as an exhaustive baseline, while LUSPM_s and LUSPM_e build upon it, generating subsequences through shrinkage and extension operations, respectively. In addition, we introduce the maximal non-mutually contained sequence set and incorporate multiple pruning strategies, which significantly reduce redundant operations in both LUSPM_s and LUSPM_e. Finally, extensive experimental results demonstrate that both LUSPM_s and LUSPM_e substantially outperform LUSPM_b and exhibit excellent scalability. Notably, LUSPM_e achieves superior efficiency, requiring less runtime and memory consumption than LUSPM_s. Our code is available at https://github.com/Zhidong-Lin/LUSPM.

Authors:Xuening Wu, Shenqin Yin, Yanlan Kang, Xinhang Zhang, Qianya Xu, Zeping Chen, Wenqiang Zhang
Title: SGM: A Statistical Godel Machine for Risk-Controlled Recursive Self-Modification
Abstract:
Recursive self-modification is increasingly central in AutoML, neural architecture search, and adaptive optimization, yet no existing framework ensures that such changes are made safely. Godel machines offer a principled safeguard by requiring formal proofs of improvement before rewriting code; however, such proofs are unattainable in stochastic, high-dimensional settings. We introduce the Statistical Godel Machine (SGM), the first statistical safety layer for recursive edits. SGM replaces proof-based requirements with statistical confidence tests (e-values, Hoeffding bounds), admitting a modification only when superiority is certified at a chosen confidence level, while allocating a global error budget to bound cumulative risk across rounds.We also propose Confirm-Triggered Harmonic Spending (CTHS), which indexes spending by confirmation events rather than rounds, concentrating the error budget on promising edits while preserving familywise validity.Experiments across supervised learning, reinforcement learning, and black-box optimization validate this role: SGM certifies genuine gains on CIFAR-100, rejects spurious improvement on ImageNet-100, and demonstrates robustness on RL and optimization benchmarks.Together, these results position SGM as foundational infrastructure for continual, risk-aware self-modification in learning systems.Code is available at: https://github.com/gravitywavelet/sgm-anon.

Authors:Manjiang Yu, Hongji Li, Priyanka Singh, Xue Li, Di Wang, Lijie Hu
Title: PIXEL: Adaptive Steering Via Position-wise Injection with eXact Estimated Levels under Subspace Calibration
Abstract:
Reliable behavior control is central to deploying large language models (LLMs) on the web. Activation steering offers a tuning-free route to align attributes (e.g., truthfulness) that ensure trustworthy generation. Prevailing approaches rely on coarse heuristics and lack a principled account of where to steer and how strongly to intervene. To this end, we propose Position-wise Injection with eXact Estimated Levels (PIXEL), a position-wise activation steering framework that, in contrast to prior work, learns a property-aligned subspace from dual views (tail-averaged and end-token) and selects intervention strength via a constrained geometric objective with a closed-form solution, thereby adapting to token-level sensitivity without global hyperparameter tuning. PIXEL further performs sample-level orthogonal residual calibration to refine the global attribute direction and employs a lightweight position-scanning routine to identify receptive injection sites. We additionally provide representation-level guarantees for the minimal-intervention rule, supporting reliable alignment. Across diverse models and evaluation paradigms, PIXEL consistently improves attribute alignment while preserving model general capabilities, offering a practical and principled method for LLMs' controllable generation. Our code is available at https://github.com/V1centNevwake/PIXEL-Adaptive-Steering

Authors:Jinghao Zhang, Naishan Zheng, Ruilin Li, Dongzhou Cheng, Zheming Liang, Feng Zhao, Jiaqi Wang
Title: RLFR: Extending Reinforcement Learning for LLMs with Flow Environment
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a promising framework for improving reasoning abilities in Large Language Models (LLMs). However, policy optimized with binary verification prone to overlook potential valuable exploration in reasoning trajectory. In view of heavy annotation cost of golden Process Reward Models (PRMs), recent works attempt using auxiliary signals for reward shaping of process tokens, involving entropy and likelihood collected from logit space. In this work, we offer a novel perspective on shaping RLVR with flow rewards derived from latent space, and propose RLFR, where the flow fields of model latents are constructed from either off-policy high-quality data and on-policy rejection sampling data, and the velocity deviations of policy latents within it are quantified to serve as a reward signal. RLFR first demonstrates that a well-established flow field can be a sound environment for reward signal collection, highlighting the expressive latent space is much underexplored. Moreover, RLFR is able to compress any off-policy expert data as reference for constituting reward signals, and we show that the efficient context dependence compressed within the hidden states are utilized, rather than individual token-level denotation for context comprehending. Experiments on both language and multimodal reasoning benchmarks demonstrate the reliability of flow rewards, and suggesting a promising paradigm for reward shaping with auxiliary signals.

Authors:Linfei Li, Fengyi Zhang, Zhong Wang, Lin Zhang, Ying Shen
Title: INR-Bench: A Unified Benchmark for Implicit Neural Representations in Multi-Domain Regression and Reconstruction
Abstract:
Implicit Neural Representations (INRs) have gained success in various signal processing tasks due to their advantages of continuity and infinite resolution. However, the factors influencing their effectiveness and limitations remain underexplored. To better understand these factors, we leverage insights from Neural Tangent Kernel (NTK) theory to analyze how model architectures (classic MLP and emerging KAN), positional encoding, and nonlinear primitives affect the response to signals of varying frequencies. Building on this analysis, we introduce INR-Bench, the first comprehensive benchmark specifically designed for multimodal INR tasks. It includes 56 variants of Coordinate-MLP models (featuring 4 types of positional encoding and 14 activation functions) and 22 Coordinate-KAN models with distinct basis functions, evaluated across 9 implicit multimodal tasks. These tasks cover both forward and inverse problems, offering a robust platform to highlight the strengths and limitations of different neural models, thereby establishing a solid foundation for future research. The code and dataset are available at https://github.com/lif314/INR-Bench.

Authors:Lei Gu, Yinghao Zhu, Haoran Sang, Zixiang Wang, Dehao Sui, Wen Tang, Ewen Harrison, Junyi Gao, Lequan Yu, Liantao Ma
Title: MedAgentAudit: Diagnosing and Quantifying Collaborative Failure Modes in Medical Multi-Agent Systems
Abstract:
While large language model (LLM)-based multi-agent systems show promise in simulating medical consultations, their evaluation is often confined to final-answer accuracy. This practice treats their internal collaborative processes as opaque "black boxes" and overlooks a critical question: is a diagnostic conclusion reached through a sound and verifiable reasoning pathway? The inscrutable nature of these systems poses a significant risk in high-stakes medical applications, potentially leading to flawed or untrustworthy conclusions. To address this, we conduct a large-scale empirical study of 3,600 cases from six medical datasets and six representative multi-agent frameworks. Through a rigorous, mixed-methods approach combining qualitative analysis with quantitative auditing, we develop a comprehensive taxonomy of collaborative failure modes. Our quantitative audit reveals four dominant failure patterns: flawed consensus driven by shared model deficiencies, suppression of correct minority opinions, ineffective discussion dynamics, and critical information loss during synthesis. This study demonstrates that high accuracy alone is an insufficient measure of clinical or public trust. It highlights the urgent need for transparent and auditable reasoning processes, a cornerstone for the responsible development and deployment of medical AI.

Authors:Yulin Wang, Mengting Hu, Hongli Li, Chen Luo
Title: HccePose(BF): Predicting Front \& Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation
Abstract:
In pose estimation for seen objects, a prevalent pipeline involves using neural networks to predict dense 3D coordinates of the object surface on 2D images, which are then used to establish dense 2D-3D correspondences. However, current methods primarily focus on more efficient encoding techniques to improve the precision of predicted 3D coordinates on the object's front surface, overlooking the potential benefits of incorporating the back surface and interior of the object. To better utilize the full surface and interior of the object, this study predicts 3D coordinates of both the object's front and back surfaces and densely samples 3D coordinates between them. This process creates ultra-dense 2D-3D correspondences, effectively enhancing pose estimation accuracy based on the Perspective-n-Point (PnP) algorithm. Additionally, we propose Hierarchical Continuous Coordinate Encoding (HCCE) to provide a more accurate and efficient representation of front and back surface coordinates. Experimental results show that, compared to existing state-of-the-art (SOTA) methods on the BOP website, the proposed approach outperforms across seven classic BOP core datasets. Code is available at https://github.com/WangYuLin-SEU/HCCEPose.

Authors:Cristiano Patrício, Luís F. Teixeira, João C. Neves
Title: ViConEx-Med: Visual Concept Explainability via Multi-Concept Token Transformer for Medical Image Analysis
Abstract:
Concept-based models aim to explain model decisions with human-understandable concepts. However, most existing approaches treat concepts as numerical attributes, without providing complementary visual explanations that could localize the predicted concepts. This limits their utility in real-world applications and particularly in high-stakes scenarios, such as medical use-cases. This paper proposes ViConEx-Med, a novel transformer-based framework for visual concept explainability, which introduces multi-concept learnable tokens to jointly predict and localize visual concepts. By leveraging specialized attention layers for processing visual and text-based concept tokens, our method produces concept-level localization maps while maintaining high predictive accuracy. Experiments on both synthetic and real-world medical datasets demonstrate that ViConEx-Med outperforms prior concept-based models and achieves competitive performance with black-box models in terms of both concept detection and localization precision. Our results suggest a promising direction for building inherently interpretable models grounded in visual concepts. Code is publicly available at https://github.com/CristianoPatricio/viconex-med.

Authors:Ziyi Liu, Qingyue Long, Zhiwen Xue, Huandong Wang, Yong Li
Title: Multi-Scale Diffusion Transformer for Jointly Simulating User Mobility and Mobile Traffic Pattern
Abstract:
User mobility trajectory and mobile traffic data are essential for a wide spectrum of applications including urban planning, network optimization, and emergency management. However, large-scale and fine-grained mobility data remains difficult to obtain due to privacy concerns and collection costs, making it essential to simulate realistic mobility and traffic patterns. User trajectories and mobile traffic are fundamentally coupled, reflecting both physical mobility and cyber behavior in urban environments. Despite this strong interdependence, existing studies often model them separately, limiting the ability to capture cross-modal dynamics. Therefore, a unified framework is crucial. In this paper, we propose MSTDiff, a Multi-Scale Diffusion Transformer for joint simulation of mobile traffic and user trajectories. First, MSTDiff applies discrete wavelet transforms for multi-resolution traffic decomposition. Second, it uses a hybrid denoising network to process continuous traffic volumes and discrete location sequences. A transition mechanism based on urban knowledge graph embedding similarity is designed to guide semantically informed trajectory generation. Finally, a multi-scale Transformer with cross-attention captures dependencies between trajectories and traffic. Experiments show that MSTDiff surpasses state-of-the-art baselines in traffic and trajectory generation tasks, reducing Jensen-Shannon divergence (JSD) across key statistical metrics by up to 17.38% for traffic generation, and by an average of 39.53% for trajectory generation. The source code is available at: https://github.com/tsinghua-fib-lab/MSTDiff .

Authors:Yecong Wan, Mingwen Shao, Renlong Wu, Wangmeng Zuo
Title: Color3D: Controllable and Consistent 3D Colorization with Personalized Colorizer
Abstract:
In this work, we present Color3D, a highly adaptable framework for colorizing both static and dynamic 3D scenes from monochromatic inputs, delivering visually diverse and chromatically vibrant reconstructions with flexible user-guided control. In contrast to existing methods that focus solely on static scenarios and enforce multi-view consistency by averaging color variations which inevitably sacrifice both chromatic richness and controllability, our approach is able to preserve color diversity and steerability while ensuring cross-view and cross-time consistency. In particular, the core insight of our method is to colorize only a single key view and then fine-tune a personalized colorizer to propagate its color to novel views and time steps. Through personalization, the colorizer learns a scene-specific deterministic color mapping underlying the reference view, enabling it to consistently project corresponding colors to the content in novel views and video frames via its inherent inductive bias. Once trained, the personalized colorizer can be applied to infer consistent chrominance for all other images, enabling direct reconstruction of colorful 3D scenes with a dedicated Lab color space Gaussian splatting representation. The proposed framework ingeniously recasts complicated 3D colorization as a more tractable single image paradigm, allowing seamless integration of arbitrary image colorization models with enhanced flexibility and controllability. Extensive experiments across diverse static and dynamic 3D colorization benchmarks substantiate that our method can deliver more consistent and chromatically rich renderings with precise user control. Project Page https://yecongwan.github.io/Color3D/.

Authors:Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang, Jiawei Chen
Title: Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
Abstract:
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent \coloredtext{entropy collapse}, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.

Authors:Lancheng Zou, Shuo Yin, Zehua Pei, Tsung-Yi Ho, Farzan Farnia, Bei Yu
Title: PermLLM: Learnable Channel Permutation for N:M Sparse Large Language Models
Abstract:
Channel permutation is a powerful technique for enhancing the accuracy of N:M sparse models by reordering the channels of weight matrices to prioritize the retention of important weights. However, traditional channel permutation methods rely on handcrafted quality metrics, which often fail to accurately capture the true impact of pruning on model performance. To address this limitation, we propose PermLLM, a novel post-training pruning framework that introduces learnable channel permutation (LCP) for N:M sparsity. LCP leverages Sinkhorn normalization to transform discrete permutation matrices into differentiable soft permutation matrices, enabling end-to-end optimization. Additionally, PermLLM incorporates an efficient block-wise channel permutation strategy, which significantly reduces the number of learnable parameters and computational complexity. PermLLM seamlessly integrates with existing one-shot pruning methods to adaptively optimize channel permutations, effectively mitigating pruning-induced errors. Extensive experiments on the LLaMA series, Qwen, and OPT models demonstrate that PermLLM achieves superior performance in optimizing N:M sparse models. The code is available at https://github.com/lanchengzou/PermLLM.

Authors:Kuangpu Guo, Lijun Sheng, Yongcan Yu, Jian Liang, Zilei Wang, Ran He
Title: Cooperative Pseudo Labeling for Unsupervised Federated Classification
Abstract:
Unsupervised Federated Learning (UFL) aims to collaboratively train a global model across distributed clients without sharing data or accessing label information. Previous UFL works have predominantly focused on representation learning and clustering tasks. Recently, vision language models (e.g., CLIP) have gained significant attention for their powerful zero-shot prediction capabilities. Leveraging this advancement, classification problems that were previously infeasible under the UFL paradigm now present promising new opportunities, yet remain largely unexplored. In this paper, we extend UFL to the classification problem with CLIP for the first time and propose a novel method, \underline{\textbf{Fed}}erated \underline{\textbf{Co}}operative \underline{\textbf{P}}seudo \underline{\textbf{L}}abeling (\textbf{FedCoPL}). Specifically, clients estimate and upload their pseudo label distribution, and the server adjusts and redistributes them to avoid global imbalance among classes. Moreover, we introduce a partial prompt aggregation protocol for effective collaboration and personalization. In particular, visual prompts containing general image features are aggregated at the server, while text prompts encoding personalized knowledge are retained locally. Extensive experiments demonstrate the superior performance of our FedCoPL compared to baseline methods. Our code is available at \href{https://github.com/krumpguo/FedCoPL}{https://github.com/krumpguo/FedCoPL}.

Authors:Guozhi Liu, Qi Mu, Tiansheng Huang, Xinhua Wang, Li Shen, Weiwei Lin, Zhang Li
Title: Pharmacist: Safety Alignment Data Curation for Large Language Models against Harmful Fine-tuning
Abstract:
Harmful fine-tuning issues present significant safety challenges for fine-tuning-as-a-service in large language models. Existing alignment-stage defenses, e.g., Vaccine, Repnoise, Booster, and T-Vaccine, mitigate harmful fine-tuning issues by enhancing the model's robustness during the alignment phase. While these methods have been proposed to mitigate the issue, they often overlook a critical upstream factor: the role of the original safety-alignment data. We observe that their defense performance and computational efficiency remain constrained by the quality and composition of the alignment dataset. To address this limitation, we propose Pharmacist, a safety alignment data curation solution that enhances defense against harmful fine-tuning by selecting a high-quality and safety-critical core subset from the original alignment data. The core idea of Pharmacist is to train an alignment data selector to rank alignment data. Specifically, up-ranking high-quality and safety-critical alignment data, down-ranking low-quality and non-safety-critical data. Empirical results indicate that models trained on datasets selected by Pharmacist outperform those trained on datasets selected by existing selection methods in both defense and inference performance. In addition, Pharmacist can be effectively integrated with mainstream alignment-stage defense methods. For example, when applied to RepNoise and T-Vaccine, using the dataset selected by Pharmacist instead of the full dataset leads to improvements in defense performance by 2.60\% and 3.30\%, respectively, and enhances inference performance by 3.50\% and 1.10\%. Notably, it reduces training time by 56.83\% and 57.63\%, respectively. Our code is available at https://github.com/Lslland/Pharmacist.

Authors:Salomon Ibarra, Frida Cantu, Kaixiong Zhou, Li Zhang
Title: Gradient-based Model Shortcut Detection for Time Series Classification
Abstract:
Deep learning models have attracted lots of research attention in time series classification (TSC) task in the past two decades. Recently, deep neural networks (DNN) have surpassed classical distance-based methods and achieved state-of-the-art performance. Despite their promising performance, deep neural networks (DNNs) have been shown to rely on spurious correlations present in the training data, which can hinder generalization. For instance, a model might incorrectly associate the presence of grass with the label ``cat" if the training set have majority of cats lying in grassy backgrounds. However, the shortcut behavior of DNNs in time series remain under-explored. Most existing shortcut work are relying on external attributes such as gender, patients group, instead of focus on the internal bias behavior in time series models. In this paper, we take the first step to investigate and establish point-based shortcut learning behavior in deep learning time series classification. We further propose a simple detection method based on other class to detect shortcut occurs without relying on test data or clean training classes. We test our proposed method in UCR time series datasets.

Authors:Jinyang Zhang, Yue Fang, Hongxin Ding, Weibin Liao, Muyang Ye, Xu Chu, Junfeng Zhao, Yasha Wang
Title: ADEPT: Continual Pretraining via Adaptive Expansion and Dynamic Decoupled Tuning
Abstract:
Conventional continual pretraining (CPT) for large language model (LLM) domain adaptation often suffers from catastrophic forgetting and limited domain capacity. Existing strategies adopt layer expansion, introducing additional trainable parameters to accommodate new knowledge. However, the uniform expansion and updates still entangle general and domain learning, undermining its effectiveness. Our pilot studies reveal that LLMs exhibit functional specialization, where layers and units differentially encode general-critical capabilities, suggesting that parameter expansion and optimization should be function-aware. We then propose ADEPT, Adaptive Expansion and Dynamic Decoupled Tuning for continual pretraining, a two-stage framework for domain-adaptive CPT. ADEPT first performs General-Competence Guided Selective Layer Expansion, duplicating layers least critical for the general domain to increase representational capacity while minimizing interference with general knowledge. It then applies Adaptive Unit-Wise Decoupled Tuning, disentangling parameter units within expanded layers according to their general-domain importance and assigning asymmetric learning rates to balance knowledge injection and retention. Experiments on mathematical and medical benchmarks show that ADEPT outperforms full-parameter CPT by up to 5.76% on the general domain and 5.58% on the target domain with only 15% of parameters tuned and less than 50% training time. Ablation studies, theoretical analysis, and extended investigations further demonstrate the necessity of targeted expansion and decoupled optimization, providing new principles for efficient and robust domain-adaptive CPT. Our code is open-sourced at https://github.com/PuppyKnightUniversity/ADEPT

Authors:Adnan El Assadi, Isaac Chung, Roman Solomatin, Niklas Muennighoff, Kenneth Enevoldsen
Title: HUME: Measuring the Human-Model Performance Gap in Text Embedding Task
Abstract:
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, although variation is substantial: models reach near-ceiling performance on some datasets while struggling on others, suggesting dataset issues and revealing shortcomings in low-resource languages. We provide human performance baselines, insight into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of the model and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.

Authors:Hehe Fan, Yi Yang, Mohan Kankanhalli, Fei Wu
Title: Translution: Unifying Self-attention and Convolution for Adaptive and Relative Modeling
Abstract:
When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant elements (e.g., image pixels or textual words) to a central element, as in a convolutional receptive field, or to a query element, as in self-attention, and 2) encoding these tokens effectively. Self-attention can adaptively identify these elements but relies on absolute positional embedding for structural representation learning. In contrast, convolution encodes elements in a relative manner, yet their fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we introduce Translution, an operation that unifies the adaptive identification capability of self-attention and the relative encoding advantage of convolution. However, this integration leads to a substantial increase in the number of parameters, exceeding most currently available computational resources. Therefore, we propose a lightweight variant of Translution, named α-Translution. Experiments on computer vision and natural language processing tasks show that Translution (including α-Translution) achieves superior accuracy compared to self-attention. The code is available at https://github.com/hehefan/Translution.

Authors:Sitong Gong, Yunzhi Zhuge, Lu Zhang, Pingping Zhang, Huchuan Lu
Title: Complementary and Contrastive Learning for Audio-Visual Segmentation
Abstract:
Audio-Visual Segmentation (AVS) aims to generate pixel-wise segmentation maps that correlate with the auditory signals of objects. This field has seen significant progress with numerous CNN and Transformer-based methods enhancing the segmentation accuracy and robustness. Traditional CNN approaches manage audio-visual interactions through basic operations like padding and multiplications but are restricted by CNNs' limited local receptive field. More recently, Transformer-based methods treat auditory cues as queries, utilizing attention mechanisms to enhance audio-visual cooperation within frames. Nevertheless, they typically struggle to extract multimodal coefficients and temporal dynamics adequately. To overcome these limitations, we present the Complementary and Contrastive Transformer (CCFormer), a novel framework adept at processing both local and global information and capturing spatial-temporal context comprehensively. Our CCFormer initiates with the Early Integration Module (EIM) that employs a parallel bilateral architecture, merging multi-scale visual features with audio data to boost cross-modal complementarity. To extract the intra-frame spatial features and facilitate the perception of temporal coherence, we introduce the Multi-query Transformer Module (MTM), which dynamically endows audio queries with learning capabilities and models the frame and video-level relations simultaneously. Furthermore, we propose the Bi-modal Contrastive Learning (BCL) to promote the alignment across both modalities in the unified feature space. Through the effective combination of those designs, our method sets new state-of-the-art benchmarks across the S4, MS3 and AVSS datasets. Our source code and model weights will be made publicly available at https://github.com/SitongGong/CCFormer

Authors:Yinghui He, Abhishek Panigrahi, Yong Lin, Sanjeev Arora
Title: Skill-Targeted Adaptive Training
Abstract:
Language models often show little to no improvement (i.e., "saturation") when trained via vanilla supervised fine-tuning (SFT) on data similar to what they saw in their training set (e.g., MATH). We introduce a new fine-tuning strategy, STAT, to train such a student model by using the metacognition ability of a stronger large language model (LLM) as the teacher. The teacher uses the task dataset to create a list of skills needed for the task, and then labels each data point with its required skills (Didolkar et al., 2024). By monitoring the student's answers, the teacher creates a Missing-Skill-Profile for the student, tracking how often they failed to apply each skill in their responses. We use this idea to build a modified training set in one of two ways. In STAT-Sel, the teacher uses an existing set of training examples but adaptively reweights them according to the Missing-Skill-Profile. In STAT-Syn, the teacher synthesizes additional examples involving missing skills. Across extensive experiments on Llama and Qwen models, our methods yield improvements of up to 7.5% on MATH, whereas SFT provides only limited gains. Furthermore, STAT enhances performance on out-of-distribution benchmarks (e.g., AIME24/25, AMC23, etc.) by an average of 4.6%. Crucially, we find that STAT is complementary to RL via GRPO (Shao et al., 2024): after the model is improved using STAT to address skill gaps, GRPO continues to add further gains. We conclude that skill-targeted adaptive training should broadly improve current training pipelines. Our code is available at: https://github.com/princeton-pli/STAT.

Authors:Henry D. Smith, Nathaniel L. Diamant, Brian L. Trippe
Title: Calibrating Generative Models
Abstract:
Generative models frequently suffer miscalibration, wherein class probabilities and other statistics of the sampling distribution deviate from desired values. We frame calibration as a constrained optimization problem and seek the closest model in Kullback-Leibler divergence satisfying calibration constraints. To address the intractability of imposing these constraints exactly, we introduce two surrogate objectives for fine-tuning: (1) the relax loss, which replaces the constraint with a miscalibration penalty, and (2) the reward loss, which converts calibration into a reward fine-tuning problem. We demonstrate that these approaches substantially reduce calibration error across hundreds of simultaneous constraints and models with up to one billion parameters, spanning applications in protein design, image generation, and language modeling.

Authors:Jiahui Hong, Siqing Li, Muqing Jian, Luming Yang
Title: Bidirectional Time-Frequency Pyramid Network for Enhanced Robust EEG Classification
Abstract:
Existing EEG recognition models suffer from poor cross-paradigm generalization due to dataset-specific constraints and individual variability. To overcome these limitations, we propose BITE (Bidirectional Time-Freq Pyramid Network), an end-to-end unified architecture featuring robust multistream synergy, pyramid time-frequency attention (PTFA), and bidirectional adaptive convolutions. The framework uniquely integrates: 1) Aligned time-frequency streams maintaining temporal synchronization with STFT for bidirectional modeling, 2) PTFA-based multi-scale feature enhancement amplifying critical neural patterns, 3) BiTCN with learnable fusion capturing forward/backward neural dynamics. Demonstrating enhanced robustness, BITE achieves state-of-the-art performance across four divergent paradigms (BCICIV-2A/2B, HGD, SD-SSVEP), excelling in both within-subject accuracy and cross-subject generalization. As a unified architecture, it combines robust performance across both MI and SSVEP tasks with exceptional computational efficiency. Our work validates that paradigm-aligned spectral-temporal processing is essential for reliable BCI systems. Just as its name suggests, BITE "takes a bite out of EEG." The source code is available at https://github.com/cindy-hong/BiteEEG.

Authors:Bach C. Le, Tung V. Dao, Binh T. Nguyen, Hong T. M. Chu
Title: Tight Robustness Certificates and Wasserstein Distributional Attacks for Deep Neural Networks
Abstract:
Wasserstein distributionally robust optimization (WDRO) provides a framework for adversarial robustness, yet existing methods based on global Lipschitz continuity or strong duality often yield loose upper bounds or require prohibitive computation. In this work, we address these limitations by introducing a primal approach and adopting a notion of exact Lipschitz certificate to tighten this upper bound of WDRO. In addition, we propose a novel Wasserstein distributional attack (WDA) that directly constructs a candidate for the worst-case distribution. Compared to existing point-wise attack and its variants, our WDA offers greater flexibility in the number and location of attack points. In particular, by leveraging the piecewise-affine structure of ReLU networks on their activation cells, our approach results in an exact tractable characterization of the corresponding WDRO problem. Extensive evaluations demonstrate that our method achieves competitive robust accuracy against state-of-the-art baselines while offering tighter certificates than existing methods. Our code is available at https://github.com/OLab-Repo/WDA

Authors:Yicheng He, Jingwen Yu, Guangcheng Chen, Hong Zhang
Title: VG-Mapping: Variation-Aware 3D Gaussians for Online Semi-static Scene Mapping
Abstract:
Maintaining an up-to-date map that accurately reflects recent changes in the environment is crucial, especially for robots that repeatedly traverse the same space. Failing to promptly update the changed regions can degrade map quality, resulting in poor localization, inefficient operations, and even lost robots. 3D Gaussian Splatting (3DGS) has recently seen widespread adoption in online map reconstruction due to its dense, differentiable, and photorealistic properties, yet accurately and efficiently updating the regions of change remains a challenge. In this paper, we propose VG-Mapping, a novel online 3DGS-based mapping system tailored for such semi-static scenes. Our approach introduces a hybrid representation that augments 3DGS with a TSDF-based voxel map to efficiently identify changed regions in a scene, along with a variation-aware density control strategy that inserts or deletes Gaussian primitives in regions undergoing change. Furthermore, to address the absence of public benchmarks for this task, we construct a RGB-D dataset comprising both synthetic and real-world semi-static environments. Experimental results demonstrate that our method substantially improves the rendering quality and map update efficiency in semi-static scenes. The code and dataset are available at https://github.com/heyicheng-never/VG-Mapping.

Authors:Muhammad Maaz, Liam DeVoe, Zac Hatfield-Dodds, Nicholas Carlini
Title: Agentic Property-Based Testing: Finding Bugs Across the Python Ecosystem
Abstract:
Property-based testing (PBT) is a lightweight formal method, typically implemented as a randomized testing framework. Users specify the input domain for their test using combinators supplied by the PBT framework, and the expected properties or invariants as a unit-test function. The framework then searches for a counterexample, e.g. by generating inputs and calling the test function. In this work, we demonstrate an LLM-based agent which analyzes Python modules, infers function-specific and cross-function properties from code and documentation, synthesizes and executes PBTs, reflects on outputs of these tests to confirm true bugs, and finally outputs actionable bug reports for the developer. We perform an extensive evaluation of our agent across 100 popular Python packages. Of the bug reports generated by the agent, we found after manual review that 56\% were valid bugs and 32\% were valid bugs that we would report to maintainers. We then developed a ranking rubric to surface high-priority valid bugs to developers, and found that of the 21 top-scoring bugs, 86\% were valid and 81\% we would report. The bugs span diverse failure modes from serialization failures to numerical precision errors to flawed cache implementations. We reported 5 bugs, 4 with patches, including to NumPy and cloud computing SDKs, with 3 patches merged successfully. Our results suggest that LLMs with PBT provides a rigorous and scalable method for autonomously testing software. Our code and artifacts are available at: https://github.com/mmaaz-git/agentic-pbt.

Authors:Shreshth Saini, Alan C. Bovik, Neil Birkbeck, Yilin Wang, Balu Adsumilli
Title: CHUG: Crowdsourced User-Generated HDR Video Quality Dataset
Abstract:
High Dynamic Range (HDR) videos enhance visual experiences with superior brightness, contrast, and color depth. The surge of User-Generated Content (UGC) on platforms like YouTube and TikTok introduces unique challenges for HDR video quality assessment (VQA) due to diverse capture conditions, editing artifacts, and compression distortions. Existing HDR-VQA datasets primarily focus on professionally generated content (PGC), leaving a gap in understanding real-world UGC-HDR degradations. To address this, we introduce CHUG: Crowdsourced User-Generated HDR Video Quality Dataset, the first large-scale subjective study on UGC-HDR quality. CHUG comprises 856 UGC-HDR source videos, transcoded across multiple resolutions and bitrates to simulate real-world scenarios, totaling 5,992 videos. A large-scale study via Amazon Mechanical Turk collected 211,848 perceptual ratings. CHUG provides a benchmark for analyzing UGC-specific distortions in HDR videos. We anticipate CHUG will advance No-Reference (NR) HDR-VQA research by offering a large-scale, diverse, and real-world UGC dataset. The dataset is publicly available at: https://shreshthsaini.github.io/CHUG/.

Authors:Kangping Hu, Stephen Mussmann
Title: Myopic Bayesian Decision Theory for Batch Active Learning with Partial Batch Label Sampling
Abstract:
Over the past couple of decades, many active learning acquisition functions have been proposed, leaving practitioners with an unclear choice of which to use. Bayesian Decision Theory (BDT) offers a universal principle to guide decision-making. In this work, we derive BDT for (Bayesian) active learning in the myopic framework, where we imagine we only have one more point to label. This derivation leads to effective algorithms such as Expected Error Reduction (EER), Expected Predictive Information Gain (EPIG), and other algorithms that appear in the literature. Furthermore, we show that BAIT (active learning based on V-optimal experimental design) can be derived from BDT and asymptotic approximations. A key challenge of such methods is the difficult scaling to large batch sizes, leading to either computational challenges (BatchBALD) or dramatic performance drops (top-$B$ selection). Here, using a particular formulation of the decision process, we derive Partial Batch Label Sampling (ParBaLS) for the EPIG algorithm. We show experimentally for several datasets that ParBaLS EPIG gives superior performance for a fixed budget and Bayesian Logistic Regression on Neural Embeddings. Our code is available at https://github.com/ADDAPT-ML/ParBaLS.

Authors:Nafiseh Nikeghbal, Amir Hossein Kargaran, Jana Diesner
Title: CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs
Abstract:
Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.

Authors:Samanta Rodriguez, Yiming Dou, Miquel Oller, Andrew Owens, Nima Fazeli
Title: Cross-Sensor Touch Generation
Abstract:
Today's visuo-tactile sensors come in many shapes and sizes, making it challenging to develop general-purpose tactile representations. This is because most models are tied to a specific sensor design. To address this challenge, we propose two approaches to cross-sensor image generation. The first is an end-to-end method that leverages paired data (Touch2Touch). The second method builds an intermediate depth representation and does not require paired data (T2D2: Touch-to-Depth-to-Touch). Both methods enable the use of sensor-specific models across multiple sensors via the cross-sensor touch generation process. Together, these models offer flexible solutions for sensor translation, depending on data availability and application needs. We demonstrate their effectiveness on downstream tasks such as in-hand pose estimation and behavior cloning, successfully transferring models trained on one sensor to another. Project page: https://samantabelen.github.io/cross_sensor_touch_generation.

Authors:Yufa Zhou, Yixiao Wang, Xunjian Yin, Shuyan Zhou, Anru R. Zhang
Title: The Geometry of Reasoning: Flowing Logics in Representation Space
Abstract:
We study how large language models (LLMs) ``think'' through their representation space. We propose a novel geometric framework that models an LLM's reasoning as flows -- embedding trajectories evolving where logic goes. We disentangle logical structure from semantics by employing the same natural deduction propositions with varied semantic carriers, allowing us to test whether LLMs internalize logic beyond surface form. This perspective connects reasoning with geometric quantities such as position, velocity, and curvature, enabling formal analysis in representation and concept spaces. Our theory establishes: (1) LLM reasoning corresponds to smooth flows in representation space, and (2) logical statements act as local controllers of these flows' velocities. Using learned representation proxies, we design controlled experiments to visualize and quantify reasoning flows, providing empirical validation of our theoretical framework. Our work serves as both a conceptual foundation and practical tools for studying reasoning phenomenon, offering a new lens for interpretability and formal analysis of LLMs' behavior.

Authors:Yufa Zhou, Yixiao Wang, Surbhi Goel, Anru R. Zhang
Title: Why Do Transformers Fail to Forecast Time Series In-Context?
Abstract:
Time series forecasting (TSF) remains a challenging and largely unsolved problem in machine learning, despite significant recent efforts leveraging Large Language Models (LLMs), which predominantly rely on Transformer architectures. Empirical evidence consistently shows that even powerful Transformers often fail to outperform much simpler models, e.g., linear models, on TSF tasks; however, a rigorous theoretical understanding of this phenomenon remains limited. In this paper, we provide a theoretical analysis of Transformers' limitations for TSF through the lens of In-Context Learning (ICL) theory. Specifically, under AR($p$) data, we establish that: (1) Linear Self-Attention (LSA) models $\textit{cannot}$ achieve lower expected MSE than classical linear models for in-context forecasting; (2) as the context length approaches to infinity, LSA asymptotically recovers the optimal linear predictor; and (3) under Chain-of-Thought (CoT) style inference, predictions collapse to the mean exponentially. We empirically validate these findings through carefully designed experiments. Our theory not only sheds light on several previously underexplored phenomena but also offers practical insights for designing more effective forecasting architectures. We hope our work encourages the broader research community to revisit the fundamental theoretical limitations of TSF and to critically evaluate the direct application of increasingly sophisticated architectures without deeper scrutiny.

Authors:Atharv Goel, Sharat Agarwal, Saket Anand, Chetan Arora
Title: Reliable Active Learning from Unreliable Labels via Neural Collapse Geometry
Abstract:
Active Learning (AL) promises to reduce annotation cost by prioritizing informative samples, yet its reliability is undermined when labels are noisy or when the data distribution shifts. In practice, annotators make mistakes, rare categories are ambiguous, and conventional AL heuristics (uncertainty, diversity) often amplify such errors by repeatedly selecting mislabeled or redundant samples. We propose Reliable Active Learning via Neural Collapse Geometry (NCAL-R), a framework that leverages the emergent geometric regularities of deep networks to counteract unreliable supervision. Our method introduces two complementary signals: (i) a Class-Mean Alignment Perturbation score, which quantifies how candidate samples structurally stabilize or distort inter-class geometry, and (ii) a Feature Fluctuation score, which captures temporal instability of representations across training checkpoints. By combining these signals, NCAL-R prioritizes samples that both preserve class separation and highlight ambiguous regions, mitigating the effect of noisy or redundant labels. Experiments on ImageNet-100 and CIFAR100 show that NCAL-R consistently outperforms standard AL baselines, achieving higher accuracy with fewer labels, improved robustness under synthetic label noise, and stronger generalization to out-of-distribution data. These results suggest that incorporating geometric reliability criteria into acquisition decisions can make Active Learning less brittle to annotation errors and distribution shifts, a key step toward trustworthy deployment in real-world labeling pipelines. Our code is available at https://github.com/Vision-IIITD/NCAL.

Authors:Qiaosheng Chen, Yang Liu, Lei Li, Kai Chen, Qipeng Guo, Gong Cheng, Fei Yuan
Title: InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation
Abstract:
Large Language Models (LLMs) are increasingly capable of generating complete applications from natural language instructions, creating new opportunities in science and education. In these domains, interactive scientific demonstrations are particularly valuable for explaining concepts, supporting new teaching methods, and presenting research findings. Generating such demonstrations requires models to combine accurate scientific knowledge with the ability to implement interactive front-end code that behaves correctly and responds to user actions. This capability goes beyond the scope of existing benchmarks, which typically evaluate either knowledge question answering without grounding in code or static web code generation without scientific interactivity. To evaluate this integrated ability, we design a hybrid framework that combines programmatic functional testing to rigorously verify interaction logic with visually-grounded qualitative testing to assess rendered outputs against reference snapshots. Building on this framework, we present InteractScience, a benchmark consisting of a substantial set of carefully designed questions across five scientific domains, each paired with unit tests, reference snapshots, and checklists. We evaluate 30 leading open- and closed-source LLMs and report results that highlight ongoing weaknesses in integrating domain knowledge with interactive front-end coding. Our work positions InteractScience as the first benchmark to automatically measure this combined capability with realistic interactive operations, providing a foundation for advancing reliable and educationally useful scientific demonstration code generation. All code and data are publicly available at https://github.com/open-compass/InteractScience.

Authors:Chenxu Wang, Hao Li, Yiqun Zhang, Linyao Chen, Jianhao Chen, Ping Jian, Peng Ye, Qiaosheng Zhang, Shuyue Hu
Title: ICL-Router: In-Context Learned Model Representations for LLM Routing
Abstract:
Large language models (LLMs) often exhibit complementary strengths. Model routing harnesses these strengths by dynamically directing each query to the most suitable model, given a candidate model pool. However, routing performance relies on accurate model representations, and adding new models typically requires retraining, limiting scalability. To address these challenges, we propose a novel routing method using in-context vectors to represent model capabilities. The method proceeds in two stages. First, queries are embedded and projected into vectors, with a projector and LLM-based router trained to reconstruct the original queries, aligning vector representations with the router's semantic space. Second, each candidate model is profiled on a query set, and the router learns -- based on in-context vectors of query and model performance -- to predict whether each model can correctly answer new queries. Extensive experiments demonstrate that our method achieves state-of-the-art routing performance in both in-distribution and out-of-distribution tasks. Moreover, our method allows for seamless integration of new models without retraining the router. The code is available at https://github.com/lalalamdbf/ICL-Router.

Authors:Lorenzo Nikiforos, Charalampos Antoniadis, Luciano Prono, Fabio Pareschi, Riccardo Rovatti, Gianluca Setti
Title: Vanishing Contributions: A Unified Approach to Smoothly Transition Neural Models into Compressed Form
Abstract:
The increasing scale of deep neural networks has led to a growing need for compression techniques such as pruning, quantization, and low-rank decomposition. While these methods are very effective in reducing memory, computation and energy consumption, they often introduce severe accuracy degradation when applied directly. We introduce Vanishing Contributions (VCON), a general approach for smoothly transitioning neural models into compressed form. Rather than replacing the original network directly with its compressed version, VCON executes the two in parallel during fine-tuning. The contribution of the original (uncompressed) model is progressively reduced, while that of the compressed model is gradually increased. This smooth transition allows the network to adapt over time, improving stability and mitigating accuracy degradation. We evaluate VCON across computer vision and natural language processing benchmarks, in combination with multiple compression strategies. Across all scenarios, VCON leads to consistent improvements: typical gains exceed 3%, while some configuration exhibits accuracy boosts of 20%. VCON thus provides a generalizable method that can be applied to the existing compression techniques, with evidence of consistent gains across multiple benchmarks.

Authors:Yihua Cheng, Yuhan Liu, Jiayi Yao, Yuwei An, Xiaokun Chen, Shaoting Feng, Yuyang Huang, Samuel Shen, Kuntai Du, Junchen Jiang
Title: LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference
Abstract:
Today's LLM inference systems treat individual engines and queries independently for simplicity, but this causes significant resource inefficiencies. While there are proposals to avoid redundant computation by reusing KV caches across queries and to increase GPU utilization by disaggregating a single query to different engines, their promises cannot be realized without efficiently offloading and communicating KV cache across LLM inference engines and queries. We present LMCache, the first and so far the most efficient open-source KV caching solution, which extracts and stores KV caches generated by modern LLM engines (vLLM and SGLang) and shares the KV caches across engines and queries. LMCache exposes KV caches in the LLM engine interface, effectively transforming LLM engines from individual token processors to a collection of engines with KV cache as the storage and communication medium. In particular, it supports both cache offloading (prefix reuse across queries) and prefill-decode disaggregation (cross-engine cache transfer). LMCache's high performance and wide adoption stem from the following contributions: highly optimized KV cache data movement with performance optimizations including batched data movement operations, compute and I/O pipelining; a modular KV cache connector component, decoupling LMCache from the rapid evolution of inference engines; a first-class control API, such as pinning, lookup, cleanup, movement, and compression, for flexible cache orchestration across GPU, CPU, storage, and network layers. Evaluation shows that combining LMCache with vLLM achieves up to 15x improvement in throughput across diverse workloads. With a growing community, LMCache has seen dramatic growth in adoption by enterprise inference systems, which provides valuable lessons for future KV caching solutions. The source code of LMCache is at: https://github.com/LMCache/LMCache.

Authors:Xiangxiang Chen, Peixin Zhang, Jun Sun, Wenhai Wang, Jingyi Wang
Title: Rounding-Guided Backdoor Injection in Deep Learning Model Quantization
Abstract:
Model quantization is a popular technique for deploying deep learning models on resource-constrained environments. However, it may also introduce previously overlooked security risks. In this work, we present QuRA, a novel backdoor attack that exploits model quantization to embed malicious behaviors. Unlike conventional backdoor attacks relying on training data poisoning or model training manipulation, QuRA solely works using the quantization operations. In particular, QuRA first employs a novel weight selection strategy to identify critical weights that influence the backdoor target (with the goal of perserving the model's overall performance in mind). Then, by optimizing the rounding direction of these weights, we amplify the backdoor effect across model layers without degrading accuracy. Extensive experiments demonstrate that QuRA achieves nearly 100% attack success rates in most cases, with negligible performance degradation. Furthermore, we show that QuRA can adapt to bypass existing backdoor defenses, underscoring its threat potential. Our findings highlight critical vulnerability in widely used model quantization process, emphasizing the need for more robust security measures. Our implementation is available at https://github.com/cxx122/QuRA.

Authors:Samet Uzun, Behcet Acikmese, John M. Carson
Title: Sequential Convex Programming for 6-DoF Powered Descent Guidance with Continuous-Time Compound State-Triggered Constraints
Abstract:
This paper presents a sequential convex programming (SCP) framework for ensuring the continuous-time satisfaction of compound state-triggered constraints, a subset of logical specifications, in the powered descent guidance (PDG) problem. The proposed framework combines the generalized mean-based smooth robustness measure (D-GMSR), a parameterization technique tailored for expressing discrete-time temporal and logical specifications through smooth functions, with the continuous-time successive convexification (CT-SCvx) method, a real-time solution for constrained trajectory optimization that guarantees continuous-time constraint satisfaction and convergence. The smoothness of the temporal and logical specifications parameterized via D-GMSR enables solving the resulting optimization problem with robust and efficient SCP algorithms while preserving theoretical guarantees. In addition to their smoothness, the parameterized specifications are sound and complete, meaning the specification holds if and only if the constraint defined by the parameterized function is satisfied. The CT-SCvx framework is then applied to solve the parameterized problem, incorporating: (1) reformulation for continuous-time path constraint satisfaction, (2) time-dilation to transform the free-final-time PDG problem into a fixed-final-time problem, (3) multiple shooting for exact discretization, (4) exact penalty functions for penalizing nonconvex constraints, and (5) the prox-linear method, a convergence-guaranteed SCP algorithm, to solve the resulting finite-dimensional nonconvex PDG problem. The effectiveness of the framework is demonstrated through a numerical simulation. The implementation is available at https://github.com/UW-ACL/CT-cSTC

Authors:Ruyi Xu, Guangxuan Xiao, Yukang Chen, Liuning He, Kelly Peng, Yao Lu, Song Han
Title: StreamingVLM: Real-Time Understanding for Infinite Video Streams
Abstract:
Vision-language models (VLMs) could power real-time assistants and autonomous agents, but they face a critical challenge: understanding near-infinite video streams without escalating latency and memory usage. Processing entire videos with full attention leads to quadratic computational costs and poor performance on long videos. Meanwhile, simple sliding window methods are also flawed, as they either break coherence or suffer from high latency due to redundant recomputation. In this paper, we introduce StreamingVLM, a model designed for real-time, stable understanding of infinite visual input. Our approach is a unified framework that aligns training with streaming inference. During inference, we maintain a compact KV cache by reusing states of attention sinks, a short window of recent vision tokens, and a long window of recent text tokens. This streaming ability is instilled via a simple supervised fine-tuning (SFT) strategy that applies full attention on short, overlapped video chunks, which effectively mimics the inference-time attention pattern without training on prohibitively long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires dense, per-second alignment between frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18% win rate against GPT-4O mini and maintains stable, real-time performance at up to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances general VQA abilities without any VQA-specific fine-tuning, improving performance on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code is available at https://github.com/mit-han-lab/streaming-vlm.

Authors:Shaoqi Dong, Chaoyou Fu, Haihan Gao, Yi-Fan Zhang, Chi Yan, Chu Wu, Xiaoyu Liu, Yunhang Shen, Jing Huo, Deqiang Jiang, Haoyu Cao, Yang Gao, Xing Sun, Ran He, Caifeng Shan
Title: VITA-VLA: Efficiently Teaching Vision-Language Models to Act via Action Expert Distillation
Abstract:
Vision-Language Action (VLA) models significantly advance robotic manipulation by leveraging the strong perception capabilities of pretrained vision-language models (VLMs). By integrating action modules into these pretrained models, VLA methods exhibit improved generalization. However, training them from scratch is costly. In this work, we propose a simple yet effective distillation-based framework that equips VLMs with action-execution capability by transferring knowledge from pretrained small action models. Our architecture retains the original VLM structure, adding only an action token and a state encoder to incorporate physical inputs. To distill action knowledge, we adopt a two-stage training strategy. First, we perform lightweight alignment by mapping VLM hidden states into the action space of the small action model, enabling effective reuse of its pretrained action decoder and avoiding expensive pretraining. Second, we selectively fine-tune the language model, state encoder, and action modules, enabling the system to integrate multimodal inputs with precise action generation. Specifically, the action token provides the VLM with a direct handle for predicting future actions, while the state encoder allows the model to incorporate robot dynamics not captured by vision alone. This design yields substantial efficiency gains over training large VLA models from scratch. Compared with previous state-of-the-art methods, our method achieves 97.3% average success rate on LIBERO (11.8% improvement) and 93.5% on LIBERO-LONG (24.5% improvement). In real-world experiments across five manipulation tasks, our method consistently outperforms the teacher model, achieving 82.0% success rate (17% improvement), which demonstrate that action distillation effectively enables VLMs to generate precise actions while substantially reducing training costs.

Authors:Peiwen Sun, Shiqiang Lang, Dongming Wu, Yi Ding, Kaituo Feng, Huadai Liu, Zhen Ye, Rui Liu, Yun-Hui Liu, Jianan Wang, Xiangyu Yue
Title: SpaceVista: All-Scale Visual Spatial Reasoning from mm to km
Abstract:
With the current surge in spatial reasoning explorations, researchers have made significant progress in understanding indoor scenes, but still struggle with diverse applications such as robotics and autonomous driving. This paper aims to advance all-scale spatial reasoning across diverse scenarios by tackling two key challenges: 1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations for dataset curation; 2) the absence of effective all-scale scene modeling, which often leads to overfitting to individual scenes. In this paper, we introduce a holistic solution that integrates a structured spatial reasoning knowledge system, scale-aware modeling, and a progressive training paradigm, as the first attempt to broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge. Using a task-specific, specialist-driven automated pipeline, we curate over 38K video scenes across 5 spatial scales to create SpaceVista-1M, a dataset comprising approximately 1M spatial QA pairs spanning 19 diverse task types. While specialist models can inject useful domain knowledge, they are not reliable for evaluation. We then build an all-scale benchmark with precise annotations by manually recording, retrieving, and assembling video-based data. However, naive training with SpaceVista-1M often yields suboptimal results due to the potential knowledge conflict. Accordingly, we introduce SpaceVista-7B, a spatial reasoning model that accepts dense inputs beyond semantics and uses scale as an anchor for scale-aware experts and progressive rewards. Finally, extensive evaluations across 5 benchmarks, including our SpaceVista-Bench, demonstrate competitive performance, showcasing strong generalization across all scales and scenarios. Our dataset, model, and benchmark will be released on https://peiwensun2000.github.io/mm2km .

Authors:Adam Coscia, Alex Endert
Title: VisPile: A Visual Analytics System for Analyzing Multiple Text Documents With Large Language Models and Knowledge Graphs
Abstract:
Intelligence analysts perform sensemaking over collections of documents using various visual and analytic techniques to gain insights from large amounts of text. As data scales grow, our work explores how to leverage two AI technologies, large language models (LLMs) and knowledge graphs (KGs), in a visual text analysis tool, enhancing sensemaking and helping analysts keep pace. Collaborating with intelligence community experts, we developed a visual analytics system called VisPile. VisPile integrates an LLM and a KG into various UI functions that assist analysts in grouping documents into piles, performing sensemaking tasks like summarization and relationship mapping on piles, and validating LLM- and KG-generated evidence. Our paper describes the tool, as well as feedback received from six professional intelligence analysts that used VisPile to analyze a text document corpus.

Authors:Sondos Mahmoud Bsharat, Zhiqiang Shen
Title: Prompting Test-Time Scaling Is A Strong LLM Reasoning Data Augmentation
Abstract:
Large language models (LLMs) have demonstrated impressive reasoning capabilities when provided with chain-of-thought exemplars, but curating large reasoning datasets remains laborious and resource-intensive. In this work, we introduce Prompting Test-Time Scaling (P-TTS), a simple yet effective inference-time data augmentation strategy for enhancing LLM reasoning through finetuning. Rather than collecting thousands or even millions of examples, P-TTS leverages a small pool of only 90 manually selected reasoning instances and systematically varies exemplar augmentation through principled instruction prompting intensities at test time to synthesize diverse reasoning trajectory contexts. Then we finetune the various sizes of Qwen-2.5 models on P-TTS data. Across a suite of mathematical reasoning AIME2024 & 25, MATH500, and GPQA-Diamond, our P-TTS-7B and 32B models outperform the prior competitive baselines like S1 and S1.1 (1K-shot), achieving absolute accuracy gains of +26.66% and +30.00% on AIME'24 (7B), and +13.34% and +6.67% on AIME'25 (7B); P-TTS-32B yields gains of +23.33% and +16.63% on AIME'24, and +26.63% and +3.33% on AIME'25 (vs. S1 and S1.1, respectively), with comparable or better performance on MATH500 and GPQA-Diamond. We further show that P-TTS enhances zero-shot generalization accuracy on out-of-domain reasoning benchmarks of Gaokao, Kaoyan, OlympiadBench, AMC23, GradeSchoolMath, and Minerva. Our analysis suggests that test-time scaling effectively explores the latent space of reasoning patterns, amplifying LLM problem-solving with minimal annotation overhead, and further unlocking the reasoning potential and capabilities of LLMs. Prompting Test-Time Scaling offers a practical, low-cost way to elicit LLM reasoning in resource-constrained or rapidly evolving domains.

Authors:Saad Ahmed Bazaz, Mirza Omer Beg
Title: A Multilingual Python Programming Language
Abstract:
All widely used and useful programming languages have a common problem. They restrict entry on the basis of knowledge of the English language. The lack of knowledge of English poses a major hurdle to many newcomers who do not have the resources, in terms of time and money, to learn the English language. Studies show that people learn better in their own language. Therefore, we propose a language transpiler built on top of the Python programming language, called UniversalPython, which allows one to write Python in their own human language. We demonstrate the ability to create an "Urdu Python" with this transpiler. In the future, we aim to scale the language to encapsulate more human languages to increase the availability of programming. The source code for this transpiler is open-source, and available at https://github.com/universalpython/universalpython

Authors:Daria de tinguy, Tim Verbelen, Emilio Gamba, Bart Dhoedt
Title: Zero-shot Structure Learning and Planning for Autonomous Robot Navigation using Active Inference
Abstract:
Autonomous navigation in unfamiliar environments requires robots to simultaneously explore, localise, and plan under uncertainty, without relying on predefined maps or extensive training. We present a biologically inspired, Active Inference-based framework, Active Inference MAPping and Planning (AIMAPP). This model unifies mapping, localisation, and decision-making within a single generative model. Inspired by hippocampal navigation, it uses topological reasoning, place-cell encoding, and episodic memory to guide behaviour. The agent builds and updates a sparse topological map online, learns state transitions dynamically, and plans actions by minimising Expected Free Energy. This allows it to balance goal-directed and exploratory behaviours. We implemented a ROS-compatible navigation system that is sensor and robot-agnostic, capable of integrating with diverse hardware configurations. It operates in a fully self-supervised manner, is resilient to drift, and supports both exploration and goal-directed navigation without any pre-training. We demonstrate robust performance in large-scale real and simulated environments against state-of-the-art planning models, highlighting the system's adaptability to ambiguous observations, environmental changes, and sensor noise. The model offers a biologically inspired, modular solution to scalable, self-supervised navigation in unstructured settings. AIMAPP is available at https://github.com/decide-ugent/AIMAPP.

Authors:Qiguang Chen, Zheng Yan, Mingda Yang, Libo Qin, Yixin Yuan, Hanjing Li, Jinhao Liu, Yiyan Ji, Dengyun Peng, Jiannan Guan, Mengkang Hu, Yantao Du, Wanxiang Che
Title: AutoPR: Let's Automate Your Academic Promotion!
Abstract:
As the volume of peer-reviewed research surges, scholars increasingly rely on social platforms for discovery, while authors invest considerable effort in promoting their work to ensure visibility and citations. To streamline this process and reduce the reliance on human effort, we introduce Automatic Promotion (AutoPR), a novel task that transforms research papers into accurate, engaging, and timely public content. To enable rigorous evaluation, we release PRBench, a multimodal benchmark that links 512 peer-reviewed articles to high-quality promotional posts, assessing systems along three axes: Fidelity (accuracy and tone), Engagement (audience targeting and appeal), and Alignment (timing and channel optimization). We also introduce PRAgent, a multi-agent framework that automates AutoPR in three stages: content extraction with multimodal preparation, collaborative synthesis for polished outputs, and platform-specific adaptation to optimize norms, tone, and tagging for maximum reach. When compared to direct LLM pipelines on PRBench, PRAgent demonstrates substantial improvements, including a 604% increase in total watch time, a 438% rise in likes, and at least a 2.9x boost in overall engagement. Ablation studies show that platform modeling and targeted promotion contribute the most to these gains. Our results position AutoPR as a tractable, measurable research problem and provide a roadmap for scalable, impactful automated scholarly communication.

Authors:Daniel Brubaker, William Sheffield, Junyi Jessy Li, Kanishka Misra
Title: WUGNECTIVES: Novel Entity Inferences of Language Models from Discourse Connectives
Abstract:
The role of world knowledge has been particularly crucial to predict the discourse connective that marks the discourse relation between two arguments, with language models (LMs) being generally successful at this task. We flip this premise in our work, and instead study the inverse problem of understanding whether discourse connectives can inform LMs about the world. To this end, we present WUGNECTIVES, a dataset of 8,880 stimuli that evaluates LMs' inferences about novel entities in contexts where connectives link the entities to particular attributes. On investigating 17 different LMs at various scales, and training regimens, we found that tuning an LM to show reasoning behavior yields noteworthy improvements on most connectives. At the same time, there was a large variation in LMs' overall performance across connective type, with all models systematically struggling on connectives that express a concessive meaning. Our findings pave the way for more nuanced investigations into the functional role of language cues as captured by LMs. We release WUGNECTIVES at https://github.com/sheffwb/wugnectives.

Authors:Thomas C. Smits, Nikolay Akhmetov, Tiffany S. Liaw, Mark S. Keller, Eric Mörth, Nils Gehlenborg
Title: scellop: A Scalable Redesign of Cell Population Plots for Single-Cell Data
Abstract:
Summary: Cell population plots are visualizations showing cell population distributions in biological samples with single-cell data, traditionally shown with stacked bar charts. Here, we address issues with this approach, particularly its limited scalability with increasing number of cell types and samples, and present scellop, a novel interactive cell population viewer combining visual encodings optimized for common user tasks in studying populations of cells across samples or conditions. Availability and Implementation: Scellop is available under the MIT licence at https://github.com/hms-dbmi/scellop, and is available on PyPI (https://pypi.org/project/cellpop/) and NPM (https://www.npmjs.com/package/cellpop). A demo is available at https://scellop.netlify.app/.

Authors:Arthur Bizzi, Matias Grynberg, Vitor Matias, Daniel Perazzo, João Paulo Lima, Luiz Velho, Nuno Gonçalves, João Pereira, Guilherme Schardong, Tiago Novello
Title: FLOWING: Implicit Neural Flows for Structure-Preserving Morphing
Abstract:
Morphing is a long-standing problem in vision and computer graphics, requiring a time-dependent warping for feature alignment and a blending for smooth interpolation. Recently, multilayer perceptrons (MLPs) have been explored as implicit neural representations (INRs) for modeling such deformations, due to their meshlessness and differentiability; however, extracting coherent and accurate morphings from standard MLPs typically relies on costly regularizations, which often lead to unstable training and prevent effective feature alignment. To overcome these limitations, we propose FLOWING (FLOW morphING), a framework that recasts warping as the construction of a differential vector flow, naturally ensuring continuity, invertibility, and temporal coherence by encoding structural flow properties directly into the network architectures. This flow-centric approach yields principled and stable transformations, enabling accurate and structure-preserving morphing of both 2D images and 3D shapes. Extensive experiments across a range of applications - including face and image morphing, as well as Gaussian Splatting morphing - show that FLOWING achieves state-of-the-art morphing quality with faster convergence. Code and pretrained models are available at http://schardong.github.io/flowing.

Authors:Mohammad Hossein Sameti, Sepehr Harfi Moridani, Ali Zarean, Hossein Sameti
Title: Accent-Invariant Automatic Speech Recognition via Saliency-Driven Spectrogram Masking
Abstract:
Pre-trained transformer-based models have significantly advanced automatic speech recognition (ASR), yet they remain sensitive to accent and dialectal variations, resulting in elevated word error rates (WER) in linguistically diverse languages such as English and Persian. To address this challenge, we propose an accent-invariant ASR framework that integrates accent and dialect classification into the recognition pipeline. Our approach involves training a spectrogram-based classifier to capture accent-specific cues, masking the regions most influential to its predictions, and using the masked spectrograms for data augmentation. This enhances the robustness of ASR models against accent variability. We evaluate the method using both English and Persian speech. For Persian, we introduce a newly collected dataset spanning multiple regional accents, establishing the first systematic benchmark for accent variation in Persian ASR that fills a critical gap in multilingual speech research and provides a foundation for future studies on low-resource, linguistically diverse languages. Experimental results with the Whisper model demonstrate that our masking and augmentation strategy yields substantial WER reductions in both English and Persian settings, confirming the effectiveness of the approach. This research advances the development of multilingual ASR systems that are resilient to accent and dialect diversity. Code and dataset are publicly available at: https://github.com/MH-Sameti/Accent_invariant_ASR

Authors:Yuchen Lu, Run Yang, Yichen Zhang, Shuguang Yu, Runpeng Dai, Ziwei Wang, Jiayi Xiang, Wenxin E, Siran Gao, Xinyao Ruan, Yirui Huang, Chenjing Xi, Haibo Hu, Yueming Fu, Qinglan Yu, Xiaobing Wei, Jiani Gu, Rui Sun, Jiaxuan Jia, Fan Zhou
Title: StatEval: A Comprehensive Benchmark for Large Language Models in Statistics
Abstract:
Large language models (LLMs) have demonstrated remarkable advances in mathematical and logical reasoning, yet statistics, as a distinct and integrative discipline, remains underexplored in benchmarking efforts. To address this gap, we introduce \textbf{StatEval}, the first comprehensive benchmark dedicated to statistics, spanning both breadth and depth across difficulty levels. StatEval consists of 13,817 foundational problems covering undergraduate and graduate curricula, together with 2374 research-level proof tasks extracted from leading journals. To construct the benchmark, we design a scalable multi-agent pipeline with human-in-the-loop validation that automates large-scale problem extraction, rewriting, and quality control, while ensuring academic rigor. We further propose a robust evaluation framework tailored to both computational and proof-based tasks, enabling fine-grained assessment of reasoning ability. Experimental results reveal that while closed-source models such as GPT5-mini achieve below 57\% on research-level problems, with open-source models performing significantly lower. These findings highlight the unique challenges of statistical reasoning and the limitations of current LLMs. We expect StatEval to serve as a rigorous benchmark for advancing statistical intelligence in large language models. All data and code are available on our web platform: https://stateval.github.io/.

Authors:Zhenhailong Wang, Jiateng Liu, Amin Fazel, Ritesh Sarkhel, Xing Fan, Xiang Li, Chenlei Guo, Heng Ji, Ruhi Sarikaya
Title: Multimodal Policy Internalization for Conversational Agents
Abstract:
Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.

Authors:Ralf Römer, Adrian Kobras, Luca Worbis, Angela P. Schoellig
Title: Failure Prediction at Runtime for Generative Robot Policies
Abstract:
Imitation learning (IL) with generative models, such as diffusion and flow matching, has enabled robots to perform complex, long-horizon tasks. However, distribution shifts from unseen environments or compounding action errors can still cause unpredictable and unsafe behavior, leading to task failure. Early failure prediction during runtime is therefore essential for deploying robots in human-centered and safety-critical environments. We propose FIPER, a general framework for Failure Prediction at Runtime for generative IL policies that does not require failure data. FIPER identifies two key indicators of impending failure: (i) out-of-distribution (OOD) observations detected via random network distillation in the policy's embedding space, and (ii) high uncertainty in generated actions measured by a novel action-chunk entropy score. Both failure prediction scores are calibrated using a small set of successful rollouts via conformal prediction. A failure alarm is triggered when both indicators, aggregated over short time windows, exceed their thresholds. We evaluate FIPER across five simulation and real-world environments involving diverse failure modes. Our results demonstrate that FIPER better distinguishes actual failures from benign OOD situations and predicts failures more accurately and earlier than existing methods. We thus consider this work an important step towards more interpretable and safer generative robot policies. Code, data and videos are available at https://tum-lsy.github.io/fiper_website.

Authors:David-Alexandre Duclos, William Guimont-Martin, Gabriel Jeanson, Arthur Larochelle-Tremblay, Théo Defosse, Frédéric Moore, Philippe Nolet, François Pomerleau, Philippe Giguère
Title: SilvaScenes: Tree Segmentation and Species Classification from Under-Canopy Images in Natural Forests
Abstract:
Interest in robotics for forest management is growing, but perception in complex, natural environments remains a significant hurdle. Conditions such as heavy occlusion, variable lighting, and dense vegetation pose challenges to automated systems, which are essential for precision forestry, biodiversity monitoring, and the automation of forestry equipment. These tasks rely on advanced perceptual capabilities, such as detection and fine-grained species classification of individual trees. Yet, existing datasets are inadequate to develop such perception systems, as they often focus on urban settings or a limited number of species. To address this, we present SilvaScenes, a new dataset for instance segmentation of tree species from under-canopy images. Collected across five bioclimatic domains in Quebec, Canada, SilvaScenes features 1476 trees from 24 species with annotations from forestry experts. We demonstrate the relevance and challenging nature of our dataset by benchmarking modern deep learning approaches for instance segmentation. Our results show that, while tree segmentation is easy, with a top mean average precision (mAP) of 67.65%, species classification remains a significant challenge with an mAP of only 35.69%. Our dataset and source code will be available at https://github.com/norlab-ulaval/SilvaScenes.

Authors:Victor Morand, Josiane Mothe, Benjamin Piwowarski
Title: On the Representations of Entities in Auto-regressive Large Language Models
Abstract:
Named entities are fundamental building blocks of knowledge in text, grounding factual information and structuring relationships within language. Despite their importance, it remains unclear how Large Language Models (LLMs) internally represent entities. Prior research has primarily examined explicit relationships, but little is known about entity representations themselves. We introduce entity mention reconstruction as a novel framework for studying how LLMs encode and manipulate entities. We investigate whether entity mentions can be generated from internal representations, how multi-token entities are encoded beyond last-token embeddings, and whether these representations capture relational knowledge. Our proposed method, leveraging _task vectors_, allows to consistently generate multi-token mentions from various entity representations derived from the LLMs hidden states. We thus introduce the _Entity Lens_, extending the _logit-lens_ to predict multi-token mentions. Our results bring new evidence that LLMs develop entity-specific mechanisms to represent and manipulate any multi-token entities, including those unseen during training. Our code is avalable at https://github.com/VictorMorand/EntityRepresentations .

Authors:Valentin Biller, Lucas Zimmer, Can Erdur, Sandeep Nagar, Daniel Rückert, Niklas Bubeck, Jonas Weidner
Title: A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Abstract:
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git

Authors:Junyan Ye, Dongzhi Jiang, Jun He, Baichuan Zhou, Zilong Huang, Zhiyuan Yan, Hongsheng Li, Conghui He, Weijia Li
Title: BLINK-Twice: You see, but do you observe? A Reasoning Benchmark on Visual Perception
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have made rapid progress, particularly in enhancing their reasoning capabilities. However, existing reasoning benchmarks still primarily assess language-based reasoning, often treating visual input as replaceable context. To address this gap, we introduce BLINK-Twice, a vision-centric reasoning benchmark grounded in challenging perceptual tasks. Instead of relying on external knowledge, our tasks require models to reason from visual content alone, shifting the focus from language-based to image-grounded reasoning. Compared to prior perception benchmarks, it moves beyond shallow perception ("see") and requires fine-grained observation and analytical reasoning ("observe"). BLINK-Twice integrates three core components: seven types of visual challenges for testing visual reasoning, natural adversarial image pairs that enforce reliance on visual content, and annotated reasoning chains for fine-grained evaluation of the reasoning process rather than final answers alone. We evaluate 20 leading MLLMs, including 12 foundation models and 8 reasoning-enhanced models. BLINK-Twice poses a significant challenge to current models. While existing reasoning strategies in the language space-such as chain-of-thought or self-criticism can improve performance, they often result in unstable and redundant reasoning. We observe that repeated image observation improves performance across models, and active visual interaction, as demonstrated by models like o3, highlights the need for a new paradigm for vision reasoning. The dataset is publicly available at https://github.com/PicoTrex/BLINK-Twice

Authors:Qihang Ma, Shengyu Li, Jie Tang, Dingkang Yang, Shaodong Chen, Yingyi Zhang, Chao Feng, Jiao Ran
Title: Boosting Multi-modal Keyphrase Prediction with Dynamic Chain-of-Thought in Vision-Language Models
Abstract:
Multi-modal keyphrase prediction (MMKP) aims to advance beyond text-only methods by incorporating multiple modalities of input information to produce a set of conclusive phrases. Traditional multi-modal approaches have been proven to have significant limitations in handling the challenging absence and unseen scenarios. Additionally, we identify shortcomings in existing benchmarks that overestimate model capability due to significant overlap in training tests. In this work, we propose leveraging vision-language models (VLMs) for the MMKP task. Firstly, we use two widely-used strategies, e.g., zero-shot and supervised fine-tuning (SFT) to assess the lower bound performance of VLMs. Next, to improve the complex reasoning capabilities of VLMs, we adopt Fine-tune-CoT, which leverages high-quality CoT reasoning data generated by a teacher model to finetune smaller models. Finally, to address the "overthinking" phenomenon, we propose a dynamic CoT strategy which adaptively injects CoT data during training, allowing the model to flexibly leverage its reasoning capabilities during the inference stage. We evaluate the proposed strategies on various datasets and the experimental results demonstrate the effectiveness of the proposed approaches. The code is available at https://github.com/bytedance/DynamicCoT.

Authors:Hui Wang, Jiaming Zhou, Jiabei He, Haoqin Sun, Yong Qin
Title: WildElder: A Chinese Elderly Speech Dataset from the Wild with Fine-Grained Manual Annotations
Abstract:
Elderly speech poses unique challenges for automatic processing due to age-related changes such as slower articulation and vocal tremors. Existing Chinese datasets are mostly recorded in controlled environments, limiting their diversity and real-world applicability. To address this gap, we present WildElder, a Mandarin elderly speech corpus collected from online videos and enriched with fine-grained manual annotations, including transcription, speaker age, gender, and accent strength. Combining the realism of in-the-wild data with expert curation, WildElder enables robust research on automatic speech recognition and speaker profiling. Experimental results reveal both the difficulties of elderly speech recognition and the potential of WildElder as a challenging new benchmark. The dataset and code are available at https://github.com/NKU-HLT/WildElder.

Authors:Jinyuan Liu, Zihang Chen, Zhu Liu, Zhiying Jiang, Long Ma, Xin Fan, Risheng Liu
Title: Enhancing Infrared Vision: Progressive Prompt Fusion Network and Benchmark
Abstract:
We engage in the relatively underexplored task named thermal infrared image enhancement. Existing infrared image enhancement methods primarily focus on tackling individual degradations, such as noise, contrast, and blurring, making it difficult to handle coupled degradations. Meanwhile, all-in-one enhancement methods, commonly applied to RGB sensors, often demonstrate limited effectiveness due to the significant differences in imaging models. In sight of this, we first revisit the imaging mechanism and introduce a Progressive Prompt Fusion Network (PPFN). Specifically, the PPFN initially establishes prompt pairs based on the thermal imaging process. For each type of degradation, we fuse the corresponding prompt pairs to modulate the model's features, providing adaptive guidance that enables the model to better address specific degradations under single or multiple conditions. In addition, a Selective Progressive Training (SPT) mechanism is introduced to gradually refine the model's handling of composite cases to align the enhancement process, which not only allows the model to remove camera noise and retain key structural details, but also enhancing the overall contrast of the thermal image. Furthermore, we introduce the most high-quality, multi-scenarios infrared benchmark covering a wide range of scenarios. Extensive experiments substantiate that our approach not only delivers promising visual results under specific degradation but also significantly improves performance on complex degradation scenes, achieving a notable 8.76\% improvement. Code is available at https://github.com/Zihang-Chen/HM-TIR.

Authors:Wenyao Zhang, Hongsi Liu, Bohan Li, Jiawei He, Zekun Qi, Yunnan Wang, Shengyang Zhao, Xinqiang Yu, Wenjun Zeng, Xin Jin
Title: Hybrid-grained Feature Aggregation with Coarse-to-fine Language Guidance for Self-supervised Monocular Depth Estimation
Abstract:
Current self-supervised monocular depth estimation (MDE) approaches encounter performance limitations due to insufficient semantic-spatial knowledge extraction. To address this challenge, we propose Hybrid-depth, a novel framework that systematically integrates foundation models (e.g., CLIP and DINO) to extract visual priors and acquire sufficient contextual information for MDE. Our approach introduces a coarse-to-fine progressive learning framework: 1) Firstly, we aggregate multi-grained features from CLIP (global semantics) and DINO (local spatial details) under contrastive language guidance. A proxy task comparing close-distant image patches is designed to enforce depth-aware feature alignment using text prompts; 2) Next, building on the coarse features, we integrate camera pose information and pixel-wise language alignment to refine depth predictions. This module seamlessly integrates with existing self-supervised MDE pipelines (e.g., Monodepth2, ManyDepth) as a plug-and-play depth encoder, enhancing continuous depth estimation. By aggregating CLIP's semantic context and DINO's spatial details through language guidance, our method effectively addresses feature granularity mismatches. Extensive experiments on the KITTI benchmark demonstrate that our method significantly outperforms SOTA methods across all metrics, which also indeed benefits downstream tasks like BEV perception. Code is available at https://github.com/Zhangwenyao1/Hybrid-depth.

Authors:Haozhe Jia, Wenshuo Chen, Xiucheng Wang, Nan Cheng, Hongbo Zhang, Kuimou Yu, Songning Lai, Nanjian Jia, Bowen Tian, Hongru Xiao, Yutao Yue
Title: RadioFlow: Efficient Radio Map Construction Framework with Flow Matching
Abstract:
Accurate and real-time radio map (RM) generation is crucial for next-generation wireless systems, yet diffusion-based approaches often suffer from large model sizes, slow iterative denoising, and high inference latency, which hinder practical deployment. To overcome these limitations, we propose \textbf{RadioFlow}, a novel flow-matching-based generative framework that achieves high-fidelity RM generation through single-step efficient sampling. Unlike conventional diffusion models, RadioFlow learns continuous transport trajectories between noise and data, enabling both training and inference to be significantly accelerated while preserving reconstruction accuracy. Comprehensive experiments demonstrate that RadioFlow achieves state-of-the-art performance with \textbf{up to 8$\times$ fewer parameters} and \textbf{over 4$\times$ faster inference} compared to the leading diffusion-based baseline (RadioDiff). This advancement provides a promising pathway toward scalable, energy-efficient, and real-time electromagnetic digital twins for future 6G networks. We release the code at \href{https://github.com/Hxxxz0/RadioFlow}{GitHub}.

Authors:Jianuo Huang, Yaojie Zhang, Yicun Yang, Benhao Huang, Biqing Qi, Dongrui Liu, Linfeng Zhang
Title: Mask Tokens as Prophet: Fine-Grained Cache Eviction for Efficient dLLM Inference
Abstract:
Diffusion large language models (dLLMs) present a promising alternative to dominant autoregressive models (ARMs) by the ability of parallel decoding at the expense of substantial computation and memory costs. Specifically, the cache mechanism for bidirectional attention in dLLMs demands large memory footprint, restricting their ability to handle long contexts under resource-limited settings. Existing cache eviction strategies are designed for ARMs and ignore the unique characteristics of dLLMs, thus leading to unsatisfactory performance. To address these challenges, we introduce MaskKV, a training-free cache eviction framework tailored to dLLMs, focusing on the effect of mask tokens in dLLMs. MaskKV is built on two key innovations: (1) a mask-query guided scoring mechanism that leverages attention weights to identify and evict less critical prompt tokens for each head; (2) an adaptive cache budgeting strategy that improves efficiency by reducing allocation in intermediate layers and concentrating resources on prompt-preferring heads. On LLaDA with MaskKV, compressing the KV cache to only 256 pairs (less than 5% of tokens) retains 94% of the full-cache performance on LongBench and achieves up to 31x acceleration at 32k prompt length. The code is publicly available at: https://github.com/jianuo-huang/MaskKV

Authors:Zhitian Hou, Kun Zeng
Title: ShiZhi: A Chinese Lightweight Large Language Model for Court View Generation
Abstract:
Criminal Court View Generation (CVG) is a fundamental task in legal artificial intelligence, aiming to automatically generate the "Court View" section of a legal case document. Generating court views is challenging due to the diversity and complexity of case facts, and directly generating from raw facts may limit performance. In this paper, we present ShiZhi, the first large language model (LLM) specifically designed for court view generation. We construct a Chinese Court View Generation dataset, CCVG, of more than 110K cases, each containing fact descriptions paired with corresponding court views. Based on this dataset, ShiZhi achieving 58.5 BLEU-1 on court view generation and 86.1\% accuracy with 92.5\% macro F1 on charge prediction. Experimental results demonstrate that even a small LLM can generate reasonable and legally coherent court views when trained on high-quality domain-specific data. Our model and dataset are available at \href{https://github.com/ZhitianHou/ShiZhi}{https://github.com/ZhitianHou/ShiZhi}.

Authors:Siyuan Huang, Xiaoye Qu, Yafu Li, Yun Luo, Zefeng He, Daizong Liu, Yu Cheng
Title: Spotlight on Token Perception for Multimodal Reinforcement Learning
Abstract:
While Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capabilities of Large Vision-Language Models (LVLMs), most existing methods in multimodal reasoning neglect the critical role of visual perception within the RLVR optimization process. In this paper, we undertake a pioneering exploration of multimodal RLVR through the novel perspective of token perception, which measures the visual dependency of each generated token. With a granular analysis of Chain-of-Thought (CoT) processes, we uncover two key insights: first, token perception in a rollout trajectory is sparsely distributed, where only a small fraction of tokens have high visual dependency for visually-grounded reasoning; second, different trajectories exhibit significant divergence in their overall visual dependency. Based on these observations, we propose Visually-Perceptive Policy Optimization (VPPO), a novel policy gradient algorithm that explicitly leverages token perception to refine the learning signal. Specifically, VPPO achieves this through a dual mechanism: it reweights a trajectory's advantage by its overall visual dependency, and focuses policy updates exclusively on perceptually pivotal tokens. On a comprehensive suite of eight perception and reasoning benchmarks, VPPO demonstrates substantial gains over leading open-source RL-tuned models, with its effectiveness consistently validated across 7B and 32B model scales. Our findings not only establish a new token-level perceptual perspective for analyzing multimodal RLVR but also present a novel and effective optimization strategy to significantly enhance the multimodal reasoning capabilities of LVLMs.

Authors:Jiuheng Lin, Cong Jiang, Zirui Wu, Jiarui Sun, Yansong Feng
Title: CLARity: Reasoning Consistency Alone Can Teach Reinforced Experts
Abstract:
Training expert LLMs in domains with scarce data is difficult, often relying on multiple-choice questions (MCQs). However, standard outcome-based reinforcement learning (RL) on MCQs is risky. While it may improve accuracy, we observe it often degrades reasoning quality such as logical consistency. Existing solutions to supervise reasoning, such as large-scale Process Reward Models (PRMs), are prohibitively expensive. To address this, we propose CLARity, a cost-effective RL framework that enhances reasoning quality using only a small, general-purpose LLM. CLARity integrates a consistency-aware reward mechanism with a 2-stage refine-then-monitor training pipeline to enhance reasoning consistency, and a dynamic data reformulation strategy to to better exploit limited data. Experiments demonstrate that CLARity improves response consistency by 16.5% and accuracy by 7.5% over baselines. Human evaluations further confirm holistic improvements in coherence and professionalism. Thus, CLARity offers a generalizable solution that enables smaller models to effectively guide expert models by reasoning consistency.Our code is open sourced at: https://github.com/Infinite-set/CLARity

Authors:Ming Dai, Sen Yang, Boqiang Duan, Wankou Yang, Jingdong Wang
Title: MomentSeg: Moment-Centric Sampling for Enhanced Video Pixel Understanding
Abstract:
Referring Video Object Segmentation (RefVOS) seeks to segment target objects in videos guided by natural language descriptions, demanding both temporal reasoning and fine-grained visual comprehension. Existing sampling strategies for LLM-based approaches typically rely on either handcrafted heuristics or external keyframe models. The former often overlooks essential temporal cues, while the latter increases system complexity. To address this, we propose a unified framework that jointly optimizes Temporal Sentence Grounding (TSG) and RefVOS, naturally incorporating key moment grounding capability. During training, we introduce a novel TSG paradigm that employs a dedicated \texttt{[FIND]} token for key moment identification through temporal token similarity matching, thereby avoiding the need for external timestamp encodings. For inference, we design a Moment-Centric Sampling (MCS) strategy that densely samples informative moments while sparsely sampling non-essential frames, preserving both motion details and global context. To further enhance tracking stability, we develop Bidirectional Anchor-updated Propagation (BAP), which leverages the most relevant moment as start point for high-quality mask initialization and dynamically updates at sampled points to mitigate accumulated errors. Code and model will be available at: https://github.com/Dmmm1997/MomentSeg

Authors:Zirun Zhou, Zhengyang Xiao, Haochuan Xu, Jing Sun, Di Wang, Jingfeng Zhang
Title: Goal-oriented Backdoor Attack against Vision-Language-Action Models via Physical Objects
Abstract:
Recent advances in vision-language-action (VLA) models have greatly improved embodied AI, enabling robots to follow natural language instructions and perform diverse tasks. However, their reliance on uncurated training datasets raises serious security concerns. Existing backdoor attacks on VLAs mostly assume white-box access and result in task failures instead of enforcing specific actions. In this work, we reveal a more practical threat: attackers can manipulate VLAs by simply injecting physical objects as triggers into the training dataset. We propose goal-oriented backdoor attacks (GoBA), where the VLA behaves normally in the absence of physical triggers but executes predefined and goal-oriented actions in the presence of physical triggers. Specifically, based on a popular VLA benchmark LIBERO, we introduce BadLIBERO that incorporates diverse physical triggers and goal-oriented backdoor actions. In addition, we propose a three-level evaluation that categorizes the victim VLA's actions under GoBA into three states: nothing to do, try to do, and success to do. Experiments show that GoBA enables the victim VLA to successfully achieve the backdoor goal in 97 percentage of inputs when the physical trigger is present, while causing zero performance degradation on clean inputs. Finally, by investigating factors related to GoBA, we find that the action trajectory and trigger color significantly influence attack performance, while trigger size has surprisingly little effect. The code and BadLIBERO dataset are accessible via the project page at https://goba-attack.github.io/.

Authors:Patrick Wienholt, Sophie Caselitz, Robert Siepmann, Philipp Bruners, Keno Bressem, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
Title: Hallucination Filtering in Radiology Vision-Language Models Using Discrete Semantic Entropy
Abstract:
To determine whether using discrete semantic entropy (DSE) to reject questions likely to generate hallucinations can improve the accuracy of black-box vision-language models (VLMs) in radiologic image based visual question answering (VQA). This retrospective study evaluated DSE using two publicly available, de-identified datasets: (i) the VQA-Med 2019 benchmark (500 images with clinical questions and short-text answers) and (ii) a diagnostic radiology dataset (206 cases: 60 computed tomography scans, 60 magnetic resonance images, 60 radiographs, 26 angiograms) with corresponding ground-truth diagnoses. GPT-4o and GPT-4.1 answered each question 15 times using a temperature of 1.0. Baseline accuracy was determined using low-temperature answers (temperature 0.1). Meaning-equivalent responses were grouped using bidirectional entailment checks, and DSE was computed from the relative frequencies of the resulting semantic clusters. Accuracy was recalculated after excluding questions with DSE > 0.6 or > 0.3. p-values and 95% confidence intervals were obtained using bootstrap resampling and a Bonferroni-corrected threshold of p < .004 for statistical significance. Across 706 image-question pairs, baseline accuracy was 51.7% for GPT-4o and 54.8% for GPT-4.1. After filtering out high-entropy questions (DSE > 0.3), accuracy on the remaining questions was 76.3% (retained questions: 334/706) for GPT-4o and 63.8% (retained questions: 499/706) for GPT-4.1 (both p < .001). Accuracy gains were observed across both datasets and largely remained statistically significant after Bonferroni correction. DSE enables reliable hallucination detection in black-box VLMs by quantifying semantic inconsistency. This method significantly improves diagnostic answer accuracy and offers a filtering strategy for clinical VLM applications.

Authors:Dominik Urbaniak, Alejandro Agostini, Pol Ramon, Jan Rosell, Raúl Suárez, Michael Suppa
Title: Obstacle Avoidance using Dynamic Movement Primitives and Reinforcement Learning
Abstract:
Learning-based motion planning can quickly generate near-optimal trajectories. However, it often requires either large training datasets or costly collection of human demonstrations. This work proposes an alternative approach that quickly generates smooth, near-optimal collision-free 3D Cartesian trajectories from a single artificial demonstration. The demonstration is encoded as a Dynamic Movement Primitive (DMP) and iteratively reshaped using policy-based reinforcement learning to create a diverse trajectory dataset for varying obstacle configurations. This dataset is used to train a neural network that takes as inputs the task parameters describing the obstacle dimensions and location, derived automatically from a point cloud, and outputs the DMP parameters that generate the trajectory. The approach is validated in simulation and real-robot experiments, outperforming a RRT-Connect baseline in terms of computation and execution time, as well as trajectory length, while supporting multi-modal trajectory generation for different obstacle geometries and end-effector dimensions. Videos and the implementation code are available at https://github.com/DominikUrbaniak/obst-avoid-dmp-pi2.

Authors:Vijay M. Galshetwar, Praful Hambarde, Prashant W. Patil, Akshay Dudhane, Sachin Chaudhary, Santosh Kumar Vipparathi, Subrahmanyam Murala
Title: Clear Roads, Clear Vision: Advancements in Multi-Weather Restoration for Smart Transportation
Abstract:
Adverse weather conditions such as haze, rain, and snow significantly degrade the quality of images and videos, posing serious challenges to intelligent transportation systems (ITS) that rely on visual input. These degradations affect critical applications including autonomous driving, traffic monitoring, and surveillance. This survey presents a comprehensive review of image and video restoration techniques developed to mitigate weather-induced visual impairments. We categorize existing approaches into traditional prior-based methods and modern data-driven models, including CNNs, transformers, diffusion models, and emerging vision-language models (VLMs). Restoration strategies are further classified based on their scope: single-task models, multi-task/multi-weather systems, and all-in-one frameworks capable of handling diverse degradations. In addition, we discuss day and night time restoration challenges, benchmark datasets, and evaluation protocols. The survey concludes with an in-depth discussion on limitations in current research and outlines future directions such as mixed/compound-degradation restoration, real-time deployment, and agentic AI frameworks. This work aims to serve as a valuable reference for advancing weather-resilient vision systems in smart transportation environments. Lastly, to stay current with rapid advancements in this field, we will maintain regular updates of the latest relevant papers and their open-source implementations at https://github.com/ChaudharyUPES/A-comprehensive-review-on-Multi-weather-restoration

Authors:Hyundong Jin, Joonghyuk Hahn, Yo-Sub Han
Title: RegexPSPACE: A Benchmark for Evaluating LLM Reasoning on PSPACE-complete Regex Problems
Abstract:
Large language models (LLMs) show strong performance across natural language processing (NLP), mathematical reasoning, and programming, and recent large reasoning models (LRMs) further emphasize explicit reasoning. Yet their computational limits, particularly spatial complexity constrained by finite context windows, remain poorly understood. While recent works often focus on problems within the NP complexity class, we push the boundary by introducing a novel benchmark grounded in two PSPACE-complete regular expression (regex) problems: equivalence decision (RegexEQ) and minimization (RegexMin). PSPACE-complete problems serve as a more rigorous standard for assessing computational capacity, as their solutions require massive search space exploration. We perform a double-exponential space exploration to construct a labeled dataset of over a million regex instances with a sound filtering process to build the benchmark. We conduct extensive evaluations on 6 LLMs and 5 LRMs of varying scales, revealing common failure patterns such as verbosity and repetition. With its well-defined structure and quantitative evaluation metrics, this work presents the first empirical investigation into the spatial computational limitations of LLMs and LRMs, offering a new framework for evaluating their advanced reasoning capabilities. Our code is available at https://github.com/hyundong98/RegexPSPACE .

Authors:Wuyang Li, Wentao Pan, Po-Chien Luan, Yang Gao, Alexandre Alahi
Title: Stable Video Infinity: Infinite-Length Video Generation with Error Recycling
Abstract:
We propose Stable Video Infinity (SVI) that is able to generate infinite-length videos with high temporal consistency, plausible scene transitions, and controllable streaming storylines. While existing long-video methods attempt to mitigate accumulated errors via handcrafted anti-drifting (e.g., modified noise scheduler, frame anchoring), they remain limited to single-prompt extrapolation, producing homogeneous scenes with repetitive motions. We identify that the fundamental challenge extends beyond error accumulation to a critical discrepancy between the training assumption (seeing clean data) and the test-time autoregressive reality (conditioning on self-generated, error-prone outputs). To bridge this hypothesis gap, SVI incorporates Error-Recycling Fine-Tuning, a new type of efficient training that recycles the Diffusion Transformer (DiT)'s self-generated errors into supervisory prompts, thereby encouraging DiT to actively identify and correct its own errors. This is achieved by injecting, collecting, and banking errors through closed-loop recycling, autoregressively learning from error-injected feedback. Specifically, we (i) inject historical errors made by DiT to intervene on clean inputs, simulating error-accumulated trajectories in flow matching; (ii) efficiently approximate predictions with one-step bidirectional integration and calculate errors with residuals; (iii) dynamically bank errors into replay memory across discretized timesteps, which are resampled for new input. SVI is able to scale videos from seconds to infinite durations with no additional inference cost, while remaining compatible with diverse conditions (e.g., audio, skeleton, and text streams). We evaluate SVI on three benchmarks, including consistent, creative, and conditional settings, thoroughly verifying its versatility and state-of-the-art role.

Authors:Yue Li, Shida Sun, Yu Hong, Feihu Xu, Zhiwei Xiong
Title: 3D Reconstruction from Transient Measurements with Time-Resolved Transformer
Abstract:
Transient measurements, captured by the timeresolved systems, are widely employed in photon-efficient reconstruction tasks, including line-of-sight (LOS) and non-line-of-sight (NLOS) imaging. However, challenges persist in their 3D reconstruction due to the low quantum efficiency of sensors and the high noise levels, particularly for long-range or complex scenes. To boost the 3D reconstruction performance in photon-efficient imaging, we propose a generic Time-Resolved Transformer (TRT) architecture. Different from existing transformers designed for high-dimensional data, TRT has two elaborate attention designs tailored for the spatio-temporal transient measurements. Specifically, the spatio-temporal self-attention encoders explore both local and global correlations within transient data by splitting or downsampling input features into different scales. Then, the spatio-temporal cross attention decoders integrate the local and global features in the token space, resulting in deep features with high representation capabilities. Building on TRT, we develop two task-specific embodiments: TRT-LOS for LOS imaging and TRT-NLOS for NLOS imaging. Extensive experiments demonstrate that both embodiments significantly outperform existing methods on synthetic data and real-world data captured by different imaging systems. In addition, we contribute a large-scale, high-resolution synthetic LOS dataset with various noise levels and capture a set of real-world NLOS measurements using a custom-built imaging system, enhancing the data diversity in this field. Code and datasets are available at https://github.com/Depth2World/TRT.

Authors:Mukilan Karuppasamy, Shankar Gangisetty, Shyam Nandan Rai, Carlo Masone, C V Jawahar
Title: Towards Safer and Understandable Driver Intention Prediction
Abstract:
Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/

Authors:Peichen Xie, Xian Zhang, Shuo Chen
Title: RepDL: Bit-level Reproducible Deep Learning Training and Inference
Abstract:
Non-determinism and non-reproducibility present significant challenges in deep learning, leading to inconsistent results across runs and platforms. These issues stem from two origins: random number generation and floating-point computation. While randomness can be controlled through deterministic configurations, floating-point inconsistencies remain largely unresolved. To address this, we introduce RepDL, an open-source library that ensures deterministic and bitwise-reproducible deep learning training and inference across diverse computing environments. RepDL achieves this by enforcing correct rounding and order invariance in floating-point computation. The source code is available at https://github.com/microsoft/RepDL .

Authors:Ling Zhan, Junjie Huang, Xiaoyao Yu, Wenyu Chen, Tao Jia
Title: Beyond Pairwise Connections: Extracting High-Order Functional Brain Network Structures under Global Constraints
Abstract:
Functional brain network (FBN) modeling often relies on local pairwise interactions, whose limitation in capturing high-order dependencies is theoretically analyzed in this paper. Meanwhile, the computational burden and heuristic nature of current hypergraph modeling approaches hinder end-to-end learning of FBN structures directly from data distributions. To address this, we propose to extract high-order FBN structures under global constraints, and implement this as a Global Constraints oriented Multi-resolution (GCM) FBN structure learning framework. It incorporates 4 types of global constraint (signal synchronization, subject identity, expected edge numbers, and data labels) to enable learning FBN structures for 4 distinct levels (sample/subject/group/project) of modeling resolution. Experimental results demonstrate that GCM achieves up to a 30.6% improvement in relative accuracy and a 96.3% reduction in computational time across 5 datasets and 2 task settings, compared to 9 baselines and 10 state-of-the-art methods. Extensive experiments validate the contributions of individual components and highlight the interpretability of GCM. This work offers a novel perspective on FBN structure learning and provides a foundation for interdisciplinary applications in cognitive neuroscience. Code is publicly available on https://github.com/lzhan94swu/GCM.

Authors:Minmao Wang, Xingchen Liu, Shijie Yi, Likang Wu, Hongke Zhao, Fei Pan, Qingpeng Cai, Peng Jiang
Title: Hierarchical Semantic RL: Tackling the Problem of Dynamic Action Space for RL-based Recommendations
Abstract:
Recommender Systems (RS) are fundamental to modern online services. While most existing approaches optimize for short-term engagement, recent work has begun to explore reinforcement learning (RL) to model long-term user value. However, these efforts face significant challenges due to the vast, dynamic action spaces inherent in recommendation, which hinder stable policy learning. To resolve this bottleneck, we introduce Hierarchical Semantic RL (HSRL), which reframes RL-based recommendation over a fixed Semantic Action Space (SAS). HSRL encodes items as Semantic IDs (SIDs) for policy learning, and maps SIDs back to their original items via a fixed, invertible lookup during execution. To align decision-making with SID generation, the Hierarchical Policy Network (HPN) operates in a coarse-to-fine manner, employing hierarchical residual state modeling to refine each level's context from the previous level's residual, thereby stabilizing training and reducing representation-decision mismatch. In parallel, a Multi-level Critic (MLC) provides token-level value estimates, enabling fine-grained credit assignment. Across public benchmarks and a large-scale production dataset from a leading Chinese short-video advertising platform, HSRL consistently surpasses state-of-the-art baselines. In online deployment over a seven-day A/B testing, it delivers an 18.421% CVR lift with only a 1.251% increase in cost, supporting HSRL as a scalable paradigm for RL-based recommendation. Our code is released at https://github.com/MinmaoWang/HSRL.

Authors:Yansong Wang, Qihui Lin, Junjie Huang, Tao Jia
Title: Generative Data Augmentation in Graph Contrastive Learning for Recommendation
Abstract:
Recommendation systems have become indispensable in various online platforms, from e-commerce to streaming services. A fundamental challenge in this domain is learning effective embeddings from sparse user-item interactions. While contrastive learning has recently emerged as a promising solution to this issue, generating augmented views for contrastive learning through most existing random data augmentation methods often leads to the alteration of original semantic information. In this paper, we propose a novel framework, GDA4Rec (Generative Data Augmentation in graph contrastive learning for Recommendation) to generate high-quality augmented views and provide robust self-supervised signals. Specifically, we employ a noise generation module that leverages deep generative models to approximate the distribution of original data for data augmentation. Additionally, GDA4Rec further extracts an item complement matrix to characterize the latent correlations between items and provide additional self-supervised signals. Lastly, a joint objective that integrates recommendation, data augmentation and contrastive learning is used to enforce the model to learn more effective and informative embeddings. Extensive experiments are conducted on three public datasets to demonstrate the superiority of the model. The code is available at: https://github.com/MrYansong/GDA4Rec.

Authors:Weikai Huang, Jieyu Zhang, Taoyang Jia, Chenhao Zheng, Ziqi Gao, Jae Sung Park, Ranjay Krishna
Title: SOS: Synthetic Object Segments Improve Detection, Segmentation, and Grounding
Abstract:
Visual grouping -- operationalized via instance segmentation, visual grounding, and object detection -- underpins applications from robotic perception to photo editing. Large annotated datasets are costly, biased in coverage, and hard to scale. Synthetic data are promising but often lack flexibility, accuracy, and compositional diversity. We present SOS, a simple and scalable data synthesis pipeline based on an object-centric composition strategy. It pastes high-quality synthetic object segments into new images using structured layout priors and generative relighting, producing accurate and diverse masks, boxes, and referring expressions. Models trained on 100000 synthetic images from SOS outperform those trained on larger real-image datasets such as GRIT (20M) and V3Det (200K) on detection and grounding tasks, achieving +10.9 AP on LVIS detection and +8.4 $N_{\text{Acc}}$ on gRefCOCO grounding. SOS enables controllable dataset construction and improves generalization in both low-data and closed-vocabulary settings. Augmenting LVIS and COCO with synthetic object segments yields strong performance across real-data scales and even larger gains under extremely limited real data (for example, +3.83 $AP_{\text{rare}}$ on LVIS instance segmentation and +6.59 AP with a 1 percent COCO setup). This controllability also supports targeted data generation for challenging intra-class referring in visual grounding.

Authors:Gurprit Singh, Wenzel Jakob
Title: MCMC: Bridging Rendering, Optimization and Generative AI
Abstract:
Generative artificial intelligence (AI) has made unprecedented advances in vision language models over the past two years. During the generative process, new samples (images) are generated from an unknown high-dimensional distribution. Markov Chain Monte Carlo (MCMC) methods are particularly effective in drawing samples from such complex, high-dimensional distributions. This makes MCMC methods an integral component for models like EBMs, ensuring accurate sample generation. Gradient-based optimization is at the core of modern generative models. The update step during the optimization forms a Markov chain where the new update depends only on the current state. This allows exploration of the parameter space in a memoryless manner, thus combining the benefits of gradient-based optimization and MCMC sampling. MCMC methods have shown an equally important role in physically based rendering where complex light paths are otherwise quite challenging to sample from simple importance sampling techniques. A lot of research is dedicated towards bringing physical realism to samples (images) generated from diffusion-based generative models in a data-driven manner, however, a unified framework connecting these techniques is still missing. In this course, we take the first steps toward understanding each of these components and exploring how MCMC could potentially serve as a bridge, linking these closely related areas of research. Our course aims to provide necessary theoretical and practical tools to guide students, researchers and practitioners towards the common goal of generative physically based rendering. All Jupyter notebooks with demonstrations associated to this tutorial can be found on the project webpage: https://sinbag.github.io/mcmc/

Authors:Akira Takahashi, Shusuke Takahashi, Yuki Mitsufuji
Title: MMAudioSep: Taming Video-to-Audio Generative Model Towards Video/Text-Queried Sound Separation
Abstract:
We introduce MMAudioSep, a generative model for video/text-queried sound separation that is founded on a pretrained video-to-audio model. By leveraging knowledge about the relationship between video/text and audio learned through a pretrained audio generative model, we can train the model more efficiently, i.e., the model does not need to be trained from scratch. We evaluate the performance of MMAudioSep by comparing it to existing separation models, including models based on both deterministic and generative approaches, and find it is superior to the baseline models. Furthermore, we demonstrate that even after acquiring functionality for sound separation via fine-tuning, the model retains the ability for original video-to-audio generation. This highlights the potential of foundational sound generation models to be adopted for sound-related downstream tasks. Our code is available at https://github.com/sony/mmaudiosep.

Authors:Chung-En Sun, Ge Yan, Akshay Kulkarni, Tsui-Wei Weng
Title: ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability
Abstract:
Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine

Authors:Muhammad Ali Shafique, Kanwal Mehreen, Muhammad Arham, Maaz Amjad, Sabur Butt, Hamza Farooq
Title: Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Abstract:
Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.

Authors:Joonghyuk Hahn, Soohan Lim, Yo-Sub Han
Title: MEC$^3$O: Multi-Expert Consensus for Code Time Complexity Prediction
Abstract:
Predicting the complexity of source code is essential for software development and algorithm analysis. Recently, Baik et al. (2025) introduced CodeComplex for code time complexity prediction. The paper shows that LLMs without fine-tuning struggle with certain complexity classes. This suggests that no single LLM excels at every class, but rather each model shows advantages in certain classes. We propose MEC$^3$O, a multi-expert consensus system, which extends the multi-agent debate frameworks. MEC$^3$O assigns LLMs to complexity classes based on their performance and provides them with class-specialized instructions, turning them into experts. These experts engage in structured debates, and their predictions are integrated through a weighted consensus mechanism. Our expertise assignments to LLMs effectively handle Degeneration-of-Thought, reducing reliance on a separate judge model, and preventing convergence to incorrect majority opinions. Experiments on CodeComplex show that MEC$^3$O outperforms the open-source baselines, achieving at least 10% higher accuracy and macro-F1 scores. It also surpasses GPT-4o-mini in macro-F1 scores on average and demonstrates competitive on-par F1 scores to GPT-4o and GPT-o4-mini on average. This demonstrates the effectiveness of multi-expert debates and weight consensus strategy to generate the final predictions. Our code and data is available at https://github.com/suhanmen/MECO.

Authors:Sicheol Sung, Joonghyuk Hahn, Yo-Sub Han
Title: Repairing Regex Vulnerabilities via Localization-Guided Instructions
Abstract:
Regular expressions (regexes) are foundational to modern computing for critical tasks like input validation and data parsing, yet their ubiquity exposes systems to regular expression denial of service (ReDoS), a vulnerability requiring automated repair methods. Current approaches, however, are hampered by a trade-off. Symbolic, rule-based system are precise but fails to repair unseen or complex vulnerability patterns. Conversely, large language models (LLMs) possess the necessary generalizability but are unreliable for tasks demanding strict syntactic and semantic correctness. We resolve this impasse by introducing a hybrid framework, localized regex repair (LRR), designed to harness LLM generalization while enforcing reliability. Our core insight is to decouple problem identification from the repair process. First, a deterministic, symbolic module localizes the precise vulnerable subpattern, creating a constrained and tractable problem space. Then, the LLM invoked to generate a semantically equivalent fix for this isolated segment. This combined architecture successfully resolves complex repair cases intractable for rule-based repair while avoiding the semantic errors of LLM-only approaches. Our work provides a validated methodology for solving such problems in automated repair, improving the repair rate by 15.4%p over the state-of-the-art. Our code is available at https://github.com/cdltlehf/LRR.

Authors:Chuanrui Zhang, Zhengxian Wu, Guanxing Lu, Yansong Tang, Ziwei Wang
Title: iMoWM: Taming Interactive Multi-Modal World Model for Robotic Manipulation
Abstract:
Learned world models hold significant potential for robotic manipulation, as they can serve as simulator for real-world interactions. While extensive progress has been made in 2D video-based world models, these approaches often lack geometric and spatial reasoning, which is essential for capturing the physical structure of the 3D world. To address this limitation, we introduce iMoWM, a novel interactive world model designed to generate color images, depth maps, and robot arm masks in an autoregressive manner conditioned on actions. To overcome the high computational cost associated with three-dimensional information, we propose MMTokenizer, which unifies multi-modal inputs into a compact token representation. This design enables iMoWM to leverage large-scale pretrained VideoGPT models while maintaining high efficiency and incorporating richer physical information. With its multi-modal representation, iMoWM not only improves the visual quality of future predictions but also serves as an effective simulator for model-based reinforcement learning (MBRL) and facilitates real-world imitation learning. Extensive experiments demonstrate the superiority of iMoWM across these tasks, showcasing the advantages of multi-modal world modeling for robotic manipulation. Homepage: https://xingyoujun.github.io/imowm/

Authors:Xiaoxiao Ma, Feng Zhao, Pengyang Ling, Haibo Qiu, Zhixiang Wei, Hu Yu, Jie Huang, Zhixiong Zeng, Lin Ma
Title: Towards Better & Faster Autoregressive Image Generation: From the Perspective of Entropy
Abstract:
In this work, we first revisit the sampling issues in current autoregressive (AR) image generation models and identify that image tokens, unlike text tokens, exhibit lower information density and non-uniform spatial distribution. Accordingly, we present an entropy-informed decoding strategy that facilitates higher autoregressive generation quality with faster synthesis speed. Specifically, the proposed method introduces two main innovations: 1) dynamic temperature control guided by spatial entropy of token distributions, enhancing the balance between content diversity, alignment accuracy, and structural coherence in both mask-based and scale-wise models, without extra computational overhead, and 2) entropy-aware acceptance rules in speculative decoding, achieving near-lossless generation at about 85\% of the inference cost of conventional acceleration methods. Extensive experiments across multiple benchmarks using diverse AR image generation models demonstrate the effectiveness and generalizability of our approach in enhancing both generation quality and sampling speed.

Authors:Yipu Zhang, Chaofang Ma, Jinming Ge, Lin Jiang, Jiang Xu, Wei Zhang
Title: HERO: Hardware-Efficient RL-based Optimization Framework for NeRF Quantization
Abstract:
Neural Radiance Field (NeRF) has emerged as a promising 3D reconstruction method, delivering high-quality results for AR/VR applications. While quantization methods and hardware accelerators have been proposed to enhance NeRF's computational efficiency, existing approaches face crucial limitations. Current quantization methods operate without considering hardware architecture, resulting in sub-optimal solutions within the vast design space encompassing accuracy, latency, and model size. Additionally, existing NeRF accelerators heavily rely on human experts to explore this design space, making the optimization process time-consuming, inefficient, and unlikely to discover optimal solutions. To address these challenges, we introduce HERO, a reinforcement learning framework performing hardware-aware quantization for NeRF. Our framework integrates a NeRF accelerator simulator to generate real-time hardware feedback, enabling fully automated adaptation to hardware constraints. Experimental results demonstrate that HERO achieves 1.31-1.33 $\times$ better latency, 1.29-1.33 $\times$ improved cost efficiency, and a more compact model size compared to CAQ, a previous state-of-the-art NeRF quantization framework. These results validate our framework's capability to effectively navigate the complex design space between hardware and algorithm requirements, discovering superior quantization policies for NeRF implementation. Code is available at https://github.com/ypzhng/HERO.

Authors:Lan Zhang, Marco Valentino, André Freitas
Title: MASA: LLM-Driven Multi-Agent Systems for Autoformalization
Abstract:
Autoformalization serves a crucial role in connecting natural language and formal reasoning. This paper presents MASA, a novel framework for building multi-agent systems for autoformalization driven by Large Language Models (LLMs). MASA leverages collaborative agents to convert natural language statements into their formal representations. The architecture of MASA is designed with a strong emphasis on modularity, flexibility, and extensibility, allowing seamless integration of new agents and tools to adapt to a fast-evolving field. We showcase the effectiveness of MASA through use cases on real-world mathematical definitions and experiments on formal mathematics datasets. This work highlights the potential of multi-agent systems powered by the interaction of LLMs and theorem provers in enhancing the efficiency and reliability of autoformalization, providing valuable insights and support for researchers and practitioners in the field.

Authors:Qixiang Yin, Huanjin Yao, Jianghao Chen, Jiaxing Huang, Zhicheng Zhao, Fei Su
Title: Tiny-R1V: Lightweight Multimodal Unified Reasoning Model via Model Merging
Abstract:
Although Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, they encounter numerous challenges in terms of reasoning efficiency, such as large model size, overthinking, and compromised accuracy in lightweight scenarios. However, research on the reasoning capabilities of lightweight MLLMs is quite lacking. To this end, we propose Tiny-R1V, a novel lightweight 3B model that achieves faster inference and higher accuracy via a two-stage optimization, while unifying multimodal reasoning across multiple tasks and using fewer tokens. In the first stage, Tiny-R1V introduces Length-Informed Relative Policy Optimization (LIPO), a novel reinforcement learning method, to train each reasoning model. The LIPO is designed to dynamically adjusts advantages of responses within groups, that is, by prioritizing concise yet high-quality responses to encourage the generation of shorter and more accurate response. In the second stage, we propose Adaptive Model Merging (AMM), a training-free model merging method that merges multiple specialist models into a unified architecture. Specifically, AMM adaptively adjusts the weights of task vectors and robustly optimizes the merged vectors via a novel gradient projection regularization loss function, thus mitigating redundant conflicts between them. Extensive evaluations on ten widely-used reasoning benchmarks covering mathematics, structured data (charts, tables, documents), OCR, and general capabilities showcase the superior performance of Tiny-R1V, enabling lightweight models to excel in diverse multimodal reasoning tasks.

Authors:Zhen Yang, Yansong Ma, Lei Chen
Title: Progressive Uncertainty-Guided Evidential U-KAN for Trustworthy Medical Image Segmentation
Abstract:
Trustworthy medical image segmentation aims at deliver accurate and reliable results for clinical decision-making. Most existing methods adopt the evidence deep learning (EDL) paradigm due to its computational efficiency and theoretical robustness. However, the EDL-based methods often neglect leveraging uncertainty maps rich in attention cues to refine ambiguous boundary segmentation. To address this, we propose a progressive evidence uncertainty guided attention (PEUA) mechanism to guide the model to focus on the feature representation learning of hard regions. Unlike conventional approaches, PEUA progressively refines attention using uncertainty maps while employing low-rank learning to denoise attention weights, enhancing feature learning for challenging regions. Concurrently, standard EDL methods suppress evidence of incorrect class indiscriminately via Kullback-Leibler (KL) regularization, impairing the uncertainty assessment in ambiguous areas and consequently distorts the corresponding attention guidance. We thus introduce a semantic-preserving evidence learning (SAEL) strategy, integrating a semantic-smooth evidence generator and a fidelity-enhancing regularization term to retain critical semantics. Finally, by embedding PEUA and SAEL with the state-of-the-art U-KAN, we proposes Evidential U-KAN, a novel solution for trustworthy medical image segmentation. Extensive experiments on 4 datasets demonstrate superior accuracy and reliability over the competing methods. The code is available at \href{https://anonymous.4open.science/r/Evidence-U-KAN-BBE8}{github}.

Authors:Jiaming Wang, Zhe Tang, Yilin Jin, Peng Ding, Xiaoyu Li, Xuezhi Cao
Title: SOP-Maze: Evaluating Large Language Models on Complicated Business Standard Operating Procedures
Abstract:
As large language models (LLMs) are widely deployed as domain-specific agents, many benchmarks have been proposed to evaluate their ability to follow instructions and make decisions in real-world scenarios. However, business scenarios often involve complex standard operating procedures (SOPs), and the evaluation of LLM capabilities in such contexts has not been fully explored. To bridge this gap, we propose SOP-Maze, a benchmark constructed from real-world business data and adapted into a collection of 397 tasks from 23 complex SOP scenarios. We further categorize SOP tasks into two broad classes: Lateral Root System (LRS), representing wide-option tasks that demand precise selection; and Heart Root System (HRS), which emphasizes deep logical reasoning with complex branches. Extensive experiments reveal that nearly all state-of-the-art models struggle with SOP-Maze. We conduct a comprehensive analysis and identify three key error categories: (i) route blindness: difficulty following procedures; (ii) conversational fragility: inability to handle real dialogue nuances; and (iii) calculation errors: mistakes in time or arithmetic reasoning under complex contexts. The systematic study explores LLM performance across SOP tasks that challenge both breadth and depth, offering new insights for improving model capabilities. We have open-sourced our work on https://github.com/ADoublLEN/SOP-Maze.

Authors:Yingyi Zhang, Pengyue Jia, Derong Xu, Yi Wen, Xianneng Li, Yichao Wang, Wenlin Zhang, Xiaopeng Li, Weinan Gan, Huifeng Guo, Yong Liu, Xiangyu Zhao
Title: Personalize Before Retrieve: LLM-based Personalized Query Expansion for User-Centric Retrieval
Abstract:
Retrieval-Augmented Generation (RAG) critically depends on effective query expansion to retrieve relevant information. However, existing expansion methods adopt uniform strategies that overlook user-specific semantics, ignoring individual expression styles, preferences, and historical context. In practice, identical queries in text can express vastly different intentions across users. This representational rigidity limits the ability of current RAG systems to generalize effectively in personalized settings. Specifically, we identify two core challenges for personalization: 1) user expression styles are inherently diverse, making it difficult for standard expansions to preserve personalized intent. 2) user corpora induce heterogeneous semantic structures-varying in topical focus and lexical organization-which hinders the effective anchoring of expanded queries within the user's corpora space. To address these challenges, we propose Personalize Before Retrieve (PBR), a framework that incorporates user-specific signals into query expansion prior to retrieval. PBR consists of two components: P-PRF, which generates stylistically aligned pseudo feedback using user history for simulating user expression style, and P-Anchor, which performs graph-based structure alignment over user corpora to capture its structure. Together, they produce personalized query representations tailored for retrieval. Experiments on two personalized benchmarks show that PBR consistently outperforms strong baselines, with up to 10% gains on PersonaBench across retrievers. Our findings demonstrate the value of modeling personalization before retrieval to close the semantic gap in user-adaptive RAG systems. Our code is available at https://github.com/Zhang-Yingyi/PBR-code.

Authors:Chunsong Chen, Yichen Hou, Huan Chen, Junlin Li, Rong Fu, Qiushen Lai, Yiping Chen, Ting Han
Title: GBA-UBF : A Large-Scale and Fine-Grained Building Function Classification Dataset in the Greater Bay Area
Abstract:
Rapid urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) has created urgent demand for high-resolution, building-level functional data to support sustainable spatial planning. Existing land use datasets suffer from coarse granularity and difficulty in capturing intra-block heterogeneity. To this end, we present the Greater Bay Area Urban Building Function Dataset (GBA-UBF), a large-scale, fine-grained dataset that assigns one of five functional categories to nearly four million buildings across six core GBA cities. We proposed a Multi-level Building Function Optimization (ML-BFO) method by integrating Points of Interest (POI) records and building footprints through a three-stage pipeline: (1) candidate label generation using spatial overlay with proximity weighting, (2) iterative refinement based on neighborhood label autocorrelation, and (3) function-related correction informed by High-level POI buffers. To quantitatively validate results, we design the Building Function Matching Index (BFMI), which jointly measures categorical consistency and distributional similarity against POI-derived probability heatmaps. Comparative experiments demonstrate that GBA-UBF achieves significantly higher accuracy, with a BMFI of 0.58. This value markedly exceeds that of the baseline dataset and exhibits superior alignment with urban activity patterns. Field validation further confirms the dataset's semantic reliability and practical interpretability. The GBA-UBF dataset establishes a reproducible framework for building-level functional classification, bridging the gap between coarse land use maps and fine-grained urban analytics. The dataset is accessible at https://github.com/chenchs0629/GBA-UBF, and the data will undergo continuous improvement and updates based on feedback from the community.

Authors:Tengxiao Lv, Ling Luo, Juntao Li, Yanhua Wang, Yuchen Pan, Chao Liu, Yanan Wang, Yan Jiang, Huiyi Lv, Yuanyuan Sun, Jian Wang, Hongfei Lin
Title: A Unified Biomedical Named Entity Recognition Framework with Large Language Models
Abstract:
Accurate recognition of biomedical named entities is critical for medical information extraction and knowledge discovery. However, existing methods often struggle with nested entities, entity boundary ambiguity, and cross-lingual generalization. In this paper, we propose a unified Biomedical Named Entity Recognition (BioNER) framework based on Large Language Models (LLMs). We first reformulate BioNER as a text generation task and design a symbolic tagging strategy to jointly handle both flat and nested entities with explicit boundary annotation. To enhance multilingual and multi-task generalization, we perform bilingual joint fine-tuning across multiple Chinese and English datasets. Additionally, we introduce a contrastive learning-based entity selector that filters incorrect or spurious predictions by leveraging boundary-sensitive positive and negative samples. Experimental results on four benchmark datasets and two unseen corpora show that our method achieves state-of-the-art performance and robust zero-shot generalization across languages. The source codes are freely available at https://github.com/dreamer-tx/LLMNER.

Authors:Haomin Zhuang, Yujun Zhou, Taicheng Guo, Yue Huang, Fangxu Liu, Kai Song, Xiangliang Zhang
Title: Exploring Multi-Temperature Strategies for Token- and Rollout-Level Control in RLVR
Abstract:
Reinforcement Learning has demonstrated substantial improvements in the reasoning abilities of Large Language Models (LLMs), exhibiting significant applicability across various domains. Recent research has identified that tokens within LLMs play distinct roles during reasoning tasks, categorizing them into high-entropy reasoning tokens and low-entropy knowledge tokens. Prior approaches have typically focused on restricting updates to indirectly encourage exploration, yet they do not explicitly facilitate exploratory behavior during the token generation stage itself. In this work, we introduce a complementary approach that explicitly promotes exploration during sampling by applying distinct temperature settings for different token types. Specifically, our method employs higher temperatures for reasoning tokens to actively encourage exploration, while retaining lower temperatures for knowledge tokens to maintain factual correctness. Furthermore, we systematically investigate various multi-temperature scheduling strategies and their impacts within reinforcement learning contexts. Empirical evaluations on several reasoning benchmarks demonstrate that our approach significantly enhances the reasoning performance of LLMs. The code is available at https://github.com/zhmzm/Multi_Temperature_Verl.git.

Authors:Yuxuan Jiang, Zehua Chen, Zeqian Ju, Yusheng Dai, Weibei Dou, Jun Zhu
Title: ControlAudio: Tackling Text-Guided, Timing-Indicated and Intelligible Audio Generation via Progressive Diffusion Modeling
Abstract:
Text-to-audio (TTA) generation with fine-grained control signals, e.g., precise timing control or intelligible speech content, has been explored in recent works. However, constrained by data scarcity, their generation performance at scale is still compromised. In this study, we recast controllable TTA generation as a multi-task learning problem and introduce a progressive diffusion modeling approach, ControlAudio. Our method adeptly fits distributions conditioned on more fine-grained information, including text, timing, and phoneme features, through a step-by-step strategy. First, we propose a data construction method spanning both annotation and simulation, augmenting condition information in the sequence of text, timing, and phoneme. Second, at the model training stage, we pretrain a diffusion transformer (DiT) on large-scale text-audio pairs, achieving scalable TTA generation, and then incrementally integrate the timing and phoneme features with unified semantic representations, expanding controllability. Finally, at the inference stage, we propose progressively guided generation, which sequentially emphasizes more fine-grained information, aligning inherently with the coarse-to-fine sampling nature of DiT. Extensive experiments show that ControlAudio achieves state-of-the-art performance in terms of temporal accuracy and speech clarity, significantly outperforming existing methods on both objective and subjective evaluations. Demo samples are available at: https://control-audio.github.io/Control-Audio.

Authors:Siqi Zhu, David Zhang, Pedro Cisneros-Velarde, Jiaxuan You
Title: GTAlign: Game-Theoretic Alignment of LLM Assistants for Mutual Welfare
Abstract:
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a mutual welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and mutual welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .

Authors:Ragib Amin Nihal, Rui Wen, Kazuhiro Nakadai, Jun Sakuma
Title: Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Abstract:
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories (like malware generation, harassment, or fraud) through distinct conversational approaches (educational discussions, personal experiences, hypothetical scenarios). Existing multi-turn jailbreaking methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct effective multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles where robustness to one conversational pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA

Authors:Achleshwar Luthra, Priyadarsi Mishra, Tomer Galanti
Title: On the Alignment Between Supervised and Self-Supervised Contrastive Learning
Abstract:
Self-supervised contrastive learning (CL) has achieved remarkable empirical success, often producing representations that rival supervised pre-training on downstream tasks. Recent theory explains this by showing that the CL loss closely approximates a supervised surrogate, Negatives-Only Supervised Contrastive Learning (NSCL) loss, as the number of classes grows. Yet this loss-level similarity leaves an open question: {\em Do CL and NSCL also remain aligned at the representation level throughout training, not just in their objectives?} We address this by analyzing the representation alignment of CL and NSCL models trained under shared randomness (same initialization, batches, and augmentations). First, we show that their induced representations remain similar: specifically, we prove that the similarity matrices of CL and NSCL stay close under realistic conditions. Our bounds provide high-probability guarantees on alignment metrics such as centered kernel alignment (CKA) and representational similarity analysis (RSA), and they clarify how alignment improves with more classes, higher temperatures, and its dependence on batch size. In contrast, we demonstrate that parameter-space coupling is inherently unstable: divergence between CL and NSCL weights can grow exponentially with training time. Finally, we validate these predictions empirically, showing that CL-NSCL alignment strengthens with scale and temperature, and that NSCL tracks CL more closely than other supervised objectives. This positions NSCL as a principled bridge between self-supervised and supervised learning. Our code and project page are available at [\href{https://github.com/DLFundamentals/understanding_ssl_v2}{code}, \href{https://dlfundamentals.github.io/cl-nscl-representation-alignment/}{project page}].

Authors:Fudong Lin, Xu Yuan
Title: Long-Tailed Recognition via Information-Preservable Two-Stage Learning
Abstract:
The imbalance (or long-tail) is the nature of many real-world data distributions, which often induces the undesirable bias of deep classification models toward frequent classes, resulting in poor performance for tail classes. In this paper, we propose a novel two-stage learning approach to mitigate such a majority-biased tendency while preserving valuable information within datasets. Specifically, the first stage proposes a new representation learning technique from the information theory perspective. This approach is theoretically equivalent to minimizing intra-class distance, yielding an effective and well-separated feature space. The second stage develops a novel sampling strategy that selects mathematically informative instances, able to rectify majority-biased decision boundaries without compromising a model's overall performance. As a result, our approach achieves the state-of-the-art performance across various long-tailed benchmark datasets, validated via extensive experiments. Our code is available at https://github.com/fudong03/BNS_IPDPP.

Authors:Yiyang Huang, Yizhou Wang, Yun Fu
Title: D-CoDe: Scaling Image-Pretrained VLMs to Video via Dynamic Compression and Question Decomposition
Abstract:
Video large language models (Vid-LLMs), which excel in diverse video-language tasks, can be effectively constructed by adapting image-pretrained vision-language models (VLMs). However, this adaptation remains challenging, as it requires processing dense and temporally extended visual inputs that exceed the capacity of image-based models. This paper identifies the perception bottleneck and token overload as key challenges in extending image-based VLMs to the video domain. To address these issues, we propose D-CoDe, a training-free adaptation framework that incorporates dynamic compression and question decomposition. Specifically, dynamic compression alleviates the perception bottleneck through adaptive selection of representative frames and content-aware aggregation of spatial tokens, thereby reducing redundancy while preserving informative content. In parallel, question decomposition mitigates token overload by reformulating the original query into sub-questions, guiding the model to focus on distinct aspects of the video and enabling more comprehensive understanding. Experiments demonstrate that D-CoDe effectively improves video understanding across various benchmarks. Furthermore, strong performance on the challenging long-video benchmark highlights the potential of D-CoDe in handling complex video-language tasks. Code is available at https://github.com/hukcc/D-CoDe.

Authors:Rohan Choudhury, Shanchuan Lin, Jianyi Wang, Hao Chen, Qi Zhao, Feng Cheng, Lu Jiang, Kris Kitani, Laszlo A. Jeni
Title: SkipSR: Faster Super Resolution with Token Skipping
Abstract:
Diffusion-based super-resolution (SR) is a key component in video generation and video restoration, but is slow and expensive, limiting scalability to higher resolutions and longer videos. Our key insight is that many regions in video are inherently low-detail and gain little from refinement, yet current methods process all pixels uniformly. To take advantage of this, we propose SkipSR, a simple framework for accelerating video SR by identifying low-detail regions directly from low-resolution input, then skipping computation on them entirely, only super-resolving the areas that require refinement. This simple yet effective strategy preserves perceptual quality in both standard and one-step diffusion SR models while significantly reducing computation. In standard SR benchmarks, our method achieves up to 60% faster end-to-end latency than prior models on 720p videos with no perceptible loss in quality. Video demos are available at https://rccchoudhury.github.io/skipsr/

Authors:Yiming Li, Nael Darwiche, Amirreza Razmjoo, Sichao Liu, Yilun Du, Auke Ijspeert, Sylvain Calinon
Title: Geometry-aware Policy Imitation
Abstract:
We propose a Geometry-aware Policy Imitation (GPI) approach that rethinks imitation learning by treating demonstrations as geometric curves rather than collections of state-action samples. From these curves, GPI derives distance fields that give rise to two complementary control primitives: a progression flow that advances along expert trajectories and an attraction flow that corrects deviations. Their combination defines a controllable, non-parametric vector field that directly guides robot behavior. This formulation decouples metric learning from policy synthesis, enabling modular adaptation across low-dimensional robot states and high-dimensional perceptual inputs. GPI naturally supports multimodality by preserving distinct demonstrations as separate models and allows efficient composition of new demonstrations through simple additions to the distance field. We evaluate GPI in simulation and on real robots across diverse tasks. Experiments show that GPI achieves higher success rates than diffusion-based policies while running 20 times faster, requiring less memory, and remaining robust to perturbations. These results establish GPI as an efficient, interpretable, and scalable alternative to generative approaches for robotic imitation learning. Project website: https://yimingli1998.github.io/projects/GPI/

Authors:Gang Liu, Jie Chen, Yihan Zhu, Michael Sun, Tengfei Luo, Nitesh V Chawla, Meng Jiang
Title: Graph Diffusion Transformers are In-Context Molecular Designers
Abstract:
In-context learning allows large models to adapt to new tasks from a few demonstrations, but it has shown limited success in molecular design. Existing databases such as ChEMBL contain molecular properties spanning millions of biological assays, yet labeled data for each property remain scarce. To address this limitation, we introduce demonstration-conditioned diffusion models (DemoDiff), which define task contexts using a small set of molecule-score examples instead of text descriptions. These demonstrations guide a denoising Transformer to generate molecules aligned with target properties. For scalable pretraining, we develop a new molecular tokenizer with Node Pair Encoding that represents molecules at the motif level, requiring 5.5$\times$ fewer nodes. We curate a dataset containing millions of context tasks from multiple sources covering both drugs and materials, and pretrain a 0.7-billion-parameter model on it. Across 33 design tasks in six categories, DemoDiff matches or surpasses language models 100-1000$\times$ larger and achieves an average rank of 3.63 compared to 5.25-10.20 for domain-specific approaches. These results position DemoDiff as a molecular foundation model for in-context molecular design. Our code is available at https://github.com/liugangcode/DemoDiff.

Authors:Xianzhen Luo, Jinyang Huang, Wenzhen Zheng, Qingfu Zhu, Mingzheng Xu, Yiheng Xu, Yuantao Fan, Libo Qin, Wanxiang Che
Title: How Many Code and Test Cases Are Enough? Evaluating Test Cases Generation from a Binary-Matrix Perspective
Abstract:
Evaluating test cases automatically generated by Large Language Models (LLMs) is a critical yet challenging task. Existing benchmarks suffer from high computational costs, score inflation, and a bias towards trivial bugs over rare, critical faults. In this work, we ask two fundamental questions: (1) What is the minimal set of wrong codes sufficient to represent the entire error space? and (2) What is the minimal set of test cases needed to distinguish them? We introduce a framework that formalizes benchmark construction as finding an optimal diagnostic basis in a binary code-test matrix. The rank of this matrix specifies the minimal number of independent error patterns (wrong codes) and provides a tight upper bound on the number of test cases required for complete fault coverage. Our objective is to identify a basis of size equal to the matrix rank that maximizes internal diversity. To tackle this NP-hard problem, we propose WrongSelect, an efficient approximation algorithm to select maximally diverse wrong codes. Applying this framework to millions of competitive programming submissions, we construct TC-Bench, a compact, diverse, and inflation-resistant benchmark. Extensive experiments show that even the most advanced test case generation methods achieve only ~60% exclusion rates on TC-Bench, exposing a significant gap in their diagnostic power. Our dataset is available at: https://huggingface.co/datasets/Luoberta/TC-Bench and our code is at: https://github.com/Luowaterbi/TC-Bench.

Authors:Yifei Dong, Fengyi Wu, Guangyu Chen, Zhi-Qi Cheng, Qiyu Hu, Yuxuan Zhou, Jingdong Sun, Jun-Yan He, Qi Dai, Alexander G Hauptmann
Title: Unified World Models: Memory-Augmented Planning and Foresight for Visual Navigation
Abstract:
Enabling embodied agents to effectively imagine future states is critical for robust and generalizable visual navigation. Current state-of-the-art approaches, however, adopt modular architectures that separate navigation planning from visual world modeling, leading to state-action misalignment and limited adaptability in novel or dynamic scenarios. To overcome this fundamental limitation, we propose UniWM, a unified, memory-augmented world model integrating egocentric visual foresight and planning within a single multimodal autoregressive backbone. Unlike modular frameworks, UniWM explicitly grounds action decisions in visually imagined outcomes, ensuring tight alignment between prediction and control. A hierarchical memory mechanism further integrates detailed short-term perceptual cues with longer-term trajectory context, enabling stable, coherent reasoning over extended horizons. Extensive experiments across four challenging benchmarks (Go Stanford, ReCon, SCAND, HuRoN) demonstrate that UniWM substantially improves navigation success rates by up to 30%, significantly reduces trajectory errors compared to strong baselines, and exhibits impressive zero-shot generalization on the unseen TartanDrive dataset. These results highlight UniWM as a principled step toward unified, imagination-driven embodied navigation.

Authors:Kang Liao, Size Wu, Zhonghua Wu, Linyi Jin, Chao Wang, Yikai Wang, Fei Wang, Wei Li, Chen Change Loy
Title: Thinking with Camera: A Unified Multimodal Model for Camera-Centric Understanding and Generation
Abstract:
Camera-centric understanding and generation are two cornerstones of spatial intelligence, yet they are typically studied in isolation. We present Puffin, a unified camera-centric multimodal model that extends spatial awareness along the camera dimension. Puffin integrates language regression and diffusion-based generation to interpret and create scenes from arbitrary viewpoints. To bridge the modality gap between cameras and vision-language, we introduce a novel paradigm that treats camera as language, enabling thinking with camera. This guides the model to align spatially grounded visual cues with photographic terminology while reasoning across geometric context. Puffin is trained on Puffin-4M, a large-scale dataset of 4 million vision-language-camera triplets. We incorporate both global camera parameters and pixel-wise camera maps, yielding flexible and reliable spatial generation. Experiments demonstrate Puffin superior performance over specialized models for camera-centric generation and understanding. With instruction tuning, Puffin generalizes to diverse cross-view tasks such as spatial imagination, world exploration, and photography guidance. We will release the code, models, dataset pipeline, and benchmark to advance multimodal spatial intelligence research.

Authors:Songtao Jiang, Yuan Wang, Sibo Song, Tianxiang Hu, Chenyi Zhou, Bin Pu, Yan Zhang, Zhibo Yang, Yang Feng, Joey Tianyi Zhou, Jin Hao, Zijian Chen, Ruijia Wu, Tao Tang, Junhui Lv, Hongxia Xu, Hongwei Wang, Jun Xiao, Bin Feng, Fudong Zhu, Kenli Li, Weidi Xie, Jimeng Sun, Jian Wu, Zuozhu Liu
Title: Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding
Abstract:
Real-world clinical decision-making grapples with integrating information from diverse data modalities, including medical text, 2D/3D images, and video, leading to inefficiencies and potential diagnostic oversights. While generalist vision-language models (VLMs) offer promise, their medical development faces challenges of opaque pipelines, data scarcity, and architectural inflexibility. Here we present Hulu-Med, a transparent medical VLM that unifies understanding across all these modalities. Built upon a unified patch-based vision encoder and an LLM decoder, Hulu-Med was progressively trained on 16.7 million (M) samples to scale from 2D to 3D and video comprehension. The medical-aware token reduction enables efficient training, requiring only 4,000 to 40,000 GPU hours for 7B to 32B parameter variants. Extensive evaluation across 30 benchmarks exhibits state-of-the-art performance, surpassing leading open-source models and competing with proprietary systems in tasks spanning visual question-answering, medical report generation, and complex reasoning in multilingual and rare disease scenarios. By open-sourcing our complete pipeline, we establish that high-performance medical VLM can be achieved transparently, providing a foundational tool for accessible and impactful clinical AI. Code is released on \href{https://github.com/ZJUI-AI4H/Hulu-Med}{https://github.com/ZJUI-AI4H/Hulu-Med}.

Authors:Yuxin Ma, Lun Du, Lanning Wei, Kun Chen, Qian Xu, Kangyu Wang, Guofeng Feng, Guoshan Lu, Lin Liu, Xiaojing Qi, Xinyuan Zhang, Zhen Tao, Haibo Feng, Ziyun Jiang, Ying Xu, Zenan Huang, Yihong Zhuang, Haokai Xu, Jiaqi Hu, Zhenzhong Lan, Junbo Zhao, Jianguo Li, Da Zheng
Title: dInfer: An Efficient Inference Framework for Diffusion Language Models
Abstract:
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

Authors:Zhe Dong, Yuzhe Sun, Haochen Jiang, Tianzhu Liu, Yanfeng Gu
Title: PhyDAE: Physics-Guided Degradation-Adaptive Experts for All-in-One Remote Sensing Image Restoration
Abstract:
Remote sensing images inevitably suffer from various degradation factors during acquisition, including atmospheric interference, sensor limitations, and imaging conditions. These complex and heterogeneous degradations pose severe challenges to image quality and downstream interpretation tasks. Addressing limitations of existing all-in-one restoration methods that overly rely on implicit feature representations and lack explicit modeling of degradation physics, this paper proposes Physics-Guided Degradation-Adaptive Experts (PhyDAE). The method employs a two-stage cascaded architecture transforming degradation information from implicit features into explicit decision signals, enabling precise identification and differentiated processing of multiple heterogeneous degradations including haze, noise, blur, and low-light conditions. The model incorporates progressive degradation mining and exploitation mechanisms, where the Residual Manifold Projector (RMP) and Frequency-Aware Degradation Decomposer (FADD) comprehensively analyze degradation characteristics from manifold geometry and frequency perspectives. Physics-aware expert modules and temperature-controlled sparse activation strategies are introduced to enhance computational efficiency while ensuring imaging physics consistency. Extensive experiments on three benchmark datasets (MD-RSID, MD-RRSHID, and MDRS-Landsat) demonstrate that PhyDAE achieves superior performance across all four restoration tasks, comprehensively outperforming state-of-the-art methods. Notably, PhyDAE substantially improves restoration quality while achieving significant reductions in parameter count and computational complexity, resulting in remarkable efficiency gains compared to mainstream approaches and achieving optimal balance between performance and efficiency. Code is available at https://github.com/HIT-SIRS/PhyDAE.

Authors:Joan Salvà Soler, Günther R. Raidl
Title: A Denoising Diffusion-Based Evolutionary Algorithm Framework: Application to the Maximum Independent Set Problem
Abstract:
Denoising diffusion models (DDMs) offer a promising generative approach for combinatorial optimization, yet they often lack the robust exploration capabilities of traditional metaheuristics like evolutionary algorithms (EAs). We propose a Denoising Diffusion-based Evolutionary Algorithm (DDEA) framework that synergistically integrates these paradigms. It utilizes pre-trained DDMs for both high-quality and diverse population initialization and a novel diffusion-based recombination operator, trained via imitation learning against an optimal demonstrator. Evaluating DDEA on the Maximum Independent Set problem on Erdős-Rényi graphs, we demonstrate notable improvements over DIFUSCO, a leading DDM solver. DDEA consistently outperforms it given the same time budget, and surpasses Gurobi on larger graphs under the same time limit, with DDEA's solution sizes being 3.9% and 7.5% larger on the ER-300-400 and ER-700-800 datasets, respectively. In out-of-distribution experiments, DDEA provides solutions of 11.6% higher quality than DIFUSCO under the same time limit. Ablation studies confirm that both diffusion initialization and recombination are crucial. Our work highlights the potential of hybridizing DDMs and EAs, offering a promising direction for the development of powerful machine learning solvers for complex combinatorial optimization problems.

Authors:Prosenjit Biswas, Pervez Shaik, Abhinav Thorat, Ravi Kolla, Niranjan Pedanekar
Title: From What to Why: Thought-Space Recommendation with Small Language Models
Abstract:
Large Language Models (LLMs) have advanced recommendation capabilities through enhanced reasoning, but pose significant challenges for real-world deployment due to high inference costs. Conversely, while Small Language Models (SLMs) offer an efficient alternative, their reasoning capabilities for recommendation remain underexplored. Existing systems often use natural language rationales merely as unsupervised descriptive text, failing to harness their full potential as learning signals. In this work our main idea is to create a common understanding of user and items across multiple domains called Thought Space with SLMs instead of using LLMs' distilled knowledge. To that end we propose PULSE (Preference Understanding by Latent Semantic Embeddings), a framework that treats SLM-generated rationales as director learning signals, supervising them with interaction histories to jointly model user actions (what) and their semantic drivers (why). Existing methods consider only interactions such as sequences and embeddings, whereas PULSE treats rationales as first-class signals, this novel design yields embeddings that are more robust and generalizable. Extensive experiments demonstrate that PULSE outperforms leading ID, Collaborative Filtering (CF), and LLM-based sequential recommendation models across multiple benchmark datasets. Furthermore, PULSE exhibits superior transferability in cross-domain recommendation and demonstrates strong performance on downstream tasks such as reasoning-oriented question answering. Our code is available \href{https://anonymous.4open.science/r/Thinking_PULSE-0FC5/README.md}{here}.

Authors:Saumya B
Title: Reproducible Evaluation of Data Augmentation and Loss Functions for Brain Tumor Segmentation
Abstract:
Brain tumor segmentation is crucial for diagnosis and treatment planning, yet challenges such as class imbalance and limited model generalization continue to hinder progress. This work presents a reproducible evaluation of U-Net segmentation performance on brain tumor MRI using focal loss and basic data augmentation strategies. Experiments were conducted on a publicly available MRI dataset, focusing on focal loss parameter tuning and assessing the impact of three data augmentation techniques: horizontal flip, rotation, and scaling. The U-Net with focal loss achieved a precision of 90%, comparable to state-of-the-art results. By making all code and results publicly available, this study establishes a transparent, reproducible baseline to guide future research on augmentation strategies and loss function design in brain tumor segmentation.

Authors:Arash Fath Lipaei, AmirHossein Ghaemi, Melika Sabzikari
Title: A Neural Surrogate-Enhanced Multi-Method Framework for Robust Wing Design Optimization
Abstract:
This paper introduces a modular and scalable design optimization framework for the wing design process that enables faster early-phase design while ensuring aerodynamic stability. The pipeline starts with the generation of initial wing geometries and then proceeds to optimize the wing using several algorithms. Aerodynamic performance is assessed using a Vortex Lattice Method (VLM) applied to a carefully selected dataset of wing configurations. These results are employed to develop surrogate neural network models, which can predict lift and drag rapidly and accurately. The stability evaluation is implemented by setting the control surfaces and components to fixed positions in order to have realistic flight dynamics. The approach unifies and compares several optimization techniques, including Particle Swarm Optimization (PSO), Genetic Algorithms (GA), gradient-based MultiStart methods, Bayesian optimization, and Lipschitz optimization. Each method ensures constraint management via adaptive strategies and penalty functions, where the targets for lift and design feasibility are enforced. The progression of aerodynamic characteristics and geometries over the optimization iterations will be investigated in order to clarify each algorithm's convergence characteristics and performance efficiency. Our results show improvement in aerodynamic qualities and robust stability properties, offering a mechanism for wing design at speed and precision. In the interest of reproducibility and community development, the complete implementation is publicly available at https://github.com/AmirHosseinGhaemi2000/CHIMERA.

Authors:Rafig Huseynzade
Title: Psi-Turing Machines: Bounded Introspection for Complexity Barriers and Oracle Separations
Abstract:
We introduce Psi-Turing Machines (Psi-TM): classical Turing machines equipped with a constant-depth introspection interface $ ι$ and an explicit per-step information budget $ B(d,n)=c\,d\log_2 n $. With the interface frozen, we develop an information-theoretic lower-bound toolkit: Budget counting, $ Ψ$-Fooling, and $ Ψ$-Fano, with worked examples $ L_k $ and $ L_k^{\mathrm{phase}} $. We prove an oracle-relative separation $ P^Ψ \neq NP^Ψ $ and a strict depth hierarchy, reinforced by an Anti-Simulation Hook that rules out polynomial emulation of $ ι_k $ using many calls to $ ι_{k-1} $ under the budget regime. We also present two independent platforms (Psi-decision trees and interface-constrained circuits IC-AC$^{0}$/IC-NC$^{1}$) and bridges that transfer bounds among machine, tree, and circuit with explicit poly/log losses. The model preserves classical computational power outside $ ι$ yet enables precise oracle-aware statements about barriers (relativization; partial/conditional progress on natural proofs and proof complexity). The aim is a standardized minimal introspection interface with clearly accounted information budgets.

Authors:Haofei Xu, Daniel Barath, Andreas Geiger, Marc Pollefeys
Title: ReSplat: Learning Recurrent Gaussian Splats
Abstract:
While feed-forward Gaussian splatting models provide computational efficiency and effectively handle sparse input settings, their performance is fundamentally limited by the reliance on a single forward pass during inference. We propose ReSplat, a feed-forward recurrent Gaussian splatting model that iteratively refines 3D Gaussians without explicitly computing gradients. Our key insight is that the Gaussian splatting rendering error serves as a rich feedback signal, guiding the recurrent network to learn effective Gaussian updates. This feedback signal naturally adapts to unseen data distributions at test time, enabling robust generalization. To initialize the recurrent process, we introduce a compact reconstruction model that operates in a $16 \times$ subsampled space, producing $16 \times$ fewer Gaussians than previous per-pixel Gaussian models. This substantially reduces computational overhead and allows for efficient Gaussian updates. Extensive experiments across varying of input views (2, 8, 16), resolutions ($256 \times 256$ to $540 \times 960$), and datasets (DL3DV and RealEstate10K) demonstrate that our method achieves state-of-the-art performance while significantly reducing the number of Gaussians and improving the rendering speed. Our project page is at https://haofeixu.github.io/resplat/.

Authors:Tajamul Ashraf, Umair Nawaz, Abdelrahman M. Shaker, Rao Anwer, Philip Torr, Fahad Shahbaz Khan, Salman Khan
Title: MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Abstract:
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.

Authors:Meixi Song, Xin Lin, Dizhe Zhang, Haodong Li, Xiangtai Li, Bo Du, Lu Qi
Title: D$^2$GS: Depth-and-Density Guided Gaussian Splatting for Stable and Accurate Sparse-View Reconstruction
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) enable real-time, high-fidelity novel view synthesis (NVS) with explicit 3D representations. However, performance degradation and instability remain significant under sparse-view conditions. In this work, we identify two key failure modes under sparse-view conditions: overfitting in regions with excessive Gaussian density near the camera, and underfitting in distant areas with insufficient Gaussian coverage. To address these challenges, we propose a unified framework D$^2$GS, comprising two key components: a Depth-and-Density Guided Dropout strategy that suppresses overfitting by adaptively masking redundant Gaussians based on density and depth, and a Distance-Aware Fidelity Enhancement module that improves reconstruction quality in under-fitted far-field areas through targeted supervision. Moreover, we introduce a new evaluation metric to quantify the stability of learned Gaussian distributions, providing insights into the robustness of the sparse-view 3DGS. Extensive experiments on multiple datasets demonstrate that our method significantly improves both visual quality and robustness under sparse view conditions. The project page can be found at: https://insta360-research-team.github.io/DDGS-website/.

Authors:Changyao Tian, Hao Li, Gen Luo, Xizhou Zhu, Weijie Su, Hanming Deng, Jinguo Zhu, Jie Shao, Ziran Zhu, Yunpeng Liu, Lewei Lu, Wenhai Wang, Hongsheng Li, Jifeng Dai
Title: NaViL: Rethinking Scaling Properties of Native Multimodal Large Language Models under Data Constraints
Abstract:
Compositional training has been the de-facto paradigm in existing Multimodal Large Language Models (MLLMs), where pre-trained vision encoders are connected with pre-trained LLMs through continuous multimodal pre-training. However, the multimodal scaling property of this paradigm remains difficult to explore due to the separated training. In this paper, we focus on the native training of MLLMs in an end-to-end manner and systematically study its design space and scaling property under a practical setting, i.e., data constraint. Through careful study of various choices in MLLM, we obtain the optimal meta-architecture that best balances performance and training cost. After that, we further explore the scaling properties of the native MLLM and indicate the positively correlated scaling relationship between visual encoders and LLMs. Based on these findings, we propose a native MLLM called NaViL, combined with a simple and cost-effective recipe. Experimental results on 14 multimodal benchmarks confirm the competitive performance of NaViL against existing MLLMs. Besides that, our findings and results provide in-depth insights for the future study of native MLLMs.

Authors:Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
Title: How to Teach Large Multimodal Models New Skills
Abstract:
How can we teach large multimodal models (LMMs) new skills without erasing prior abilities? We study sequential fine-tuning on five target skills while monitoring general ability on eight held-out benchmarks across three model families. We observe that apparent "forgetting" on held-out tasks after narrow fine-tuning can partly recover at later stages. We trace this behavior to a measurable shift in the output token distribution, manifested through a simple counting-bias probe that co-varies with forgetting. Guided by this picture, we identify two simple, robust tuning recipes that learn strongly while limiting drift: (i) updating only the self-attention projection layers, and (ii) updating only the MLP Gate&Up while freezing the Down projection. Across models and tasks, these choices deliver strong target gains while largely preserving held-out performance. Code is available at https://github.com/jessemelpolio/LMM_CL

Authors:Maham Tanveer, Yang Zhou, Simon Niklaus, Ali Mahdavi Amiri, Hao Zhang, Krishna Kumar Singh, Nanxuan Zhao
Title: MultiCOIN: Multi-Modal COntrollable Video INbetweening
Abstract:
Video inbetweening creates smooth and natural transitions between two image frames, making it an indispensable tool for video editing and long-form video synthesis. Existing works in this domain are unable to generate large, complex, or intricate motions. In particular, they cannot accommodate the versatility of user intents and generally lack fine control over the details of intermediate frames, leading to misalignment with the creative mind. To fill these gaps, we introduce \modelname{}, a video inbetweening framework that allows multi-modal controls, including depth transition and layering, motion trajectories, text prompts, and target regions for movement localization, while achieving a balance between flexibility, ease of use, and precision for fine-grained video interpolation. To achieve this, we adopt the Diffusion Transformer (DiT) architecture as our video generative model, due to its proven capability to generate high-quality long videos. To ensure compatibility between DiT and our multi-modal controls, we map all motion controls into a common sparse and user-friendly point-based representation as the video/noise input. Further, to respect the variety of controls which operate at varying levels of granularity and influence, we separate content controls and motion controls into two branches to encode the required features before guiding the denoising process, resulting in two generators, one for motion and the other for content. Finally, we propose a stage-wise training strategy to ensure that our model learns the multi-modal controls smoothly. Extensive qualitative and quantitative experiments demonstrate that multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.

Authors:Xueyi Liu, He Wang, Li Yi
Title: DexNDM: Closing the Reality Gap for Dexterous In-Hand Rotation via Joint-Wise Neural Dynamics Model
Abstract:
Achieving generalized in-hand object rotation remains a significant challenge in robotics, largely due to the difficulty of transferring policies from simulation to the real world. The complex, contact-rich dynamics of dexterous manipulation create a "reality gap" that has limited prior work to constrained scenarios involving simple geometries, limited object sizes and aspect ratios, constrained wrist poses, or customized hands. We address this sim-to-real challenge with a novel framework that enables a single policy, trained in simulation, to generalize to a wide variety of objects and conditions in the real world. The core of our method is a joint-wise dynamics model that learns to bridge the reality gap by effectively fitting limited amount of real-world collected data and then adapting the sim policy's actions accordingly. The model is highly data-efficient and generalizable across different whole-hand interaction distributions by factorizing dynamics across joints, compressing system-wide influences into low-dimensional variables, and learning each joint's evolution from its own dynamic profile, implicitly capturing these net effects. We pair this with a fully autonomous data collection strategy that gathers diverse, real-world interaction data with minimal human intervention. Our complete pipeline demonstrates unprecedented generality: a single policy successfully rotates challenging objects with complex shapes (e.g., animals), high aspect ratios (up to 5.33), and small sizes, all while handling diverse wrist orientations and rotation axes. Comprehensive real-world evaluations and a teleoperation application for complex tasks validate the effectiveness and robustness of our approach. Website: https://meowuu7.github.io/DexNDM/

Authors:Minghong Cai, Qiulin Wang, Zongli Ye, Wenze Liu, Quande Liu, Weicai Ye, Xintao Wang, Pengfei Wan, Kun Gai, Xiangyu Yue
Title: VideoCanvas: Unified Video Completion from Arbitrary Spatiotemporal Patches via In-Context Conditioning
Abstract:
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.

Authors:Yunzhe Xu, Yiyuan Pan, Zhe Liu
Title: Dream to Recall: Imagination-Guided Experience Retrieval for Memory-Persistent Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.

Authors:Guanghao Li, Kerui Ren, Linning Xu, Zhewen Zheng, Changjian Jiang, Xin Gao, Bo Dai, Jian Pu, Mulin Yu, Jiangmiao Pang
Title: ARTDECO: Towards Efficient and High-Fidelity On-the-Fly 3D Reconstruction with Structured Scene Representation
Abstract:
On-the-fly 3D reconstruction from monocular image sequences is a long-standing challenge in computer vision, critical for applications such as real-to-sim, AR/VR, and robotics. Existing methods face a major tradeoff: per-scene optimization yields high fidelity but is computationally expensive, whereas feed-forward foundation models enable real-time inference but struggle with accuracy and robustness. In this work, we propose ARTDECO, a unified framework that combines the efficiency of feed-forward models with the reliability of SLAM-based pipelines. ARTDECO uses 3D foundation models for pose estimation and point prediction, coupled with a Gaussian decoder that transforms multi-scale features into structured 3D Gaussians. To sustain both fidelity and efficiency at scale, we design a hierarchical Gaussian representation with a LoD-aware rendering strategy, which improves rendering fidelity while reducing redundancy. Experiments on eight diverse indoor and outdoor benchmarks show that ARTDECO delivers interactive performance comparable to SLAM, robustness similar to feed-forward systems, and reconstruction quality close to per-scene optimization, providing a practical path toward on-the-fly digitization of real-world environments with both accurate geometry and high visual fidelity. Explore more demos on our project page: https://city-super.github.io/artdeco/.

Authors:Rishubh Parihar, Or Patashnik, Daniil Ostashev, R. Venkatesh Babu, Daniel Cohen-Or, Kuan-Chieh Wang
Title: Kontinuous Kontext: Continuous Strength Control for Instruction-based Image Editing
Abstract:
Instruction-based image editing offers a powerful and intuitive way to manipulate images through natural language. Yet, relying solely on text instructions limits fine-grained control over the extent of edits. We introduce Kontinuous Kontext, an instruction-driven editing model that provides a new dimension of control over edit strength, enabling users to adjust edits gradually from no change to a fully realized result in a smooth and continuous manner. Kontinuous Kontext extends a state-of-the-art image editing model to accept an additional input, a scalar edit strength which is then paired with the edit instruction, enabling explicit control over the extent of the edit. To inject this scalar information, we train a lightweight projector network that maps the input scalar and the edit instruction to coefficients in the model's modulation space. For training our model, we synthesize a diverse dataset of image-edit-instruction-strength quadruplets using existing generative models, followed by a filtering stage to ensure quality and consistency. Kontinuous Kontext provides a unified approach for fine-grained control over edit strength for instruction driven editing from subtle to strong across diverse operations such as stylization, attribute, material, background, and shape changes, without requiring attribute-specific training.

Authors:Hongxing Li, Dingming Li, Zixuan Wang, Yuchen Yan, Hang Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models
Abstract:
Spatial reasoning remains a fundamental challenge for Vision-Language Models (VLMs), with current approaches struggling to achieve robust performance despite recent advances. We identify that this limitation stems from a critical gap: existing methods attempt to learn spatial reasoning directly without establishing the hierarchical foundations of perception and understanding. To address this challenge, we present a comprehensive methodology for building spatial intelligence progressively. We introduce SpatialLadder-26k, a multimodal dataset containing 26,610 samples spanning object localization, single image, multi-view, and video spatial reasoning tasks, constructed through a standardized pipeline that ensures systematic coverage across modalities. Building on this dataset, we design a three-stage progressive training framework that (1) establishes spatial perception through object localization, (2) develops spatial understanding through multi-dimensional spatial tasks, and (3) strengthens complex reasoning via reinforcement learning with verifiable rewards. This approach yields SpatialLadder, a 3B-parameter model that achieves state-of-the-art performance on spatial reasoning benchmarks, with 23.4% average improvement over the base model, surpassing GPT-4o by 20.8% and Gemini-2.0-Flash by 10.1%. Notably, SpatialLadder maintains strong generalization with 7.2% improvement on out-of-domain benchmarks, demonstrating that progressive training from perception to reasoning is essential for robust spatial intelligence.

Authors:Zhitong Huang, Mohan Zhang, Renhan Wang, Rui Tang, Hao Zhu, Jing Liao
Title: X2Video: Adapting Diffusion Models for Multimodal Controllable Neural Video Rendering
Abstract:
We present X2Video, the first diffusion model for rendering photorealistic videos guided by intrinsic channels including albedo, normal, roughness, metallicity, and irradiance, while supporting intuitive multi-modal controls with reference images and text prompts for both global and local regions. The intrinsic guidance allows accurate manipulation of color, material, geometry, and lighting, while reference images and text prompts provide intuitive adjustments in the absence of intrinsic information. To enable these functionalities, we extend the intrinsic-guided image generation model XRGB to video generation by employing a novel and efficient Hybrid Self-Attention, which ensures temporal consistency across video frames and also enhances fidelity to reference images. We further develop a Masked Cross-Attention to disentangle global and local text prompts, applying them effectively onto respective local and global regions. For generating long videos, our novel Recursive Sampling method incorporates progressive frame sampling, combining keyframe prediction and frame interpolation to maintain long-range temporal consistency while preventing error accumulation. To support the training of X2Video, we assembled a video dataset named InteriorVideo, featuring 1,154 rooms from 295 interior scenes, complete with reliable ground-truth intrinsic channel sequences and smooth camera trajectories. Both qualitative and quantitative evaluations demonstrate that X2Video can produce long, temporally consistent, and photorealistic videos guided by intrinsic conditions. Additionally, X2Video effectively accommodates multi-modal controls with reference images, global and local text prompts, and simultaneously supports editing on color, material, geometry, and lighting through parametric tuning. Project page: https://luckyhzt.github.io/x2video

Authors:Zhiyuan Zhang, Can Wang, Dongdong Chen, Jing Liao
Title: FlexTraj: Image-to-Video Generation with Flexible Point Trajectory Control
Abstract:
We present FlexTraj, a framework for image-to-video generation with flexible point trajectory control. FlexTraj introduces a unified point-based motion representation that encodes each point with a segmentation ID, a temporally consistent trajectory ID, and an optional color channel for appearance cues, enabling both dense and sparse trajectory control. Instead of injecting trajectory conditions into the video generator through token concatenation or ControlNet, FlexTraj employs an efficient sequence-concatenation scheme that achieves faster convergence, stronger controllability, and more efficient inference, while maintaining robustness under unaligned conditions. To train such a unified point trajectory-controlled video generator, FlexTraj adopts an annealing training strategy that gradually reduces reliance on complete supervision and aligned condition. Experimental results demonstrate that FlexTraj enables multi-granularity, alignment-agnostic trajectory control for video generation, supporting various applications such as motion cloning, drag-based image-to-video, motion interpolation, camera redirection, flexible action control and mesh animations.

Authors:Yusong Hu, Runmin Ma, Yue Fan, Jinxin Shi, Zongsheng Cao, Yuhao Zhou, Jiakang Yuan, Xiangchao Yan, Wenlong Zhang, Lei Bai, Bo Zhang
Title: FlowSearch: Advancing deep research with dynamic structured knowledge flow
Abstract:
Deep research is an inherently challenging task that demands both breadth and depth of thinking. It involves navigating diverse knowledge spaces and reasoning over complex, multi-step dependencies, which presents substantial challenges for agentic systems. To address this, we propose FlowSearch, a multi-agent framework that actively constructs and evolves a dynamic structured knowledge flow to drive subtask execution and reasoning. FlowSearch is capable of strategically planning and expanding the knowledge flow to enable parallel exploration and hierarchical task decomposition, while also adjusting the knowledge flow in real time based on feedback from intermediate reasoning outcomes and insights. FlowSearch achieves state-of-the-art performance on both general and scientific benchmarks, including GAIA, HLE, GPQA and TRQA, demonstrating its effectiveness in multi-disciplinary research scenarios and its potential to advance scientific discovery. The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Shangheng Du, Xiangchao Yan, Dengyang Jiang, Jiakang Yuan, Yusong Hu, Xin Li, Liang He, Bo Zhang, Lei Bai
Title: AutoMLGen: Navigating Fine-Grained Optimization for Coding Agents
Abstract:
Large language models (LLMs) have shown impressive performance in general programming tasks. However, in Machine Learning Engineering (MLE) scenarios such as AutoML and Kaggle competitions, achieving high performance depends heavily on expert intervention and repeated adjustments rather than simply generating correct code. When applied directly to these tasks, LLMs often lack fine-grained domain priors, and existing MLE approaches that use linear or tree-structured searches limit knowledge transfer to adjacent hierarchical links. As a result, they cannot leverage past full trajectories or share information across branches, limiting self-evolving ability and search space diversity. To address these limitations, we introduce AutoMLGen, an LLM-based coding agent that integrates a domain knowledge base for high-quality prior guidance and Monte Carlo Graph Search (MCGS) for efficient exploration. MCGS retains the tree-guided exploration of MCTS while embedding a graph structure into the expansion stage to enable dynamic path reorganization, historical trajectory reuse, and multi-solution fusion to support both self-evolution and collaborative learning. Combined with fine-grained operator sets, this design improves stability and accelerates convergence. Evaluation on the MLE-Bench shows that AutoMLGen achieves state-of-the-art performance in numerous dimensions, such as the average medal rate and the valid submission rate, under a 12-hour budget (half the standard runtime). The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Jiayun Luo, Wan-Cyuan Fan, Lyuyang Wang, Xiangteng He, Tanzila Rahman, Purang Abolmaesumi, Leonid Sigal
Title: To Sink or Not to Sink: Visual Information Pathways in Large Vision-Language Models
Abstract:
Large Vision Language Models (LVLMs) have recently emerged as powerful architectures capable of understanding and reasoning over both visual and textual information. These models typically rely on two key components: a Vision Transformer (ViT) and a Large Language Model (LLM). ViT encodes visual content into a sequence of image tokens and serves as the perceptual front-end -- the eyes of the model. In contrast, the LLM interprets these tokens to perform high-level reasoning, generates responses, and functions as the cognitive core -- the brain of the model. However, it remains unclear which visual tokens contribute most significantly to understanding and reasoning, and how effectively these signals are propagated from ViT to the LLM. While most existing works have focused on identifying attention sinks, low-semantic tokens receiving disproportionately high attention, within the LLM, we shift the focus to the vision encoder by identifying a class of high-norm visual tokens from ViT, referred to as ViT attention sinks -- a problem that has been rarely studied but is indeed very important for LVLMs. Our findings show that these ViT sinks encapsulate high-level semantic concepts from images, allowing the LLM to perform more effective understanding and reasoning. Despite their importance, these sink tokens are often overlooked in existing LVLM architectures. To explore their contribution, we present both qualitative and quantitative analyses of the information embedded in these sink tokens. We also propose both training-free and training-based approaches to better leverage how this information is interpreted by the LLM, and to what extent. By explicitly utilizing these tokens, we demonstrate substantial improvements across a range of LVLMs and visual reasoning tasks, highlighting the untapped potential of ViT attention sinks in enhancing visual reasoning.

Authors:Jhen Hsieh, Kuan-Hsun Tu, Kuo-Han Hung, Tsung-Wei Ke
Title: DexMan: Learning Bimanual Dexterous Manipulation from Human and Generated Videos
Abstract:
We present DexMan, an automated framework that converts human visual demonstrations into bimanual dexterous manipulation skills for humanoid robots in simulation. Operating directly on third-person videos of humans manipulating rigid objects, DexMan eliminates the need for camera calibration, depth sensors, scanned 3D object assets, or ground-truth hand and object motion annotations. Unlike prior approaches that consider only simplified floating hands, it directly controls a humanoid robot and leverages novel contact-based rewards to improve policy learning from noisy hand-object poses estimated from in-the-wild videos. DexMan achieves state-of-the-art performance in object pose estimation on the TACO benchmark, with absolute gains of 0.08 and 0.12 in ADD-S and VSD. Meanwhile, its reinforcement learning policy surpasses previous methods by 19% in success rate on OakInk-v2. Furthermore, DexMan can generate skills from both real and synthetic videos, without the need for manual data collection and costly motion capture, and enabling the creation of large-scale, diverse datasets for training generalist dexterous manipulation.

Authors:Chih-Yu Chang, Ming-Chung Chang
Title: Accelerated Aggregated D-Optimal Designs for Estimating Main Effects in Black-Box Models
Abstract:
Recent advances in supervised learning have driven growing interest in explaining black-box models, particularly by estimating the effects of input variables on model predictions. However, existing approaches often face key limitations, including poor scalability, sensitivity to out-of-distribution sampling, and instability under correlated features. To address these issues, we propose A2D2E, an $\textbf{E}$stimator based on $\textbf{A}$ccelerated $\textbf{A}$ggregated $\textbf{D}$-Optimal $\textbf{D}$esigns. Our method leverages principled experimental design to improve efficiency and robustness in main effect estimation. We establish theoretical guarantees, including convergence and variance reduction, and validate A2D2E through extensive simulations. We further provide the potential of the proposed method with a case study on real data and applications in language models. The code to reproduce the results can be found at https://github.com/cchihyu/A2D2E.

Authors:Jason Jabbour, Dong-Ki Kim, Max Smith, Jay Patrikar, Radhika Ghosal, Youhui Wang, Ali Agha, Vijay Janapa Reddi, Shayegan Omidshafiei
Title: Don't Run with Scissors: Pruning Breaks VLA Models but They Can Be Recovered
Abstract:
Vision-Language-Action (VLA) models have advanced robotic capabilities but remain challenging to deploy on resource-limited hardware. Pruning has enabled efficient compression of large language models (LLMs), yet it is largely understudied in robotics. Surprisingly, we observe that pruning VLA models leads to drastic degradation and increased safety violations. We introduce GLUESTICK, a post-pruning recovery method that restores much of the original model's functionality while retaining sparsity benefits. Our method performs a one-time interpolation between the dense and pruned models in weight-space to compute a corrective term. This correction is used during inference by each pruned layer to recover lost capabilities with minimal overhead. GLUESTICK requires no additional training, is agnostic to the pruning algorithm, and introduces a single hyperparameter that controls the tradeoff between efficiency and accuracy. Across diverse VLA architectures and tasks in manipulation and navigation, GLUESTICK achieves competitive memory efficiency while substantially recovering success rates and reducing safety violations. Additional material can be found at: https://gluestick-vla.github.io/.

Authors:Wenxuan Wang, Kai Wu, Yujian Betterest Li, Dan Wang, Xiaoyu Zhang
Title: Synthetic Series-Symbol Data Generation for Time Series Foundation Models
Abstract:
Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop \texttt{SymTime}, a pre-trained foundation model for enhancing time series representation using symbolic information. \texttt{SymTime} demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.

Authors:Andrew Lee, Ian Chuang, Dechen Gao, Kai Fukazawa, Iman Soltani
Title: Gaze on the Prize: Shaping Visual Attention with Return-Guided Contrastive Learning
Abstract:
Visual Reinforcement Learning (RL) agents must learn to act based on high-dimensional image data where only a small fraction of the pixels is task-relevant. This forces agents to waste exploration and computational resources on irrelevant features, leading to sample-inefficient and unstable learning. To address this, inspired by human visual foveation, we introduce Gaze on the Prize. This framework augments visual RL with a learnable foveal attention mechanism (Gaze), guided by a self-supervised signal derived from the agent's experience pursuing higher returns (the Prize). Our key insight is that return differences reveal what matters most: If two similar representations produce different outcomes, their distinguishing features are likely task-relevant, and the gaze should focus on them accordingly. This is realized through return-guided contrastive learning that trains the attention to distinguish between the features relevant to success and failure. We group similar visual representations into positives and negatives based on their return differences and use the resulting labels to construct contrastive triplets. These triplets provide the training signal that teaches the attention mechanism to produce distinguishable representations for states associated with different outcomes. Our method achieves up to 2.4x improvement in sample efficiency and can solve tasks that the baseline fails to learn, demonstrated across a suite of manipulation tasks from the ManiSkill3 benchmark, all without modifying the underlying algorithm or hyperparameters.

Authors:Yihong Luo, Tianyang Hu, Jing Tang
Title: Reinforcing Diffusion Models by Direct Group Preference Optimization
Abstract:
While reinforcement learning methods such as Group Relative Preference Optimization (GRPO) have significantly enhanced Large Language Models, adapting them to diffusion models remains challenging. In particular, GRPO demands a stochastic policy, yet the most cost-effective diffusion samplers are based on deterministic ODEs. Recent work addresses this issue by using inefficient SDE-based samplers to induce stochasticity, but this reliance on model-agnostic Gaussian noise leads to slow convergence. To resolve this conflict, we propose Direct Group Preference Optimization (DGPO), a new online RL algorithm that dispenses with the policy-gradient framework entirely. DGPO learns directly from group-level preferences, which utilize relative information of samples within groups. This design eliminates the need for inefficient stochastic policies, unlocking the use of efficient deterministic ODE samplers and faster training. Extensive results show that DGPO trains around 20 times faster than existing state-of-the-art methods and achieves superior performance on both in-domain and out-of-domain reward metrics. Code is available at https://github.com/Luo-Yihong/DGPO.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
Title: FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Abstract:
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.

Authors:Guobin Ma, Jixun Yao, Ziqian Ning, Yuepeng Jiang, Lingxin Xiong, Lei Xie, Pengcheng Zhu
Title: MeanVC: Lightweight and Streaming Zero-Shot Voice Conversion via Mean Flows
Abstract:
Zero-shot voice conversion (VC) aims to transfer timbre from a source speaker to any unseen target speaker while preserving linguistic content. Growing application scenarios demand models with streaming inference capabilities. This has created a pressing need for models that are simultaneously fast, lightweight, and high-fidelity. However, existing streaming methods typically rely on either autoregressive (AR) or non-autoregressive (NAR) frameworks, which either require large parameter sizes to achieve strong performance or struggle to generalize to unseen speakers. In this study, we propose MeanVC, a lightweight and streaming zero-shot VC approach. MeanVC introduces a diffusion transformer with a chunk-wise autoregressive denoising strategy, combining the strengths of both AR and NAR paradigms for efficient streaming processing. By introducing mean flows, MeanVC regresses the average velocity field during training, enabling zero-shot VC with superior speech quality and speaker similarity in a single sampling step by directly mapping from the start to the endpoint of the flow trajectory. Additionally, we incorporate diffusion adversarial post-training to mitigate over-smoothing and further enhance speech quality. Experimental results demonstrate that MeanVC significantly outperforms existing zero-shot streaming VC systems, achieving superior conversion quality with higher efficiency and significantly fewer parameters. Audio demos and code are publicly available at https://aslp-lab.github.io/MeanVC.

Authors:Yi Jiang, Lei Shen, Lujie Niu, Sendong Zhao, Wenbo Su, Bo Zheng
Title: QAgent: A modular Search Agent with Interactive Query Understanding
Abstract:
Large language models (LLMs) excel at natural language tasks but are limited by their static parametric knowledge, especially in knowledge-intensive task. Retrieval-augmented generation (RAG) mitigates this by integrating external information. However, (1) traditional RAG struggles with complex query understanding, and (2) even search agents trained with reinforcement learning (RL), despite their promise, still face generalization and deployment challenges. To address these limitations, we propose QAgent, a unified agentic RAG framework that employs a search agent for adaptive retrieval. This agent optimizes its understanding of the query through interactive reasoning and retrieval. To facilitate real-world application, we focus on modular search agent for query understanding that are plug-and-play in complex systems. Secifically, the agent follows a multi-step decision process trained with RL to maximize retrieval quality and support accurate downstream answers. We further analyze the strengths and weaknesses of end-to-end RL and propose a strategy that focuses on effective retrieval, thereby enhancing generalization in LLM applications. Experiments show QAgent excels at QA and serves as a plug-and-play module for real-world deployment.

Authors:Cong Wei, Quande Liu, Zixuan Ye, Qiulin Wang, Xintao Wang, Pengfei Wan, Kun Gai, Wenhu Chen
Title: UniVideo: Unified Understanding, Generation, and Editing for Videos
Abstract:
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.

Authors:Hanke Xie, Dake Guo, Chengyou Wang, Yue Li, Wenjie Tian, Xinfa Zhu, Xinsheng Wang, Xiulin Li, Guanqiong Miao, Bo Liu, Lei Xie
Title: DialoSpeech: Dual-Speaker Dialogue Generation with LLM and Flow Matching
Abstract:
Recent advances in text-to-speech (TTS) synthesis, particularly those leveraging large language models (LLMs), have significantly improved expressiveness and naturalness. However, generating human-like, interactive dialogue speech remains challenging. Current systems face limitations due to the scarcity of dual-track data and difficulties in achieving naturalness, contextual coherence, and interactional dynamics, such as turn-taking, overlapping speech, and speaker consistency, in multi-turn conversations. To address these challenges, we propose DialoSpeech, a dual-track architecture combining a large language model with Chunked Flow Matching for expressive, human-like dialogue speech synthesis. DialoSpeech generates natural multi-turn conversations with coherent speaker turns and natural overlaps, supporting both Chinese and English and cross-lingual speech synthesis. We introduce a data processing pipeline to construct dual-track dialogue datasets, facilitating scalable training and experimental validation. Experiments show that our model outperforms baselines, offering a solution for generating human-like spoken dialogues. Audio samples are available at https://tiamojames.github.io/DialoSpeech

Authors:Bart Kuipers, Freek Byrman, Daniel Uyterlinde, Alejandro García-Castellanos
Title: Symmetry-Aware Fully-Amortized Optimization with Scale Equivariant Graph Metanetworks
Abstract:
Amortized optimization accelerates the solution of related optimization problems by learning mappings that exploit shared structure across problem instances. We explore the use of Scale Equivariant Graph Metanetworks (ScaleGMNs) for this purpose. By operating directly in weight space, ScaleGMNs enable single-shot fine-tuning of existing models, reducing the need for iterative optimization. We demonstrate the effectiveness of this approach empirically and provide a theoretical result: the gauge freedom induced by scaling symmetries is strictly smaller in convolutional neural networks than in multi-layer perceptrons. This insight helps explain the performance differences observed between architectures in both our work and that of Kalogeropoulos et al. (2024). Overall, our findings underscore the potential of symmetry-aware metanetworks as a powerful approach for efficient and generalizable neural network optimization. Open-source code: https://github.com/daniuyter/scalegmn_amortization

Authors:Taisei Yamamoto, Ryoma Kumon, Danushka Bollegala, Hitomi Yanaka
Title: Neuron-Level Analysis of Cultural Understanding in Large Language Models
Abstract:
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG

Authors:Haipeng Liu, Yang Wang, Meng Wang
Title: One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting
Abstract:
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.

Authors:Yuchen Zhu, Wei Guo, Jaemoo Choi, Petr Molodyk, Bo Yuan, Molei Tao, Yongxin Chen
Title: Enhancing Reasoning for Diffusion LLMs via Distribution Matching Policy Optimization
Abstract:
Diffusion large language models (dLLMs) are promising alternatives to autoregressive large language models (AR-LLMs), as they potentially allow higher inference throughput. Reinforcement learning (RL) is a crucial component for dLLMs to achieve comparable performance with AR-LLMs on important tasks, such as reasoning. However, RL algorithms that are well-suited for dLLMs' unique characteristics have yet to be developed. This paper proposes Distribution Matching Policy Optimization (DMPO), a principled and theoretically grounded RL fine-tuning method specifically designed to enhance the reasoning capabilities of dLLMs by matching the dLLM policy distribution to the optimal, reward-tilted one through cross-entropy optimization. We identify a key challenge in the implementation with a small training batch size and propose several effective solutions through a novel weight baseline subtraction technique. DMPO exhibits superior performance on multiple reasoning benchmarks without supervised fine-tuning, with an accuracy improvement of up to $42.9\%$ over previously SOTA baselines and $55.8\%$ over the base model, underscoring the effectiveness of the distribution matching framework. Our code is available at https://github.com/yuchen-zhu-zyc/DMPO.

Authors:Qiang Yang, Xiuying Chen, Changsheng Ma, Rui Yin, Xin Gao, Xiangliang Zhang
Title: SenWave: A Fine-Grained Multi-Language Sentiment Analysis Dataset Sourced from COVID-19 Tweets
Abstract:
The global impact of the COVID-19 pandemic has highlighted the need for a comprehensive understanding of public sentiment and reactions. Despite the availability of numerous public datasets on COVID-19, some reaching volumes of up to 100 billion data points, challenges persist regarding the availability of labeled data and the presence of coarse-grained or inappropriate sentiment labels. In this paper, we introduce SenWave, a novel fine-grained multi-language sentiment analysis dataset specifically designed for analyzing COVID-19 tweets, featuring ten sentiment categories across five languages. The dataset comprises 10,000 annotated tweets each in English and Arabic, along with 30,000 translated tweets in Spanish, French, and Italian, derived from English tweets. Additionally, it includes over 105 million unlabeled tweets collected during various COVID-19 waves. To enable accurate fine-grained sentiment classification, we fine-tuned pre-trained transformer-based language models using the labeled tweets. Our study provides an in-depth analysis of the evolving emotional landscape across languages, countries, and topics, revealing significant insights over time. Furthermore, we assess the compatibility of our dataset with ChatGPT, demonstrating its robustness and versatility in various applications. Our dataset and accompanying code are publicly accessible on the repository\footnote{https://github.com/gitdevqiang/SenWave}. We anticipate that this work will foster further exploration into fine-grained sentiment analysis for complex events within the NLP community, promoting more nuanced understanding and research innovations.

Authors:Xiang Zhang, Jiaqi Wei, Zijie Qiu, Sheng Xu, Zhi Jin, ZhiQiang Gao, Nanqing Dong, Siqi Sun
Title: Bidirectional Representations Augmented Autoregressive Biological Sequence Generation:Application in De Novo Peptide Sequencing
Abstract:
Autoregressive (AR) models, common in sequence generation, are limited in many biological tasks such as de novo peptide sequencing and protein modeling by their unidirectional nature, failing to capture crucial global bidirectional token dependencies. Non-Autoregressive (NAR) models offer holistic, bidirectional representations but face challenges with generative coherence and scalability. To transcend this, we propose a hybrid framework enhancing AR generation by dynamically integrating rich contextual information from non-autoregressive mechanisms. Our approach couples a shared input encoder with two decoders: a non-autoregressive one learning latent bidirectional biological features, and an AR decoder synthesizing the biological sequence by leveraging these bidirectional features. A novel cross-decoder attention module enables the AR decoder to iteratively query and integrate these bidirectional features, enriching its predictions. This synergy is cultivated via a tailored training strategy with importance annealing for balanced objectives and cross-decoder gradient blocking for stable, focused learning. Evaluations on a demanding nine-species benchmark of de novo peptide sequencing show that our model substantially surpasses AR and NAR baselines. It uniquely harmonizes AR stability with NAR contextual awareness, delivering robust, superior performance on diverse downstream data. This research advances biological sequence modeling techniques and contributes a novel architectural paradigm for augmenting AR models with enhanced bidirectional understanding for complex sequence generation. Code is available at https://github.com/BEAM-Labs/denovo.

Authors:Elias Kristmann, Markus Schütz, Michael Wimmer
Title: Variable-Rate Texture Compression: Real-Time Rendering with JPEG
Abstract:
Although variable-rate compressed image formats such as JPEG are widely used to efficiently encode images, they have not found their way into real-time rendering due to special requirements such as random access to individual texels. In this paper, we investigate the feasibility of variable-rate texture compression on modern GPUs using the JPEG format, and how it compares to the GPU-friendly fixed-rate compression approaches BC1 and ASTC. Using a deferred rendering pipeline, we are able to identify the subset of blocks that are needed for a given frame, decode these, and colorize the framebuffer's pixels. Despite the additional $\sim$0.17 bit per pixel that we require for our approach, JPEG maintains significantly better quality and compression rates compared to BC1, and depending on the type of image, outperforms or competes with ASTC. The JPEG rendering pipeline increases rendering duration by less than 0.3 ms on an RTX 4090, demonstrating that sophisticated variable-rate compression schemes are feasible on modern GPUs, even in VR. Source code and data sets are available at: https://github.com/elias1518693/jpeg_textures

Authors:Shuliang Liu, Zhipeng Xu, Zhenghao Liu, Yukun Yan, Minghe Yu, Yu Gu, Chong Chen, Huiyuan Xie, Ge Yu
Title: Mitigating Judgment Preference Bias in Large Language Models through Group-Based Polling
Abstract:
Large Language Models (LLMs) as automatic evaluators, commonly referred to as LLM-as-a-Judge, have also attracted growing attention. This approach plays a vital role in aligning LLMs with human judgments, providing accurate and reliable assessments. However, LLM-based judgment models often exhibit judgment preference bias during the evaluation phase, tending to favor responses generated by themselves, undermining the reliability of their judgments. This paper introduces the Group-Based Polling Optimization (Genii), an unsupervised multi-agent collaborative optimization framework that mitigates the inherent judgment preference bias of judgment models. Specifically, Genii integrates various LLM-based judgment models into a multi-agent system and simulates the interactive client-server polling mechanism to optimize each client agent unsupervisedly. Our experiments demonstrate that Genii outperforms supervised models trained on annotated judgment data, while requiring no human-labeled annotations. Genii consistently improves performance across different client agents during the polling, even when weaker models act as server agents. Further analysis reveals that Genii effectively mitigates judgment preference bias of LLM-based judgment models, demonstrating its effectiveness. All codes are available at https://github.com/NEUIR/Genii.

Authors:Kodai Kawamura, Yuta Goto, Rintaro Yanagi, Hirokatsu Kataoka, Go Irie
Title: Approximate Domain Unlearning for Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) exhibit strong generalization capabilities, enabling them to recognize a wide range of objects across diverse domains without additional training. However, they often retain irrelevant information beyond the requirements of specific downstream tasks, raising concerns about computational efficiency and potential information leakage. This has motivated growing interest in approximate unlearning, which aims to selectively remove unnecessary knowledge while preserving overall model performance. Existing approaches to approximate unlearning have primarily focused on class unlearning, where a VLM is retrained to fail to recognize specified object classes while maintaining accuracy for others. However, merely forgetting object classes is often insufficient in practical applications. For instance, an autonomous driving system should accurately recognize real cars while avoiding misrecognition of illustrated cars depicted in roadside advertisements as real cars, which could be hazardous. In this paper, we introduce Approximate Domain Unlearning (ADU), a novel problem setting that requires reducing recognition accuracy for images from specified domains (e.g., illustration) while preserving accuracy for other domains (e.g., real). ADU presents new technical challenges: due to the strong domain generalization capability of pre-trained VLMs, domain distributions are highly entangled in the feature space, making naive approaches based on penalizing target domains ineffective. To tackle this limitation, we propose a novel approach that explicitly disentangles domain distributions and adaptively captures instance-specific domain information. Extensive experiments show that our approach outperforms baselines built upon VLM tuning techniques, paving the way for practical and fine-grained unlearning in VLMs. Code: https://kodaikawamura.github.io/Domain_Unlearning/.

Authors:Kesen Zhao, Jiaxin Shi, Beier Zhu, Junbao Zhou, Xiaolong Shen, Yuan Zhou, Qianru Sun, Hanwang Zhang
Title: Real-Time Motion-Controllable Autoregressive Video Diffusion
Abstract:
Real-time motion-controllable video generation remains challenging due to the inherent latency of bidirectional diffusion models and the lack of effective autoregressive (AR) approaches. Existing AR video diffusion models are limited to simple control signals or text-to-video generation, and often suffer from quality degradation and motion artifacts in few-step generation. To address these challenges, we propose AR-Drag, the first RL-enhanced few-step AR video diffusion model for real-time image-to-video generation with diverse motion control. We first fine-tune a base I2V model to support basic motion control, then further improve it via reinforcement learning with a trajectory-based reward model. Our design preserves the Markov property through a Self-Rollout mechanism and accelerates training by selectively introducing stochasticity in denoising steps. Extensive experiments demonstrate that AR-Drag achieves high visual fidelity and precise motion alignment, significantly reducing latency compared with state-of-the-art motion-controllable VDMs, while using only 1.3B parameters. Additional visualizations can be found on our project page: https://kesenzhao.github.io/AR-Drag.github.io/.

Authors:Shuhai Zhang, ZiHao Lian, Jiahao Yang, Daiyuan Li, Guoxuan Pang, Feng Liu, Bo Han, Shutao Li, Mingkui Tan
Title: Physics-Driven Spatiotemporal Modeling for AI-Generated Video Detection
Abstract:
AI-generated videos have achieved near-perfect visual realism (e.g., Sora), urgently necessitating reliable detection mechanisms. However, detecting such videos faces significant challenges in modeling high-dimensional spatiotemporal dynamics and identifying subtle anomalies that violate physical laws. In this paper, we propose a physics-driven AI-generated video detection paradigm based on probability flow conservation principles. Specifically, we propose a statistic called Normalized Spatiotemporal Gradient (NSG), which quantifies the ratio of spatial probability gradients to temporal density changes, explicitly capturing deviations from natural video dynamics. Leveraging pre-trained diffusion models, we develop an NSG estimator through spatial gradients approximation and motion-aware temporal modeling without complex motion decomposition while preserving physical constraints. Building on this, we propose an NSG-based video detection method (NSG-VD) that computes the Maximum Mean Discrepancy (MMD) between NSG features of the test and real videos as a detection metric. Last, we derive an upper bound of NSG feature distances between real and generated videos, proving that generated videos exhibit amplified discrepancies due to distributional shifts. Extensive experiments confirm that NSG-VD outperforms state-of-the-art baselines by 16.00% in Recall and 10.75% in F1-Score, validating the superior performance of NSG-VD. The source code is available at https://github.com/ZSHsh98/NSG-VD.

Authors:Junyu Shi, Minghui Li, Junguo Zuo, Zhifei Yu, Yipeng Lin, Shengshan Hu, Ziqi Zhou, Yechao Zhang, Wei Wan, Yinzhe Xu, Leo Yu Zhang
Title: Towards Real-World Deepfake Detection: A Diverse In-the-wild Dataset of Forgery Faces
Abstract:
Deepfakes, leveraging advanced AIGC (Artificial Intelligence-Generated Content) techniques, create hyper-realistic synthetic images and videos of human faces, posing a significant threat to the authenticity of social media. While this real-world threat is increasingly prevalent, existing academic evaluations and benchmarks for detecting deepfake forgery often fall short to achieve effective application for their lack of specificity, limited deepfake diversity, restricted manipulation techniques.To address these limitations, we introduce RedFace (Real-world-oriented Deepfake Face), a specialized facial deepfake dataset, comprising over 60,000 forged images and 1,000 manipulated videos derived from authentic facial features, to bridge the gap between academic evaluations and real-world necessity. Unlike prior benchmarks, which typically rely on academic methods to generate deepfakes, RedFace utilizes 9 commercial online platforms to integrate the latest deepfake technologies found "in the wild", effectively simulating real-world black-box scenarios.Moreover, RedFace's deepfakes are synthesized using bespoke algorithms, allowing it to capture diverse and evolving methods used by real-world deepfake creators. Extensive experimental results on RedFace (including cross-domain, intra-domain, and real-world social network dissemination simulations) verify the limited practicality of existing deepfake detection schemes against real-world applications. We further perform a detailed analysis of the RedFace dataset, elucidating the reason of its impact on detection performance compared to conventional datasets. Our dataset is available at: https://github.com/kikyou-220/RedFace.

Authors:Bheeshm Sharma, Karthikeyan Jaganathan, Balamurugan Palaniappan
Title: RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings for Weakly Supervised Anomaly Detection in Brain MRI Scans
Abstract:
Weakly Supervised Anomaly detection (WSAD) in brain MRI scans is an important challenge useful to obtain quick and accurate detection of brain anomalies when precise pixel-level anomaly annotations are unavailable and only weak labels (e.g., slice-level) are available. In this work, we propose RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings, a novel two-stage WSAD framework. In the first stage, we introduce a Discriminative Dual Prompt Tuning (DDPT) mechanism that generates high-quality pseudo weak masks based on slice-level labels, serving as coarse localization cues. In the second stage, we propose a segmentation network with a region-aware spatial attention mechanism that relies on fixed location-based random embeddings. This design enables the model to effectively focus on anomalous regions. Our approach achieves state-of-the-art anomaly detection performance, significantly outperforming existing WSAD methods while utilizing less than 8 million parameters. Extensive evaluations on the BraTS20, BraTS21, BraTS23, and MSD datasets demonstrate a substantial performance improvement coupled with a significant reduction in computational complexity. Code is available at: https://github.com/BheeshmSharma/RASALoRE-BMVC-2025/.

Authors:Chen Huang, Wei Lu, Wenxuan Zhang
Title: PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Abstract:
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution.This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.

Authors:Kehui Liu, Zhongjie Jia, Yang Li, Zhaxizhuoma, Pengan Chen, Song Liu, Xin Liu, Pingrui Zhang, Haoming Song, Xinyi Ye, Nieqing Cao, Zhigang Wang, Jia Zeng, Dong Wang, Yan Ding, Bin Zhao, Xuelong Li
Title: FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset
Abstract:
Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.

Authors:Shaohong Wang, Bin Lu, Xinyu Xiao, Hanzhi Zhong, Bowen Pang, Tong Wang, Zhiyu Xiang, Hangguan Shan, Eryun Liu
Title: RayFusion: Ray Fusion Enhanced Collaborative Visual Perception
Abstract:
Collaborative visual perception methods have gained widespread attention in the autonomous driving community in recent years due to their ability to address sensor limitation problems. However, the absence of explicit depth information often makes it difficult for camera-based perception systems, e.g., 3D object detection, to generate accurate predictions. To alleviate the ambiguity in depth estimation, we propose RayFusion, a ray-based fusion method for collaborative visual perception. Using ray occupancy information from collaborators, RayFusion reduces redundancy and false positive predictions along camera rays, enhancing the detection performance of purely camera-based collaborative perception systems. Comprehensive experiments show that our method consistently outperforms existing state-of-the-art models, substantially advancing the performance of collaborative visual perception. The code is available at https://github.com/wangsh0111/RayFusion.

Authors:Gaurvi Goyal, Pham Cong Thuong, Arren Glover, Masayoshi Mizuno, Chiara Bartolozzi
Title: GraphEnet: Event-driven Human Pose Estimation with a Graph Neural Network
Abstract:
Human Pose Estimation is a crucial module in human-machine interaction applications and, especially since the rise in deep learning technology, robust methods are available to consumers using RGB cameras and commercial GPUs. On the other hand, event-based cameras have gained popularity in the vision research community for their low latency and low energy advantages that make them ideal for applications where those resources are constrained like portable electronics and mobile robots. In this work we propose a Graph Neural Network, GraphEnet, that leverages the sparse nature of event camera output, with an intermediate line based event representation, to estimate 2D Human Pose of a single person at a high frequency. The architecture incorporates a novel offset vector learning paradigm with confidence based pooling to estimate the human pose. This is the first work that applies Graph Neural Networks to event data for Human Pose Estimation. The code is open-source at https://github.com/event-driven-robotics/GraphEnet-NeVi-ICCV2025.

Authors:Wei Wang, Rong Cao, Yi Guo, Zhengyang Chen, Kuan Chen, Yuanyuan Huo
Title: IntMeanFlow: Few-step Speech Generation with Integral Velocity Distillation
Abstract:
Flow-based generative models have greatly improved text-to-speech (TTS) synthesis quality, but inference speed remains limited by the iterative sampling process and multiple function evaluations (NFE). The recent MeanFlow model accelerates generation by modeling average velocity instead of instantaneous velocity. However, its direct application to TTS encounters challenges, including GPU memory overhead from Jacobian-vector products (JVP) and training instability due to self-bootstrap processes. To address these issues, we introduce IntMeanFlow, a framework for few-step speech generation with integral velocity distillation. By approximating average velocity with the teacher's instantaneous velocity over a temporal interval, IntMeanFlow eliminates the need for JVPs and self-bootstrap, improving stability and reducing GPU memory usage. We also propose the Optimal Step Sampling Search (O3S) algorithm, which identifies the model-specific optimal sampling steps, improving speech synthesis without additional inference overhead. Experiments show that IntMeanFlow achieves 1-NFE inference for token-to-spectrogram and 3-NFE for text-to-spectrogram tasks while maintaining high-quality synthesis. Demo samples are available at https://vvwangvv.github.io/intmeanflow.

Authors:Jingyuan Wang, Yankai Chen, Zhonghang Li, Chao Huang
Title: LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?
Abstract:
Large language models (LLMs) have demonstrated remarkable progress in reasoning, often through supervised fine-tuning (SFT). However, SFT is resource-intensive, relying on large curated datasets, rejection-sampled demonstrations, and uniform optimization across all tokens, even though only a fraction carry meaningful learning value. In this work, we explore a counterintuitive idea: can smaller language models (SLMs) teach larger language models (LLMs) by revealing high-value reasoning moments that reflect the latter's unique strength? We propose LightReasoner, a novel framework that leverages the behavioral divergence between a stronger expert model (LLM) and a weaker amateur model (SLM). LightReasoner operates in two stages: (1) a sampling stage that pinpoints critical reasoning moments and constructs supervision examples capturing the expert's advantage through expert-amateur contrast, and (2) a fine-tuning stage that aligns the expert model with these distilled examples, amplifying its reasoning strengths. Across seven mathematical benchmarks, LightReasoner improves accuracy by up to 28.1%, while reducing time consumption by 90%, sampled problems by 80%, and tuned token usage by 99%, all without relying on ground-truth labels. By turning weaker SLMs into effective teaching signals, LightReasoner offers a scalable and resource-efficient approach for advancing LLM reasoning. Code is available at: https://github.com/HKUDS/LightReasoner

Authors:Alexander Rubinstein, Benjamin Raible, Martin Gubri, Seong Joon Oh
Title: DISCO: Diversifying Sample Condensation for Efficient Model Evaluation
Abstract:
Evaluating modern machine learning models has become prohibitively expensive. Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and worsens environmental impact. The typical approach follows two steps. First, select an anchor subset of data. Second, train a mapping from the accuracy on this subset to the final test result. The drawback is that anchor selection depends on clustering, which can be complex and sensitive to design choices. We argue that promoting diversity among samples is not essential; what matters is to select samples that $\textit{maximise diversity in model responses}$. Our method, $\textbf{Diversifying Sample Condensation (DISCO)}$, selects the top-k samples with the greatest model disagreements. This uses greedy, sample-wise statistics rather than global clustering. The approach is conceptually simpler. From a theoretical view, inter-model disagreement provides an information-theoretically optimal rule for such greedy selection. $\textbf{DISCO}$ shows empirical gains over prior methods, achieving state-of-the-art results in performance prediction across MMLU, Hellaswag, Winogrande, and ARC. Code is available here: https://github.com/arubique/disco-public.

Authors:Fengji Zhang, Xinyao Niu, Chengyang Ying, Guancheng Lin, Zhongkai Hao, Zhou Fan, Chengen Huang, Jacky Keung, Bei Chen, Junyang Lin
Title: A$^2$Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Abstract:
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A$^2$Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed $\mathrm{AnsF1}$ reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A$^2$Search achieves new state-of-the-art performance. With only a single rollout, A$^2$Search-7B yields an average $\mathrm{AnsF1}@1$ score of $48.4\%$ across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B ($46.2\%$). Extensive analyses further show that A$^2$Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

Authors:Yufei Tong, Guanjie Cheng, Peihan Wu, Yicheng Zhu, Kexu Lu, Feiyi Chen, Meng Xi, Junqin Huang, Shuiguang Deng
Title: SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion
Abstract:
With the rapid advancement of the digital society, the proliferation of satellites in the Satellite Internet of Things (Sat-IoT) has led to the continuous accumulation of large-scale multi-temporal and multi-source images across diverse application scenarios. However, existing methods fail to fully exploit the complementary information embedded in both temporal and source dimensions. For example, Multi-Image Super-Resolution (MISR) enhances reconstruction quality by leveraging temporal complementarity across multiple observations, yet the limited fine-grained texture details in input images constrain its performance. Conversely, pansharpening integrates multi-source images by injecting high-frequency spatial information from panchromatic data, but typically relies on pre-interpolated low-resolution inputs and assumes noise-free alignment, making it highly sensitive to noise and misregistration. To address these issues, we propose SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion. Specifically, SatFusion first employs a Multi-Temporal Image Fusion (MTIF) module to achieve deep feature alignment with the panchromatic image. Then, a Multi-Source Image Fusion (MSIF) module injects fine-grained texture information from the panchromatic data. Finally, a Fusion Composition module adaptively integrates the complementary advantages of both modalities while dynamically refining spectral consistency, supervised by a weighted combination of multiple loss functions. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that SatFusion significantly improves fusion quality, robustness under challenging conditions, and generalizability to real-world Sat-IoT scenarios. The code is available at: https://github.com/dllgyufei/SatFusion.git.

Authors:Md. Faiyaz Abdullah Sayeedi, Md. Mahbub Alam, Subhey Sadi Rahman, Md. Adnanul Islam, Jannatul Ferdous Deepti, Tasnim Mohiuddin, Md Mofijul Islam, Swakkhar Shatabda
Title: Ready to Translate, Not to Represent? Bias and Performance Gaps in Multilingual LLMs Across Language Families and Domains
Abstract:
The rise of Large Language Models (LLMs) has redefined Machine Translation (MT), enabling context-aware and fluent translations across hundreds of languages and textual domains. Despite their remarkable capabilities, LLMs often exhibit uneven performance across language families and specialized domains. Moreover, recent evidence reveals that these models can encode and amplify different biases present in their training data, posing serious concerns for fairness, especially in low-resource languages. To address these gaps, we introduce Translation Tangles, a unified framework and dataset for evaluating the translation quality and fairness of open-source LLMs. Our approach benchmarks 24 bidirectional language pairs across multiple domains using different metrics. We further propose a hybrid bias detection pipeline that integrates rule-based heuristics, semantic similarity filtering, and LLM-based validation. We also introduce a high-quality, bias-annotated dataset based on human evaluations of 1,439 translation-reference pairs. The code and dataset are accessible on GitHub: https://github.com/faiyazabdullah/TranslationTangles

Authors:Guowei Zou, Haitao Wang, Hejun Wu, Yukun Qian, Yuhang Wang, Weibing Li
Title: DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation
Abstract:
The ability to learn multi-modal action distributions is indispensable for robotic manipulation policies to perform precise and robust control. Flow-based generative models have recently emerged as a promising solution to learning distributions of actions, offering one-step action generation and thus achieving much higher sampling efficiency compared to diffusion-based methods. However, existing flow-based policies suffer from representation collapse, the inability to distinguish similar visual representations, leading to failures in precise manipulation tasks. We propose DM1 (MeanFlow with Dispersive Regularization for One-Step Robotic Manipulation), a novel flow matching framework that integrates dispersive regularization into MeanFlow to prevent collapse while maintaining one-step efficiency. DM1 employs multiple dispersive regularization variants across different intermediate embedding layers, encouraging diverse representations across training batches without introducing additional network modules or specialized training procedures. Experiments on RoboMimic benchmarks show that DM1 achieves 20-40 times faster inference (0.07s vs. 2-3.5s) and improves success rates by 10-20 percentage points, with the Lift task reaching 99% success over 85% of the baseline. Real-robot deployment on a Franka Panda further validates that DM1 transfers effectively from simulation to the physical world. To the best of our knowledge, this is the first work to leverage representation regularization to enable flow-based policies to achieve strong performance in robotic manipulation, establishing a simple yet powerful approach for efficient and robust manipulation.

Authors:Tianyu Fan, Xinyao Niu, Yuxiang Zheng, Fengji Zhang, Chengen Huang, Bei Chen, Junyang Lin, Chao Huang
Title: Understanding DeepResearch via Reports
Abstract:
DeepResearch agents represent a transformative AI paradigm, conducting expert-level research through sophisticated reasoning and multi-tool integration. However, evaluating these systems remains critically challenging due to open-ended research scenarios and existing benchmarks that focus on isolated capabilities rather than holistic performance. Unlike traditional LLM tasks, DeepResearch systems must synthesize diverse sources, generate insights, and present coherent findings, which are capabilities that resist simple verification. To address this gap, we introduce DeepResearch-ReportEval, a comprehensive framework designed to assess DeepResearch systems through their most representative outputs: research reports. Our approach systematically measures three dimensions: quality, redundancy, and factuality, using an innovative LLM-as-a-Judge methodology achieving strong expert concordance. We contribute a standardized benchmark of 100 curated queries spanning 12 real-world categories, enabling systematic capability comparison. Our evaluation of four leading commercial systems reveals distinct design philosophies and performance trade-offs, establishing foundational insights as DeepResearch evolves from information assistants toward intelligent research partners. Source code and data are available at: https://github.com/HKUDS/DeepResearch-Eval.

Authors:Haochen Yu, Qiankun Liu, Hongyuan Liu, Jianfei Jiang, Juntao Lyu, Jiansheng Chen, Huimin Ma
Title: XYZCylinder: Feedforward Reconstruction for Driving Scenes Based on A Unified Cylinder Lifting Method
Abstract:
Recently, more attention has been paid to feedforward reconstruction paradigms, which mainly learn a fixed view transformation implicitly and reconstruct the scene with a single representation. However, their generalization capability and reconstruction accuracy are still limited while reconstructing driving scenes, which results from two aspects: (1) The fixed view transformation fails when the camera configuration changes, limiting the generalization capability across different driving scenes equipped with different camera configurations. (2) The small overlapping regions between sparse views of the $360^\circ$ panorama and the complexity of driving scenes increase the learning difficulty, reducing the reconstruction accuracy. To handle these difficulties, we propose \textbf{XYZCylinder}, a feedforward model based on a unified cylinder lifting method which involves camera modeling and feature lifting. Specifically, to improve the generalization capability, we design a Unified Cylinder Camera Modeling (UCCM) strategy, which avoids the learning of viewpoint-dependent spatial correspondence and unifies different camera configurations with adjustable parameters. To improve the reconstruction accuracy, we propose a hybrid representation with several dedicated modules based on newly designed Cylinder Plane Feature Group (CPFG) to lift 2D image features to 3D space. Experimental results show that XYZCylinder achieves state-of-the-art performance under different evaluation settings, and can be generalized to other driving scenes in a zero-shot manner. Project page: \href{https://yuyuyu223.github.io/XYZCYlinder-projectpage/}{here}.

Authors:Ji Yu, Yang shuo, Xu Yuetonghui, Liu Mengmei, Ji Qiang, Han Zerui
Title: ACMID: Automatic Curation of Musical Instrument Dataset for 7-Stem Music Source Separation
Abstract:
Most current music source separation (MSS) methods rely on supervised learning, limited by training data quantity and quality. Though web-crawling can bring abundant data, platform-level track labeling often causes metadata mismatches, impeding accurate "audio-label" pair acquisition. To address this, we present ACMID: a dataset for MSS generated through web crawling of extensive raw data, followed by automatic cleaning via an instrument classifier built on a pre-trained audio encoder that filters and aggregates clean segments of target instruments from the crawled tracks, resulting in the refined ACMID-Cleaned dataset. Leveraging abundant data, we expand the conventional classification from 4-stem (Vocal/Bass/Drums/Others) to 7-stem (Piano/Drums/Bass/Acoustic Guitar/Electric Guitar/Strings/Wind-Brass), enabling high granularity MSS systems. Experiments on SOTA MSS model demonstrates two key results: (i) MSS model trained with ACMID-Cleaned achieved a 2.39dB improvement in SDR performance compared to that with ACMID-Uncleaned, demostrating the effectiveness of our data cleaning procedure; (ii) incorporating ACMID-Cleaned to training enhances MSS model's average performance by 1.16dB, confirming the value of our dataset. Our data crawling code, cleaning model code and weights are available at: https://github.com/scottishfold0621/ACMID.

Authors:Yijie Gao, Houqiang Zhong, Tianchi Zhu, Zhengxue Cheng, Qiang Hu, Li Song
Title: AlignGS: Aligning Geometry and Semantics for Robust Indoor Reconstruction from Sparse Views
Abstract:
The demand for semantically rich 3D models of indoor scenes is rapidly growing, driven by applications in augmented reality, virtual reality, and robotics. However, creating them from sparse views remains a challenge due to geometric ambiguity. Existing methods often treat semantics as a passive feature painted on an already-formed, and potentially flawed, geometry. We posit that for robust sparse-view reconstruction, semantic understanding instead be an active, guiding force. This paper introduces AlignGS, a novel framework that actualizes this vision by pioneering a synergistic, end-to-end optimization of geometry and semantics. Our method distills rich priors from 2D foundation models and uses them to directly regularize the 3D representation through a set of novel semantic-to-geometry guidance mechanisms, including depth consistency and multi-faceted normal regularization. Extensive evaluations on standard benchmarks demonstrate that our approach achieves state-of-the-art results in novel view synthesis and produces reconstructions with superior geometric accuracy. The results validate that leveraging semantic priors as a geometric regularizer leads to more coherent and complete 3D models from limited input views. Our code is avaliable at https://github.com/MediaX-SJTU/AlignGS .

Authors:Harsh Kavediya, Vighnesh Nayak, Bheeshm Sharma, Balamurugan Palaniappan
Title: IsoSignVid2Aud: Sign Language Video to Audio Conversion without Text Intermediaries
Abstract:
Sign language to spoken language audio translation is important to connect the hearing- and speech-challenged humans with others. We consider sign language videos with isolated sign sequences rather than continuous grammatical signing. Such videos are useful in educational applications and sign prompt interfaces. Towards this, we propose IsoSignVid2Aud, a novel end-to-end framework that translates sign language videos with a sequence of possibly non-grammatic continuous signs to speech without requiring intermediate text representation, providing immediate communication benefits while avoiding the latency and cascading errors inherent in multi-stage translation systems. Our approach combines an I3D-based feature extraction module with a specialized feature transformation network and an audio generation pipeline, utilizing a novel Non-Maximal Suppression (NMS) algorithm for the temporal detection of signs in non-grammatic continuous sequences. Experimental results demonstrate competitive performance on ASL-Citizen-1500 and WLASL-100 datasets with Top-1 accuracies of 72.01\% and 78.67\%, respectively, and audio quality metrics (PESQ: 2.67, STOI: 0.73) indicating intelligible speech output. Code is available at: https://github.com/BheeshmSharma/IsoSignVid2Aud_AIMLsystems-2025.

Authors:Weisen Jiang, Sinno Jialin Pan
Title: MetaDefense: Defending Finetuning-based Jailbreak Attack Before and During Generation
Abstract:
This paper introduces MetaDefense, a novel framework for defending against finetuning-based jailbreak attacks in large language models (LLMs). We observe that existing defense mechanisms fail to generalize to harmful queries disguised by unseen attack templates, despite LLMs being capable of distinguishing disguised harmful queries in the embedding space. Based on these insights, we propose a two-stage defense approach: (i) pre-generation defense that detects harmful queries before response generation begins, and (ii) mid-generation defense that monitors partial responses during generation to prevent outputting more harmful content. Our MetaDefense trains the LLM to predict the harmfulness of both queries and partial responses using specialized prompts, enabling early termination of potentially harmful interactions. Extensive experiments across multiple LLM architectures (LLaMA-2-7B, Qwen-2.5-3B-Instruct, and LLaMA-3.2-3B-Instruct) demonstrate that MetaDefense significantly outperforms existing defense mechanisms, achieving robust defense against harmful queries with seen and unseen attack templates while maintaining competitive performance on benign tasks. Code is available at https://github.com/ws-jiang/MetaDefense.

Authors:Yuping Zhou, Siqi Lai, Jindong Han, Hao Liu
Title: An LLM-Powered Cooperative Framework for Large-Scale Multi-Vehicle Navigation
Abstract:
The rise of Internet of Vehicles (IoV) technologies is transforming traffic management from isolated control to a collective, multi-vehicle process. At the heart of this shift is multi-vehicle dynamic navigation, which requires simultaneously routing large fleets under evolving traffic conditions. Existing path search algorithms and reinforcement learning methods struggle to scale to city-wide networks, often failing to capture the nonlinear, stochastic, and coupled dynamics of urban traffic. To address these challenges, we propose CityNav, a hierarchical, LLM-powered framework for large-scale multi-vehicle navigation. CityNav integrates a global traffic allocation agent, which coordinates strategic traffic flow distribution across regions, with local navigation agents that generate locally adaptive routes aligned with global directives. To enable effective cooperation, we introduce a cooperative reasoning optimization mechanism, in which agents are jointly trained with a dual-reward structure: individual rewards promote per-vehicle efficiency, while shared rewards encourage network-wide coordination and congestion reduction. Extensive experiments on four real-world road networks of varying scales (up to 1.6 million roads and 430,000 intersections) and traffic datasets demonstrate that CityNav consistently outperforms nine classical path search and RL-based baselines in city-scale travel efficiency and congestion mitigation. Our results highlight the potential of LLMs to enable scalable, adaptive, and cooperative city-wide traffic navigation, providing a foundation for intelligent, large-scale vehicle routing in complex urban environments. Our project is available at https://github.com/usail-hkust/CityNav.

Authors:Kanglin Ning, Ruzhao Chen, Penghong Wang, Xingtao Wang, Ruiqin Xiong, Xiaopeng Fan
Title: An End-to-End Room Geometry Constrained Depth Estimation Framework for Indoor Panorama Images
Abstract:
Predicting spherical pixel depth from monocular $360^{\circ}$ indoor panoramas is critical for many vision applications. However, existing methods focus on pixel-level accuracy, causing oversmoothed room corners and noise sensitivity. In this paper, we propose a depth estimation framework based on room geometry constraints, which extracts room geometry information through layout prediction and integrates those information into the depth estimation process through background segmentation mechanism. At the model level, our framework comprises a shared feature encoder followed by task-specific decoders for layout estimation, depth estimation, and background segmentation. The shared encoder extracts multi-scale features, which are subsequently processed by individual decoders to generate initial predictions: a depth map, a room layout map, and a background segmentation map. Furthermore, our framework incorporates two strategies: a room geometry-based background depth resolving strategy and a background-segmentation-guided fusion mechanism. The proposed room-geometry-based background depth resolving strategy leverages the room layout and the depth decoder's output to generate the corresponding background depth map. Then, a background-segmentation-guided fusion strategy derives fusion weights for the background and coarse depth maps from the segmentation decoder's predictions. Extensive experimental results on the Stanford2D3D, Matterport3D and Structured3D datasets show that our proposed methods can achieve significantly superior performance than current open-source methods. Our code is available at https://github.com/emiyaning/RGCNet.

Authors:Qinghongbing Xie, Zhaoyuan Xia, Feng Zhu, Lijun Gong, Ziyue Li, Rui Zhao, Long Zeng
Title: GTR-Bench: Evaluating Geo-Temporal Reasoning in Vision-Language Models
Abstract:
Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has attracted much attention due to its importance for Autonomous Driving, Embodied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks mainly focus on egocentric perspective reasoning with images/video context, or geographic perspective reasoning with graphics context (eg. a map), thus fail to assess VLMs' geographic spatial-temporal intelligence with both images/video and graphics context, which is important for areas like traffic management and emergency response. To address the gaps, we introduce Geo-Temporal Reasoning benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning of moving targets in a large-scale camera network. GTR-Bench is more challenging as it requires multiple perspective switches between maps and videos, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video context. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human performance (78.61%) on geo-temporal reasoning. Moreover, our comprehensive analysis on GTR-Bench reveals three primary deficiencies of current models for geo-temporal reasoning. (1) VLMs' reasoning is impaired by an imbalanced utilization of spatial-temporal context. (2) VLMs are weak in temporal forecasting, which leads to worse performance on temporal-emphasized tasks than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend or align the map data with multi-view video inputs. We believe GTR-Bench offers valuable insights and opens up new opportunities for research and applications in spatial-temporal intelligence. Benchmark and code will be released at https://github.com/X-Luffy/GTR-Bench.

Authors:Hao Wu, Wei Liu
Title: GCPO: When Contrast Fails, Go Gold
Abstract:
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.

Authors:Ming Jie Ong, Sze Yinn Ung, Sim Kuan Goh, Jimmy Y. Zhong
Title: Demystifying Deep Learning-based Brain Tumor Segmentation with 3D UNets and Explainable AI (XAI): A Comparative Analysis
Abstract:
The current study investigated the use of Explainable Artificial Intelligence (XAI) to improve the accuracy of brain tumor segmentation in MRI images, with the goal of assisting physicians in clinical decision-making. The study focused on applying UNet models for brain tumor segmentation and using the XAI techniques of Gradient-weighted Class Activation Mapping (Grad-CAM) and attention-based visualization to enhance the understanding of these models. Three deep learning models - UNet, Residual UNet (ResUNet), and Attention UNet (AttUNet) - were evaluated to identify the best-performing model. XAI was employed with the aims of clarifying model decisions and increasing physicians' trust in these models. We compared the performance of two UNet variants (ResUNet and AttUNet) with the conventional UNet in segmenting brain tumors from the BraTS2020 public dataset and analyzed model predictions with Grad-CAM and attention-based visualization. Using the latest computer hardware, we trained and validated each model using the Adam optimizer and assessed their performance with respect to: (i) training, validation, and inference times, (ii) segmentation similarity coefficients and loss functions, and (iii) classification performance. Notably, during the final testing phase, ResUNet outperformed the other models with respect to Dice and Jaccard similarity scores, as well as accuracy, recall, and F1 scores. Grad-CAM provided visuospatial insights into the tumor subregions each UNet model focused on while attention-based visualization provided valuable insights into the working mechanisms of AttUNet's attention modules. These results demonstrated ResUNet as the best-performing model and we conclude by recommending its use for automated brain tumor segmentation in future clinical assessments. Our source code and checkpoint are available at https://github.com/ethanong98/MultiModel-XAI-Brats2020

Authors:Runyang You, Yongqi Li, Meng Liu, Wenjie Wang, Liqiang Nie, Wenjie Li
Title: Parallel Test-Time Scaling for Latent Reasoning Models
Abstract:
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.

Authors:Yuang Meng, Xin Jin, Lina Lei, Chun-Le Guo, Chongyi Li
Title: UltraLED: Learning to See Everything in Ultra-High Dynamic Range Scenes
Abstract:
Ultra-high dynamic range (UHDR) scenes exhibit significant exposure disparities between bright and dark regions. Such conditions are commonly encountered in nighttime scenes with light sources. Even with standard exposure settings, a bimodal intensity distribution with boundary peaks often emerges, making it difficult to preserve both highlight and shadow details simultaneously. RGB-based bracketing methods can capture details at both ends using short-long exposure pairs, but are susceptible to misalignment and ghosting artifacts. We found that a short-exposure image already retains sufficient highlight detail. The main challenge of UHDR reconstruction lies in denoising and recovering information in dark regions. In comparison to the RGB images, RAW images, thanks to their higher bit depth and more predictable noise characteristics, offer greater potential for addressing this challenge. This raises a key question: can we learn to see everything in UHDR scenes using only a single short-exposure RAW image? In this study, we rely solely on a single short-exposure frame, which inherently avoids ghosting and motion blur, making it particularly robust in dynamic scenes. To achieve that, we introduce UltraLED, a two-stage framework that performs exposure correction via a ratio map to balance dynamic range, followed by a brightness-aware RAW denoiser to enhance detail recovery in dark regions. To support this setting, we design a 9-stop bracketing pipeline to synthesize realistic UHDR images and contribute a corresponding dataset based on diverse scenes, using only the shortest exposure as input for reconstruction. Extensive experiments show that UltraLED significantly outperforms existing single-frame approaches. Our code and dataset are made publicly available at https://srameo.github.io/projects/ultraled.

Authors:Cunli Mao, Xiaofei Gao, Ran Song, Shizhu He, Shengxiang Gao, Kang Liu, Zhengtao Yu
Title: Multilingual Knowledge Graph Completion via Efficient Multilingual Knowledge Sharing
Abstract:
Large language models (LLMs) based Multilingual Knowledge Graph Completion (MKGC) aim to predict missing facts by leveraging LLMs' multilingual understanding capabilities, improving the completeness of multilingual knowledge graphs (KGs). However, existing MKGC research underutilizes the multilingual capabilities of LLMs and ignores the shareability of cross-lingual knowledge. In this paper, we propose a novel MKGC framework that leverages multilingual shared knowledge to significantly enhance performance through two components: Knowledge-level Grouped Mixture of Experts (KL-GMoE) and Iterative Entity Reranking (IER). KL-GMoE efficiently models shared knowledge, while IER significantly enhances its utilization. To evaluate our framework, we constructed a mKG dataset containing 5 languages and conducted comprehensive comparative experiments with existing state-of-the-art (SOTA) MKGC method. The experimental results demonstrate that our framework achieves improvements of 5.47%, 3.27%, and 1.01% in the Hits@1, Hits@3, and Hits@10 metrics, respectively, compared with SOTA MKGC method. Further experimental analysis revealed the properties of knowledge sharing in settings of unseen and unbalanced languages. We have released the dataset and code for our work on https://github.com/gaoxiaofei07/KL-GMoE.

Authors:Jian Gao, Mengqi Yuan, Yifei Zeng, Chang Zeng, Zhihao Li, Zhenyu Chen, Weichao Qiu, Xiao-Xiao Long, Hao Zhu, Xun Cao, Yao Yao
Title: ComGS: Efficient 3D Object-Scene Composition via Surface Octahedral Probes
Abstract:
Gaussian Splatting (GS) enables immersive rendering, but realistic 3D object-scene composition remains challenging. Baked appearance and shadow information in GS radiance fields cause inconsistencies when combining objects and scenes. Addressing this requires relightable object reconstruction and scene lighting estimation. For relightable object reconstruction, existing Gaussian-based inverse rendering methods often rely on ray tracing, leading to low efficiency. We introduce Surface Octahedral Probes (SOPs), which store lighting and occlusion information and allow efficient 3D querying via interpolation, avoiding expensive ray tracing. SOPs provide at least a 2x speedup in reconstruction and enable real-time shadow computation in Gaussian scenes. For lighting estimation, existing Gaussian-based inverse rendering methods struggle to model intricate light transport and often fail in complex scenes, while learning-based methods predict lighting from a single image and are viewpoint-sensitive. We observe that 3D object-scene composition primarily concerns the object's appearance and nearby shadows. Thus, we simplify the challenging task of full scene lighting estimation by focusing on the environment lighting at the object's placement. Specifically, we capture a 360 degrees reconstructed radiance field of the scene at the location and fine-tune a diffusion model to complete the lighting. Building on these advances, we propose ComGS, a novel 3D object-scene composition framework. Our method achieves high-quality, real-time rendering at around 28 FPS, produces visually harmonious results with vivid shadows, and requires only 36 seconds for editing. Code and dataset are available at https://nju-3dv.github.io/projects/ComGS/.

Authors:Shuo Yu, Mingyue Cheng, Daoyu Wang, Qi Liu, Zirui Liu, Ze Guo, Xiaoyu Tao
Title: MemWeaver: A Hierarchical Memory from Textual Interactive Behaviors for Personalized Generation
Abstract:
The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.

Authors:Perry Dong, Chongyi Zheng, Chelsea Finn, Dorsa Sadigh, Benjamin Eysenbach
Title: Value Flows
Abstract:
While most reinforcement learning methods today flatten the distribution of future returns to a single scalar value, distributional RL methods exploit the return distribution to provide stronger learning signals and to enable applications in exploration and safe RL. While the predominant method for estimating the return distribution is by modeling it as a categorical distribution over discrete bins or estimating a finite number of quantiles, such approaches leave unanswered questions about the fine-grained structure of the return distribution and about how to distinguish states with high return uncertainty for decision-making. The key idea in this paper is to use modern, flexible flow-based models to estimate the full future return distributions and identify those states with high return variance. We do so by formulating a new flow-matching objective that generates probability density paths satisfying the distributional Bellman equation. Building upon the learned flow models, we estimate the return uncertainty of distinct states using a new flow derivative ODE. We additionally use this uncertainty information to prioritize learning a more accurate return estimation on certain transitions. We compare our method (Value Flows) with prior methods in the offline and online-to-online settings. Experiments on $37$ state-based and $25$ image-based benchmark tasks demonstrate that Value Flows achieves a $1.3\times$ improvement on average in success rates. Website: https://pd-perry.github.io/value-flows Code: https://github.com/chongyi-zheng/value-flows

Authors:Abdelhakim Benechehab, Gabriel Singer, Corentin Léger, Youssef Attia El Hili, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl
Title: From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Abstract:
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .

Authors:Chihiro Taguchi, Richard Sproat
Title: IASC: Interactive Agentic System for ConLangs
Abstract:
We present a system that uses LLMs as a tool in the development of Constructed Languages. The system is modular in that one first creates a target phonology for the language using an agentic approach that refines its output at each step with commentary feedback on its previous attempt. Next, a set of sentences is 'translated' from their English original into a morphosyntactic markup that reflects the word order and morphosyntactic feature specifications of the desired target language, with affixes represented as morphosyntactic feature bundles. From this translated corpus, a lexicon is constructed using the phonological model and the set of morphemes (stems and affixes) extracted from the 'translated' sentences. The system is then instructed to provide an orthography for the language, using an existing script such as Latin or Cyrillic. Finally, the system writes a brief grammatical handbook of the language. The system can also translate further sentences into the target language. Our goal is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs 'know' about language-not what they know about any particular language or linguistic phenomenon, but how much they know about and understand language and linguistic concepts. As we shall see, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with more common patterns than rarer ones. An additional avenue that we explore is the application of our approach to translating from high-resource into low-resource languages. While the results so far are mostly negative, we provide some evidence that an improved version of the present system could afford some real gains in such tasks. https://github.com/SakanaAI/IASC

Authors:Jacob Chmura, Shenyang Huang, Tran Gia Bao Ngo, Ali Parviz, Farimah Poursafaei, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, Matthias Fey, Reihaneh Rabbany
Title: TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Abstract:
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like PyTorch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm

Authors:Rafin Hassan, Zarin Tasnim Roshni, Rafiqul Bari, Alimul Islam, Nabeel Mohammed, Moshiur Farazi, Shafin Rahman
Title: Label Semantics for Robust Hyperspectral Image Classification
Abstract:
Hyperspectral imaging (HSI) classification is a critical tool with widespread applications across diverse fields such as agriculture, environmental monitoring, medicine, and materials science. Due to the limited availability of high-quality training samples and the high dimensionality of spectral data, HSI classification models are prone to overfitting and often face challenges in balancing accuracy and computational complexity. Furthermore, most of HSI classification models are monomodal, where it solely relies on spectral-spatial data to learn decision boundaries in the high dimensional embedding space. To address this, we propose a general-purpose Semantic Spectral-Spatial Fusion Network (S3FN) that uses contextual, class specific textual descriptions to complement the training of an HSI classification model. Specifically, S3FN leverages LLMs to generate comprehensive textual descriptions for each class label that captures their unique characteristics and spectral behaviors. These descriptions are then embedded into a vector space using a pre-trained text encoder such as BERT or RoBERTa to extract meaningful label semantics which in turn leads to a better feature-label alignment for improved classification performance. To demonstrate the effectiveness of our approach, we evaluate our model on three diverse HSI benchmark datasets - Hyperspectral Wood, HyperspectralBlueberries, and DeepHS-Fruit and report significant performance boost. Our results highlight the synergy between textual semantics and spectral-spatial data, paving the way for further advancements in semantically augmented HSI classification models. Codes are be available in: https://github.com/milab-nsu/S3FN

Authors:Pragati Shuddhodhan Meshram, Varun Chandrasekaran
Title: D2RA: Dual Domain Regeneration Attack
Abstract:
The growing use of generative models has intensified the need for watermarking methods that ensure content attribution and provenance. While recent semantic watermarking schemes improve robustness by embedding signals in latent or frequency representations, we show they remain vulnerable even under resource-constrained adversarial settings. We present D2RA, a training-free, single-image attack that removes or weakens watermarks without access to the underlying model. By projecting watermarked images onto natural priors across complementary representations, D2RA suppresses watermark signals while preserving visual fidelity. Experiments across diverse watermarking schemes demonstrate that our approach consistently reduces watermark detectability, revealing fundamental weaknesses in current designs. Our code is available at https://github.com/Pragati-Meshram/DAWN.

Authors:Hyeong Kyu Choi, Xiaojin Zhu, Yixuan Li
Title: Measuring and Mitigating Identity Bias in Multi-Agent Debate via Anonymization
Abstract:
Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer's view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish "self" from "peer", which forces equal weights on agent identity, thereby reducing bias. Third, we define the Identity Bias Coefficient (IBC), a principled metric that measures how often an agent follows a peer versus itself. Empirical studies across multiple models, datasets and debate rounds confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to "mask" identity to ensure that MAD systems reason based on content rather than source identity. Code is released in https://github.com/deeplearning-wisc/MAD-identity-bias.

Authors:Daniel M. Cherenson, Dimitra Panagou
Title: Adaptive Control Allocation for Underactuated Time-Scale Separated Non-Affine Systems
Abstract:
Many robotic systems are underactuated, meaning not all degrees of freedom can be directly controlled due to lack of actuators, input constraints, or state-dependent actuation. This property, compounded by modeling uncertainties and disturbances, complicates the control design process for trajectory tracking. In this work, we propose an adaptive control architecture for uncertain, nonlinear, underactuated systems with input constraints. Leveraging time-scale separation, we construct a reduced-order model where fast dynamics provide virtual inputs to the slower subsystem and use dynamic control allocation to select the optimal control inputs given the non-affine dynamics. To handle uncertainty, we introduce a state predictor-based adaptive law, and through singular perturbation theory and Lyapunov analysis, we prove stability and bounded tracking of reference trajectories. The proposed method is validated on a VTOL quadplane with nonlinear, state-dependent actuation, demonstrating its utility as a unified controller across various flight regimes, including cruise, landing transition, and hover.

Authors:Guoliang Gong, Man Yu
Title: A Denoising Framework for Real-World Ultra-Low Dose Lung CT Images Based on an Image Purification Strategy
Abstract:
Ultra-low dose CT (uLDCT) significantly reduces radiation exposure but introduces severe noise and artifacts. It also leads to substantial spatial misalignment between uLDCT and normal dose CT (NDCT) image pairs. This poses challenges for directly applying existing denoising networks trained on synthetic noise or aligned data. To address this core challenge in uLDCT denoising, this paper proposes an innovative denoising framework based on an Image Purification (IP) strategy. First, we construct a real clinical uLDCT lung dataset. Then, we propose an Image Purification strategy that generates structurally aligned uLDCT-NDCT image pairs, providing a high-quality data foundation for network training. Building upon this, we propose a Frequency-domain Flow Matching (FFM) model, which works synergistically with the IP strategy to excellently preserve the anatomical structure integrity of denoised images. Experiments on the real clinical dataset demonstrate that our IP strategy significantly enhances the performance of multiple mainstream denoising models on the uLDCT task. Notably, our proposed FFM model combined with the IP strategy achieves state-of-the-art (SOTA) results in anatomical structure preservation. This study provides an effective solution to the data mismatch problem in real-world uLDCT denoising. Code and dataset are available at https://github.com/MonkeyDadLufy/flow-matching.

Authors:Yoli Shavit, Jacob Goldberger
Title: MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
Abstract:
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks and applied to time series forecasting. Unlike conventional MoEs that provide only point estimates, MoGU models each expert's output as a Gaussian distribution. This allows it to directly quantify both the forecast (the mean) and its inherent uncertainty (variance). MoGU's core innovation is its uncertainty-based gating mechanism, which replaces the traditional input-based gating network by using each expert's estimated variance to determine its contribution to the final prediction. Evaluated across diverse time series forecasting benchmarks, MoGU consistently outperforms single-expert models and traditional MoE setups. It also provides well-quantified, informative uncertainties that directly correlate with prediction errors, enhancing forecast reliability. Our code is available from: https://github.com/yolish/moe_unc_tsf

Authors:Nithin C. Babu, Aniruddha Mahapatra, Harsh Rangwani, Rajiv Soundararajan, Kuldeep Kulkarni
Title: DynamicEval: Rethinking Evaluation for Dynamic Text-to-Video Synthesis
Abstract:
Existing text-to-video (T2V) evaluation benchmarks, such as VBench and EvalCrafter, suffer from two limitations. (i) While the emphasis is on subject-centric prompts or static camera scenes, camera motion essential for producing cinematic shots and existing metrics under dynamic motion are largely unexplored. (ii) These benchmarks typically aggregate video-level scores into a single model-level score for ranking generative models. Such aggregation, however, overlook video-level evaluation, which is vital to selecting the better video among the candidate videos generated for a given prompt. To address these gaps, we introduce DynamicEval, a benchmark consisting of systematically curated prompts emphasizing dynamic camera motion, paired with 45k human annotations on video pairs from 3k videos generated by ten T2V models. DynamicEval evaluates two key dimensions of video quality: background scene consistency and foreground object consistency. For background scene consistency, we obtain the interpretable error maps based on the Vbench motion smoothness metric. We observe that while the Vbench motion smoothness metric shows promising alignment with human judgments, it fails in two cases: occlusions/disocclusions arising from camera and foreground object movements. Building on this, we propose a new background consistency metric that leverages object error maps to correct two failure cases in a principled manner. Our second innovation is the introduction of a foreground consistency metric that tracks points and their neighbors within each object instance to assess object fidelity. Extensive experiments demonstrate that our proposed metrics achieve stronger correlations with human preferences at both the video level and the model level (an improvement of more than 2% points), establishing DynamicEval as a more comprehensive benchmark for evaluating T2V models under dynamic camera motion.

Authors:Dominik Woiwode, Jakob Marten, Bodo Rosenhahn
Title: A Rotation-Invariant Embedded Platform for (Neural) Cellular Automata
Abstract:
This paper presents a rotation-invariant embedded platform for simulating (neural) cellular automata (NCA) in modular robotic systems. Inspired by previous work on physical NCA, we introduce key innovations that overcome limitations in prior hardware designs. Our platform features a symmetric, modular structure, enabling seamless connections between cells regardless of orientation. Additionally, each cell is battery-powered, allowing it to operate independently and retain its state even when disconnected from the collective. To demonstrate the platform's applicability, we present a novel rotation-invariant NCA model for isotropic shape classification. The proposed system provides a robust foundation for exploring the physical realization of NCA, with potential applications in distributed robotic systems and self-organizing structures. Our implementation, including hardware, software code, a simulator, and a video, is openly shared at: https://github.com/dwoiwode/embedded_nca

Authors:Olia Toporkov, Alan Akbik, Rodrigo Agerri
Title: Lemma Dilemma: On Lemma Generation Without Domain- or Language-Specific Training Data
Abstract:
Lemmatization is the task of transforming all words in a given text to their dictionary forms. While large language models (LLMs) have demonstrated their ability to achieve competitive results across a wide range of NLP tasks, there is no prior evidence of how effective they are in the contextual lemmatization task. In this paper, we empirically investigate the capacity of the latest generation of LLMs to perform in-context lemmatization, comparing it to the traditional fully supervised approach. In particular, we consider the setting in which supervised training data is not available for a target domain or language, comparing (i) encoder-only supervised approaches, fine-tuned out-of-domain, and (ii) cross-lingual methods, against direct in-context lemma generation with LLMs. Our experimental investigation across 12 languages of different morphological complexity finds that, while encoders remain competitive in out-of-domain settings when fine-tuned on gold data, current LLMs reach state-of-the-art results for most languages by directly generating lemmas in-context without prior fine-tuning, provided just with a few examples. Data and code available upon publication: https://github.com/oltoporkov/lemma-dilemma

Authors:Mufei Li, Dongqi Fu, Limei Wang, Si Zhang, Hanqing Zeng, Kaan Sancak, Ruizhong Qiu, Haoyu Wang, Xiaoxin He, Xavier Bresson, Yinglong Xia, Chonglin Sun, Pan Li
Title: Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation
Abstract:
Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

Authors:Yunhao Fang, Weihao Yu, Shu Zhong, Qinghao Ye, Xuehan Xiong, Lai Wei
Title: Artificial Hippocampus Networks for Efficient Long-Context Modeling
Abstract:
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.

Authors:Siyoon Jin, Seongchan Kim, Dahyun Chung, Jaeho Lee, Hyunwook Choi, Jisu Nam, Jiyoung Kim, Seungryong Kim
Title: MATRIX: Mask Track Alignment for Interaction-aware Video Generation
Abstract:
Video DiTs have advanced video generation, yet they still struggle to model multi-instance or subject-object interactions. This raises a key question: How do these models internally represent interactions? To answer this, we curate MATRIX-11K, a video dataset with interaction-aware captions and multi-instance mask tracks. Using this dataset, we conduct a systematic analysis that formalizes two perspectives of video DiTs: semantic grounding, via video-to-text attention, which evaluates whether noun and verb tokens capture instances and their relations; and semantic propagation, via video-to-video attention, which assesses whether instance bindings persist across frames. We find both effects concentrate in a small subset of interaction-dominant layers. Motivated by this, we introduce MATRIX, a simple and effective regularization that aligns attention in specific layers of video DiTs with multi-instance mask tracks from the MATRIX-11K dataset, enhancing both grounding and propagation. We further propose InterGenEval, an evaluation protocol for interaction-aware video generation. In experiments, MATRIX improves both interaction fidelity and semantic alignment while reducing drift and hallucination. Extensive ablations validate our design choices. Codes and weights will be released.

Authors:Inzamamul Alam, Md Tanvir Islam, Khan Muhammad, Simon S. Woo
Title: SpecGuard: Spectral Projection-based Advanced Invisible Watermarking
Abstract:
Watermarking embeds imperceptible patterns into images for authenticity verification. However, existing methods often lack robustness against various transformations primarily including distortions, image regeneration, and adversarial perturbation, creating real-world challenges. In this work, we introduce SpecGuard, a novel watermarking approach for robust and invisible image watermarking. Unlike prior approaches, we embed the message inside hidden convolution layers by converting from the spatial domain to the frequency domain using spectral projection of a higher frequency band that is decomposed by wavelet projection. Spectral projection employs Fast Fourier Transform approximation to transform spatial data into the frequency domain efficiently. In the encoding phase, a strength factor enhances resilience against diverse attacks, including adversarial, geometric, and regeneration-based distortions, ensuring the preservation of copyrighted information. Meanwhile, the decoder leverages Parseval's theorem to effectively learn and extract the watermark pattern, enabling accurate retrieval under challenging transformations. We evaluate the proposed SpecGuard based on the embedded watermark's invisibility, capacity, and robustness. Comprehensive experiments demonstrate the proposed SpecGuard outperforms the state-of-the-art models. To ensure reproducibility, the full code is released on \href{https://github.com/inzamamulDU/SpecGuard_ICCV_2025}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Peize He, Zichen Wen, Yubo Wang, Yuxuan Wang, Xiaoqian Liu, Jiajie Huang, Zehui Lei, Zhuangcheng Gu, Xiangqi Jin, Jiabing Yang, Kai Li, Zhifei Liu, Weijia Li, Cunxiang Wang, Conghui He, Linfeng Zhang
Title: AudioMarathon: A Comprehensive Benchmark for Long-Context Audio Understanding and Efficiency in Audio LLMs
Abstract:
Processing long-form audio is a major challenge for Large Audio Language models (LALMs). These models struggle with the quadratic cost of attention ($O(N^2)$) and with modeling long-range temporal dependencies. Existing audio benchmarks are built mostly from short clips and do not evaluate models in realistic long context settings. To address this gap, we introduce AudioMarathon, a benchmark designed to evaluate both understanding and inference efficiency on long-form audio. AudioMarathon provides a diverse set of tasks built upon three pillars: long-context audio inputs with durations ranging from 90.0 to 300.0 seconds, which correspond to encoded sequences of 2,250 to 7,500 audio tokens, respectively, full domain coverage across speech, sound, and music, and complex reasoning that requires multi-hop inference. We evaluate state-of-the-art LALMs and observe clear performance drops as audio length grows. We also study acceleration techniques and analyze the trade-offs of token pruning and KV cache eviction. The results show large gaps across current LALMs and highlight the need for better temporal reasoning and memory-efficient architectures. We believe AudioMarathon will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.

Authors:Jigang Fan, Xiaoran Jiao, Shengdong Lin, Zhanming Liang, Weian Mao, Chenchen Jing, Hao Chen, Chunhua Shen
Title: Evolutionary Profiles for Protein Fitness Prediction
Abstract:
Predicting the fitness impact of mutations is central to protein engineering but constrained by limited assays relative to the size of sequence space. Protein language models (pLMs) trained with masked language modeling (MLM) exhibit strong zero-shot fitness prediction; we provide a unifying view by interpreting natural evolution as implicit reward maximization and MLM as inverse reinforcement learning (IRL), in which extant sequences act as expert demonstrations and pLM log-odds serve as fitness estimates. Building on this perspective, we introduce EvoIF, a lightweight model that integrates two complementary sources of evolutionary signal: (i) within-family profiles from retrieved homologs and (ii) cross-family structural-evolutionary constraints distilled from inverse folding logits. EvoIF fuses sequence-structure representations with these profiles via a compact transition block, yielding calibrated probabilities for log-odds scoring. On ProteinGym (217 mutational assays; >2.5M mutants), EvoIF and its MSA-enabled variant achieve state-of-the-art or competitive performance while using only 0.15% of the training data and fewer parameters than recent large models. Ablations confirm that within-family and cross-family profiles are complementary, improving robustness across function types, MSA depths, taxa, and mutation depths. The codes will be made publicly available at https://github.com/aim-uofa/EvoIF.

Authors:Xunyi Jiang, Dingyi Chang, Julian McAuley, Xin Xu
Title: When Benchmarks Age: Temporal Misalignment through Large Language Model Factuality Evaluation
Abstract:
The rapid evolution of large language models (LLMs) and the real world has outpaced the static nature of widely used evaluation benchmarks, raising concerns about their reliability for evaluating LLM factuality. While substantial works continue to rely on the popular but old benchmarks, their temporal misalignment with real-world facts and modern LLMs, and their effects on LLM factuality evaluation remain underexplored. Therefore, in this work, we present a systematic investigation of this issue by examining five popular factuality benchmarks and eight LLMs released across different years. An up-to-date fact retrieval pipeline and three metrics are tailored to quantify benchmark aging and its impact on LLM factuality evaluation. Experimental results and analysis illustrate that a considerable portion of samples in the widely used factuality benchmarks are outdated, leading to unreliable assessments of LLM factuality. We hope our work can provide a testbed to assess the reliability of a benchmark for LLM factuality evaluation and inspire more research on the benchmark aging issue. Codes are available in https://github.com/JiangXunyi/BenchAge.

Authors:Arjun Krishnakumar, Rhea Sanjay Sukthanker, Hannan Javed Mahadik, Gabriela Kadlecová, Vladyslav Moroshan, Timur Carstensen, Frank Hutter, Aaron Klein
Title: Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Abstract:
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 9.2x fewer pretraining tokens. We release all code and models at https://github.com/whittle-org/whittle/, offering a practical and reproducible path toward cost-efficient small language model development at scale.

Authors:Benjamin Akera, Evelyn Nafula, Patrick Walukagga, Gilbert Yiga, John Quinn, Ernest Mwebaze
Title: How much speech data is necessary for ASR in African languages? An evaluation of data scaling in Kinyarwanda and Kikuyu
Abstract:
The development of Automatic Speech Recognition (ASR) systems for low-resource African languages remains challenging due to limited transcribed speech data. While recent advances in large multilingual models like OpenAI's Whisper offer promising pathways for low-resource ASR development, critical questions persist regarding practical deployment requirements. This paper addresses two fundamental concerns for practitioners: determining the minimum data volumes needed for viable performance and characterizing the primary failure modes that emerge in production systems. We evaluate Whisper's performance through comprehensive experiments on two Bantu languages: systematic data scaling analysis on Kinyarwanda using training sets from 1 to 1,400 hours, and detailed error characterization on Kikuyu using 270 hours of training data. Our scaling experiments demonstrate that practical ASR performance (WER < 13\%) becomes achievable with as little as 50 hours of training data, with substantial improvements continuing through 200 hours (WER < 10\%). Complementing these volume-focused findings, our error analysis reveals that data quality issues, particularly noisy ground truth transcriptions, account for 38.6\% of high-error cases, indicating that careful data curation is as critical as data volume for robust system performance. These results provide actionable benchmarks and deployment guidance for teams developing ASR systems across similar low-resource language contexts. We release accompanying and models see https://github.com/SunbirdAI/kinyarwanda-whisper-eval

Authors:Wen Ye, Zhaocheng Liu, Yuwei Gui, Tingyu Yuan, Yunyue Su, Bowen Fang, Chaoyang Zhao, Qiang Liu, Liang Wang
Title: GenPilot: A Multi-Agent System for Test-Time Prompt Optimization in Image Generation
Abstract:
Text-to-image synthesis has made remarkable progress, yet accurately interpreting complex and lengthy prompts remains challenging, often resulting in semantic inconsistencies and missing details. Existing solutions, such as fine-tuning, are model-specific and require training, while prior automatic prompt optimization (APO) approaches typically lack systematic error analysis and refinement strategies, resulting in limited reliability and effectiveness. Meanwhile, test-time scaling methods operate on fixed prompts and on noise or sample numbers, limiting their interpretability and adaptability. To solve these, we introduce a flexible and efficient test-time prompt optimization strategy that operates directly on the input text. We propose a plug-and-play multi-agent system called GenPilot, integrating error analysis, clustering-based adaptive exploration, fine-grained verification, and a memory module for iterative optimization. Our approach is model-agnostic, interpretable, and well-suited for handling long and complex prompts. Simultaneously, we summarize the common patterns of errors and the refinement strategy, offering more experience and encouraging further exploration. Experiments on DPG-bench and Geneval with improvements of up to 16.9% and 5.7% demonstrate the strong capability of our methods in enhancing the text and image consistency and structural coherence of generated images, revealing the effectiveness of our test-time prompt optimization strategy. The code is available at https://github.com/27yw/GenPilot.

Authors:Chengzhi Zhong, Fei Cheng, Qianying Liu, Yugo Murawaki, Chenhui Chu, Sadao Kurohashi
Title: Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models
Abstract:
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.

Authors:Chenfei Liao, Wensong Wang, Zichen Wen, Xu Zheng, Yiyu Wang, Haocong He, Yuanhuiyi Lyu, Lutao Jiang, Xin Zou, Yuqian Fu, Bin Ren, Linfeng Zhang, Xuming Hu
Title: Are We Using the Right Benchmark: An Evaluation Framework for Visual Token Compression Methods
Abstract:
Recent endeavors to accelerate inference in Multimodal Large Language Models (MLLMs) have primarily focused on visual token compression. The effectiveness of these methods is typically assessed by measuring the accuracy drop on established benchmarks, comparing model performance before and after compression. However, these benchmarks are originally designed to assess the perception and reasoning capabilities of MLLMs, rather than to evaluate compression techniques. As a result, directly applying them to visual token compression introduces a task mismatch. Strikingly, our investigation reveals that simple image downsampling consistently outperforms many advanced compression methods across multiple widely used benchmarks. Through extensive experiments, we make the following observations: (i) Current benchmarks are noisy for the visual token compression task. (ii) Down-sampling is able to serve as a data filter to evaluate the difficulty of samples in the visual token compression task. Motivated by these findings, we introduce VTC-Bench, an evaluation framework that incorporates a data filtering mechanism to denoise existing benchmarks, thereby enabling fairer and more accurate assessment of visual token compression methods. All data and code are available at https://github.com/Chenfei-Liao/VTC-Bench.

Authors:Karim El Khoury, Maxime Zanella, Christophe De Vleeschouwer, Benoit Macq
Title: Few-Shot Adaptation Benchmark for Remote Sensing Vision-Language Models
Abstract:
Remote Sensing Vision-Language Models (RSVLMs) have shown remarkable potential thanks to large-scale pretraining, achieving strong zero-shot performance on various tasks. However, their ability to generalize in low-data regimes, such as few-shot learning, remains insufficiently explored. In this work, we present the first structured benchmark for evaluating few-shot adaptation methods on RSVLMs. We conduct comprehensive experiments across ten remote sensing scene classification datasets, applying five widely used few-shot adaptation strategies to three state-of-the-art RSVLMs with varying backbones. Our findings reveal that models with similar zero-shot performance can exhibit markedly different behavior under few-shot adaptation, with some RSVLMs being inherently more amenable to such adaptation than others. The variability of performance and the absence of a clear winner among existing methods highlight the need for the development of more robust methods for few-shot adaptation tailored to RS. To facilitate future research, we provide a reproducible benchmarking framework and open-source code to systematically evaluate RSVLMs under few-shot conditions. The source code is publicly available on Github: https://github.com/elkhouryk/fewshot_RSVLMs

Authors:Jiahang Liu, Yunpeng Qi, Jiazhao Zhang, Minghan Li, Shaoan Wang, Kui Wu, Hanjing Ye, Hong Zhang, Zhibo Chen, Fangwei Zhong, Zhizheng Zhang, He Wang
Title: TrackVLA++: Unleashing Reasoning and Memory Capabilities in VLA Models for Embodied Visual Tracking
Abstract:
Embodied Visual Tracking (EVT) is a fundamental ability that underpins practical applications, such as companion robots, guidance robots and service assistants, where continuously following moving targets is essential. Recent advances have enabled language-guided tracking in complex and unstructured scenes. However, existing approaches lack explicit spatial reasoning and effective temporal memory, causing failures under severe occlusions or in the presence of similar-looking distractors. To address these challenges, we present TrackVLA++, a novel Vision-Language-Action (VLA) model that enhances embodied visual tracking with two key modules, a spatial reasoning mechanism and a Target Identification Memory (TIM). The reasoning module introduces a Chain-of-Thought paradigm, termed Polar-CoT, which infers the target's relative position and encodes it as a compact polar-coordinate token for action prediction. Guided by these spatial priors, the TIM employs a gated update strategy to preserve long-horizon target memory, ensuring spatiotemporal consistency and mitigating target loss during extended occlusions. Extensive experiments show that TrackVLA++ achieves state-of-the-art performance on public benchmarks across both egocentric and multi-camera settings. On the challenging EVT-Bench DT split, TrackVLA++ surpasses the previous leading approach by 5.1 and 12, respectively. Furthermore, TrackVLA++ exhibits strong zero-shot generalization, enabling robust real-world tracking in dynamic and occluded scenarios.

Authors:Jan Fiszer, Dominika Ciupek, Maciej Malawski
Title: Validation of Various Normalization Methods for Brain Tumor Segmentation: Can Federated Learning Overcome This Heterogeneity?
Abstract:
Deep learning (DL) has been increasingly applied in medical imaging, however, it requires large amounts of data, which raises many challenges related to data privacy, storage, and transfer. Federated learning (FL) is a training paradigm that overcomes these issues, though its effectiveness may be reduced when dealing with non-independent and identically distributed (non-IID) data. This study simulates non-IID conditions by applying different MRI intensity normalization techniques to separate data subsets, reflecting a common cause of heterogeneity. These subsets are then used for training and testing models for brain tumor segmentation. The findings provide insights into the influence of the MRI intensity normalization methods on segmentation models, both training and inference. Notably, the FL methods demonstrated resilience to inconsistently normalized data across clients, achieving the 3D Dice score of 92%, which is comparable to a centralized model (trained using all data). These results indicate that FL is a solution to effectively train high-performing models without violating data privacy, a crucial concern in medical applications. The code is available at: https://github.com/SanoScience/fl-varying-normalization.

Authors:Fanheng Kong, Jingyuan Zhang, Yahui Liu, Zirui Wu, Yu Tian, Victoria W., Guorui Zhou
Title: Accelerating Diffusion LLM Inference via Local Determinism Propagation
Abstract:
Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94$\times$ throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.

Authors:Aryan Golbaghi, Shuo Zhou
Title: Enhancing Speech Emotion Recognition via Fine-Tuning Pre-Trained Models and Hyper-Parameter Optimisation
Abstract:
We propose a workflow for speech emotion recognition (SER) that combines pre-trained representations with automated hyperparameter optimisation (HPO). Using SpeechBrain wav2vec2-base model fine-tuned on IEMOCAP as the encoder, we compare two HPO strategies, Gaussian Process Bayesian Optimisation (GP-BO) and Tree-structured Parzen Estimators (TPE), under an identical four-dimensional search space and 15-trial budget, with balanced class accuracy (BCA) on the German EmoDB corpus as the objective. All experiments run on 8 CPU cores with 32 GB RAM. GP-BO achieves 0.96 BCA in 11 minutes, and TPE (Hyperopt implementation) attains 0.97 in 15 minutes. In contrast, grid search requires 143 trials and 1,680 minutes to exceed 0.9 BCA, and the best AutoSpeech 2020 baseline reports only 0.85 in 30 minutes on GPU. For cross-lingual generalisation, an EmoDB-trained HPO-tuned model improves zero-shot accuracy by 0.25 on CREMA-D and 0.26 on RAVDESS. Results show that efficient HPO with pre-trained encoders delivers competitive SER on commodity CPUs. Source code to this work is available at: https://github.com/youngaryan/speechbrain-emotion-hpo.

Authors:Yuntao Gui, James Cheng
Title: Search-R3: Unifying Reasoning and Embedding Generation in Large Language Models
Abstract:
Despite their remarkable natural language understanding capabilities, Large Language Models (LLMs) have been underutilized for retrieval tasks. We present Search-R3, a novel framework that addresses this limitation by adapting LLMs to generate search embeddings as a direct output of their reasoning process. Our approach exploits LLMs' chain-of-thought capabilities, allowing them to produce more effective embeddings by reasoning step-by-step through complex semantic analyses. We implement this through three complementary mechanisms. (1) a supervised learning stage enables the model's ability to produce quality embeddings, (2) a reinforcement learning (RL) methodology that optimizes embedding generation alongside reasoning, and (3) a specialized RL environment that efficiently handles evolving embedding representations without requiring complete corpus re-encoding at each training iteration. Our extensive evaluations on diverse benchmarks demonstrate that Search-R3 significantly outperforms prior methods by unifying the reasoning and embedding generation processes. This integrated post-training approach represents a substantial advancement in handling complex knowledge-intensive tasks that require both sophisticated reasoning and effective information retrieval. Project page: https://github.com/ytgui/Search-R3

Authors:Fenghe Tang, Chengqi Dong, Wenxin Ma, Zikang Xu, Heqin Zhu, Zihang Jiang, Rongsheng Wang, Yuhao Wang, Chenxu Wu, Shaohua Kevin Zhou
Title: U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking
Abstract:
Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

Authors:Rajvee Sheth, Samridhi Raj Sinha, Mahavir Patil, Himanshu Beniwal, Mayank Singh
Title: Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Abstract:
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing 308 studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.

Authors:Tengwei Song, Min Wu, Yuan Fang
Title: Unified Molecule Pre-training with Flexible 2D and 3D Modalities: Single and Paired Modality Integration
Abstract:
Molecular representation learning plays a crucial role in advancing applications such as drug discovery and material design. Existing work leverages 2D and 3D modalities of molecular information for pre-training, aiming to capture comprehensive structural and geometric insights. However, these methods require paired 2D and 3D molecular data to train the model effectively and prevent it from collapsing into a single modality, posing limitations in scenarios where a certain modality is unavailable or computationally expensive to generate. To overcome this limitation, we propose FlexMol, a flexible molecule pre-training framework that learns unified molecular representations while supporting single-modality input. Specifically, inspired by the unified structure in vision-language models, our approach employs separate models for 2D and 3D molecular data, leverages parameter sharing to improve computational efficiency, and utilizes a decoder to generate features for the missing modality. This enables a multistage continuous learning process where both modalities contribute collaboratively during training, while ensuring robustness when only one modality is available during inference. Extensive experiments demonstrate that FlexMol achieves superior performance across a wide range of molecular property prediction tasks, and we also empirically demonstrate its effectiveness with incomplete data. Our code and data are available at https://github.com/tewiSong/FlexMol.

Authors:Abhinav Kumar, Fan Yang, Sergio Aguilera Marinovic, Soshi Iba, Rana Soltani Zarrin, Dmitry Berenson
Title: Diffusing Trajectory Optimization Problems for Recovery During Multi-Finger Manipulation
Abstract:
Multi-fingered hands are emerging as powerful platforms for performing fine manipulation tasks, including tool use. However, environmental perturbations or execution errors can impede task performance, motivating the use of recovery behaviors that enable normal task execution to resume. In this work, we take advantage of recent advances in diffusion models to construct a framework that autonomously identifies when recovery is necessary and optimizes contact-rich trajectories to recover. We use a diffusion model trained on the task to estimate when states are not conducive to task execution, framed as an out-of-distribution detection problem. We then use diffusion sampling to project these states in-distribution and use trajectory optimization to plan contact-rich recovery trajectories. We also propose a novel diffusion-based approach that distills this process to efficiently diffuse the full parameterization, including constraints, goal state, and initialization, of the recovery trajectory optimization problem, saving time during online execution. We compare our method to a reinforcement learning baseline and other methods that do not explicitly plan contact interactions, including on a hardware screwdriver-turning task where we show that recovering using our method improves task performance by 96% and that ours is the only method evaluated that can attempt recovery without causing catastrophic task failure. Videos can be found at https://dtourrecovery.github.io/.

Authors:Jusen Du, Jiaxi Hu, Tao Zhang, Weigao Sun, Yu Cheng
Title: Native Hybrid Attention for Efficient Sequence Modeling
Abstract:
Transformers excel at sequence modeling but face quadratic complexity, while linear attention offers improved efficiency but often compromises recall accuracy over long contexts. In this work, we introduce Native Hybrid Attention (NHA), a novel hybrid architecture of linear and full attention that integrates both intra \& inter-layer hybridization into a unified layer design. NHA maintains long-term context in key-value slots updated by a linear RNN, and augments them with short-term tokens from a sliding window. A single \texttt{softmax attention} operation is then applied over all keys and values, enabling per-token and per-head context-dependent weighting without requiring additional fusion parameters. The inter-layer behavior is controlled through a single hyperparameter, the sliding window size, which allows smooth adjustment between purely linear and full attention while keeping all layers structurally uniform. Experimental results show that NHA surpasses Transformers and other hybrid baselines on recall-intensive and commonsense reasoning tasks. Furthermore, pretrained LLMs can be structurally hybridized with NHA, achieving competitive accuracy while delivering significant efficiency gains. Code is available at https://github.com/JusenD/NHA.

Authors:Vaibhav Srivastav, Steven Zheng, Eric Bezzam, Eustache Le Bihan, Nithin Koluguri, Piotr Żelasko, Somshubra Majumdar, Adel Moumen, Sanchit Gandhi
Title: Open ASR Leaderboard: Towards Reproducible and Transparent Multilingual and Long-Form Speech Recognition Evaluation
Abstract:
Despite rapid progress, ASR evaluation remains saturated with short-form English, and efficiency is rarely reported. We present the Open ASR Leaderboard, a fully reproducible benchmark and interactive leaderboard comparing 60+ open-source and proprietary systems across 11 datasets, including dedicated multilingual and long-form tracks. We standardize text normalization and report both word error rate (WER) and inverse real-time factor (RTFx), enabling fair accuracy-efficiency comparisons. For English transcription, Conformer encoders paired with LLM decoders achieve the best average WER but are slower, while CTC and TDT decoders deliver much better RTFx, making them attractive for long-form and offline use. Whisper-derived encoders fine-tuned for English improve accuracy but often trade off multilingual coverage. All code and dataset loaders are open-sourced to support transparent, extensible evaluation.

Authors:Krishna Sri Ipsit Mantri, Or Feldman, Moshe Eliasof, Chaim Baskin
Title: Revisiting Node Affinity Prediction in Temporal Graphs
Abstract:
Node affinity prediction is a common task that is widely used in temporal graph learning with applications in social and financial networks, recommender systems, and more. Recent works have addressed this task by adapting state-of-the-art dynamic link property prediction models to node affinity prediction. However, simple heuristics, such as Persistent Forecast or Moving Average, outperform these models. In this work, we analyze the challenges in training current Temporal Graph Neural Networks for node affinity prediction and suggest appropriate solutions. Combining the solutions, we develop NAViS - Node Affinity prediction model using Virtual State, by exploiting the equivalence between heuristics and state space models. While promising, training NAViS is non-trivial. Therefore, we further introduce a novel loss function for node affinity prediction. We evaluate NAViS on TGB and show that it outperforms the state-of-the-art, including heuristics. Our source code is available at https://github.com/orfeld415/NAVIS

Authors:Jianhan Zhang, Jitao Wang, Chengchun Shi, John D. Piette, Donglin Zeng, Zhenke Wu
Title: PyCFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing
Abstract:
Reinforcement learning (RL) aims to learn and evaluate a sequential decision rule, often referred to as a "policy", that maximizes the population-level benefit in an environment across possibly infinitely many time steps. However, the sequential decisions made by an RL algorithm, while optimized to maximize overall population benefits, may disadvantage certain individuals who are in minority or socioeconomically disadvantaged groups. To address this problem, we introduce PyCFRL, a Python library for ensuring counterfactual fairness in offline RL. PyCFRL implements a novel data preprocessing algorithm for learning counterfactually fair RL policies from offline datasets and provides tools to evaluate the values and counterfactual unfairness levels of RL policies. We describe the high-level functionalities of PyCFRL and demonstrate one of its major use cases through a data example. The library is publicly available on PyPI and Github (https://github.com/JianhanZhang/PyCFRL), and detailed tutorials can be found in the PyCFRL documentation (https://pycfrl-documentation.netlify.app).

Authors:Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong Wang, Zhengyuan Yang, Hung-yi Lee, Lijuan Wang
Title: SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
Abstract:
Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/

Authors:Shaojie Zhang, Ke Chen
Title: Angular Constraint Embedding via SpherePair Loss for Constrained Clustering
Abstract:
Constrained clustering integrates domain knowledge through pairwise constraints. However, existing deep constrained clustering (DCC) methods are either limited by anchors inherent in end-to-end modeling or struggle with learning discriminative Euclidean embedding, restricting their scalability and real-world applicability. To avoid their respective pitfalls, we propose a novel angular constraint embedding approach for DCC, termed SpherePair. Using the SpherePair loss with a geometric formulation, our method faithfully encodes pairwise constraints and leads to embeddings that are clustering-friendly in angular space, effectively separating representation learning from clustering. SpherePair preserves pairwise relations without conflict, removes the need to specify the exact number of clusters, generalizes to unseen data, enables rapid inference of the number of clusters, and is supported by rigorous theoretical guarantees. Comparative evaluations with state-of-the-art DCC methods on diverse benchmarks, along with empirical validation of theoretical insights, confirm its superior performance, scalability, and overall real-world effectiveness. Code is available at \href{https://github.com/spherepaircc/SpherePairCC/tree/main}{our repository}.

Authors:Arkadeep Acharya, Akash Ghosh, Pradeepika Verma, Kitsuchart Pasupa, Sriparna Saha, Priti Singh
Title: M3Retrieve: Benchmarking Multimodal Retrieval for Medicine
Abstract:
With the increasing use of RetrievalAugmented Generation (RAG), strong retrieval models have become more important than ever. In healthcare, multimodal retrieval models that combine information from both text and images offer major advantages for many downstream tasks such as question answering, cross-modal retrieval, and multimodal summarization, since medical data often includes both formats. However, there is currently no standard benchmark to evaluate how well these models perform in medical settings. To address this gap, we introduce M3Retrieve, a Multimodal Medical Retrieval Benchmark. M3Retrieve, spans 5 domains,16 medical fields, and 4 distinct tasks, with over 1.2 Million text documents and 164K multimodal queries, all collected under approved licenses. We evaluate leading multimodal retrieval models on this benchmark to explore the challenges specific to different medical specialities and to understand their impact on retrieval performance. By releasing M3Retrieve, we aim to enable systematic evaluation, foster model innovation, and accelerate research toward building more capable and reliable multimodal retrieval systems for medical applications. The dataset and the baselines code are available in this github page https://github.com/AkashGhosh/M3Retrieve.

Authors:Bouthaina Slika, Fadi Dornaika, Fares Bougourzi, Karim Hammoudi
Title: Lung Infection Severity Prediction Using Transformers with Conditional TransMix Augmentation and Cross-Attention
Abstract:
Lung infections, particularly pneumonia, pose serious health risks that can escalate rapidly, especially during pandemics. Accurate AI-based severity prediction from medical imaging is essential to support timely clinical decisions and optimize patient outcomes. In this work, we present a novel method applicable to both CT scans and chest X-rays for assessing lung infection severity. Our contributions are twofold: (i) QCross-Att-PVT, a Transformer-based architecture that integrates parallel encoders, a cross-gated attention mechanism, and a feature aggregator to capture rich multi-scale features; and (ii) Conditional Online TransMix, a custom data augmentation strategy designed to address dataset imbalance by generating mixed-label image patches during training. Evaluated on two benchmark datasets, RALO CXR and Per-COVID-19 CT, our method consistently outperforms several state-of-the-art deep learning models. The results emphasize the critical role of data augmentation and gated attention in improving both robustness and predictive accuracy. This approach offers a reliable, adaptable tool to support clinical diagnosis, disease monitoring, and personalized treatment planning. The source code of this work is available at https://github.com/bouthainas/QCross-Att-PVT.

Authors:Samir Abou Haidar, Alexandre Chariot, Mehdi Darouich, Cyril Joly, Jean-Emmanuel Deschaud
Title: HARP-NeXt: High-Speed and Accurate Range-Point Fusion Network for 3D LiDAR Semantic Segmentation
Abstract:
LiDAR semantic segmentation is crucial for autonomous vehicles and mobile robots, requiring high accuracy and real-time processing, especially on resource-constrained embedded systems. Previous state-of-the-art methods often face a trade-off between accuracy and speed. Point-based and sparse convolution-based methods are accurate but slow due to the complexity of neighbor searching and 3D convolutions. Projection-based methods are faster but lose critical geometric information during the 2D projection. Additionally, many recent methods rely on test-time augmentation (TTA) to improve performance, which further slows the inference. Moreover, the pre-processing phase across all methods increases execution time and is demanding on embedded platforms. Therefore, we introduce HARP-NeXt, a high-speed and accurate LiDAR semantic segmentation network. We first propose a novel pre-processing methodology that significantly reduces computational overhead. Then, we design the Conv-SE-NeXt feature extraction block to efficiently capture representations without deep layer stacking per network stage. We also employ a multi-scale range-point fusion backbone that leverages information at multiple abstraction levels to preserve essential geometric details, thereby enhancing accuracy. Experiments on the nuScenes and SemanticKITTI benchmarks show that HARP-NeXt achieves a superior speed-accuracy trade-off compared to all state-of-the-art methods, and, without relying on ensemble models or TTA, is comparable to the top-ranked PTv3, while running 24$\times$ faster. The code is available at https://github.com/SamirAbouHaidar/HARP-NeXt

Authors:Huahui Yi, Kun Wang, Qiankun Li, Miao Yu, Liang Lin, Gongli Xi, Hao Wu, Xuming Hu, Kang Li, Yang Liu
Title: SaFeR-VLM: Toward Safety-aware Fine-grained Reasoning in Multimodal Models
Abstract:
Multimodal Large Reasoning Models (MLRMs) demonstrate impressive cross-modal reasoning but often amplify safety risks under adversarial or unsafe prompts, a phenomenon we call the \textit{Reasoning Tax}. Existing defenses mainly act at the output level and do not constrain the reasoning process, leaving models exposed to implicit risks. In this paper, we propose SaFeR-VLM, a safety-aligned reinforcement learning framework that embeds safety directly into multimodal reasoning. The framework integrates four components: (I) QI-Safe-10K, a curated dataset emphasizing safety-critical and reasoning-sensitive cases; (II) safety-aware rollout, where unsafe generations undergo reflection and correction instead of being discarded; (III) structured reward modeling with multi-dimensional weighted criteria and explicit penalties for hallucinations and contradictions; and (IV) GRPO optimization, which reinforces both safe and corrected trajectories. This unified design shifts safety from a passive safeguard to an active driver of reasoning, enabling scalable and generalizable safety-aware reasoning. SaFeR-VLM further demonstrates robustness against both explicit and implicit risks, supporting dynamic and interpretable safety decisions beyond surface-level filtering. SaFeR-VLM-3B achieves average performance $70.13$ and $78.97$ on safety and helpfulness across six benchmarks, surpassing both same-scale and $>10\times$ larger models such as Skywork-R1V3-38B, Qwen2.5VL-72B, and GLM4.5V-106B. Remarkably, SaFeR-VLM-7B benefits from its increased scale to surpass GPT-5-mini and Gemini-2.5-Flash by \num{6.47} and \num{16.76} points respectively on safety metrics, achieving this improvement without any degradation in helpfulness performance. Our codes are available at https://github.com/HarveyYi/SaFeR-VLM.

Authors:Xuhang Chen, Zhifan Song, Deyi Ji, Shuo Gao, Lanyun Zhu
Title: SID: Multi-LLM Debate Driven by Self Signals
Abstract:
Large Language Models (LLMs) have exhibited impressive capabilities across diverse application domains. Recent work has explored Multi-LLM Agent Debate (MAD) as a way to enhance performance by enabling multiple LLMs to discuss and refine responses iteratively. Nevertheless, existing MAD methods predominantly focus on utilizing external structures, such as debate graphs, using LLM-as-a-Judge, while neglecting the application of self signals, such as token logits and attention, that arise during generation. This omission leads to redundant computation and potential performance degradation. In this paper, we shift the focus to the self signals of multi-LLM debate and introduce a Self-Signals Driven Multi-LLM Debate (SID), which leverages two types of self-signals: model-level confidence and token-level semantic focus, to adaptively guide the debate process. Our approach enables high-confidence agents to exit early at the model level and compress the redundant debate contents based on the attention mechanism. We evaluate our method on various LLMs and Multimodal LLMs across multiple challenging benchmarks. Experimental results demonstrate that our method not only outperforms existing MAD techniques in accuracy but also reduces token consumption, highlighting the effectiveness of utilizing self signals in enhancing both the performance and efficiency of multi-agent debate systems. Our code will be available at~\href{https://github.com/xuhang2019/SID}{\texttt{https://github.com/xuhang2019/SID}}.

Authors:Kanglei Zhou, Qingyi Pan, Xingxing Zhang, Hubert P. H. Shum, Frederick W. B. Li, Xiaohui Liang, Liyuan Wang
Title: Continual Action Quality Assessment via Adaptive Manifold-Aligned Graph Regularization
Abstract:
Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.

Authors:Stefano F. Stefenon, João P. Matos-Carvalho, Valderi R. Q. Leithardt, Kin-Choong Yow
Title: CNN-TFT explained by SHAP with multi-head attention weights for time series forecasting
Abstract:
Convolutional neural networks (CNNs) and transformer architectures offer strengths for modeling temporal data: CNNs excel at capturing local patterns and translational invariances, while transformers effectively model long-range dependencies via self-attention. This paper proposes a hybrid architecture integrating convolutional feature extraction with a temporal fusion transformer (TFT) backbone to enhance multivariate time series forecasting. The CNN module first applies a hierarchy of one-dimensional convolutional layers to distill salient local patterns from raw input sequences, reducing noise and dimensionality. The resulting feature maps are then fed into the TFT, which applies multi-head attention to capture both short- and long-term dependencies and to weigh relevant covariates adaptively. We evaluate the CNN-TFT on a hydroelectric natural flow time series dataset. Experimental results demonstrate that CNN-TFT outperforms well-established deep learning models, with a mean absolute percentage error of up to 2.2%. The explainability of the model is obtained by a proposed Shapley additive explanations with multi-head attention weights (SHAP-MHAW). Our novel architecture, named CNN-TFT-SHAP-MHAW, is promising for applications requiring high-fidelity, multivariate time series forecasts, being available for future analysis at https://github.com/SFStefenon/CNN-TFT-SHAP-MHAW .

Authors:Jaeseok Jeong, Junho Kim, Gayoung Lee, Yunjey Choi, Youngjung Uh
Title: StyleKeeper: Prevent Content Leakage using Negative Visual Query Guidance
Abstract:
In the domain of text-to-image generation, diffusion models have emerged as powerful tools. Recently, studies on visual prompting, where images are used as prompts, have enabled more precise control over style and content. However, existing methods often suffer from content leakage, where undesired elements of the visual style prompt are transferred along with the intended style. To address this issue, we 1) extend classifier-free guidance (CFG) to utilize swapping self-attention and propose 2) negative visual query guidance (NVQG) to reduce the transfer of unwanted contents. NVQG employs negative score by intentionally simulating content leakage scenarios that swap queries instead of key and values of self-attention layers from visual style prompts. This simple yet effective method significantly reduces content leakage. Furthermore, we provide careful solutions for using a real image as visual style prompts. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, reflecting the style of the references, and ensuring that resulting images match the text prompts. Our code is available \href{https://github.com/naver-ai/StyleKeeper}{here}.

Authors:Boyi Zeng, Lin Chen, Ziwei He, Xinbing Wang, Zhouhan Lin
Title: AWM: Accurate Weight-Matrix Fingerprint for Large Language Models
Abstract:
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.

Authors:Tiancheng Xing, Jerry Li, Yixuan Du, Xiyang Hu
Title: Are LLMs Reliable Rankers? Rank Manipulation via Two-Stage Token Optimization
Abstract:
Large language models (LLMs) are increasingly used as rerankers in information retrieval, yet their ranking behavior can be steered by small, natural-sounding prompts. To expose this vulnerability, we present Rank Anything First (RAF), a two-stage token optimization method that crafts concise textual perturbations to consistently promote a target item in LLM-generated rankings while remaining hard to detect. Stage 1 uses Greedy Coordinate Gradient to shortlist candidate tokens at the current position by combining the gradient of the rank-target with a readability score; Stage 2 evaluates those candidates under exact ranking and readability losses using an entropy-based dynamic weighting scheme, and selects a token via temperature-controlled sampling. RAF generates ranking-promoting prompts token-by-token, guided by dual objectives: maximizing ranking effectiveness and preserving linguistic naturalness. Experiments across multiple LLMs show that RAF significantly boosts the rank of target items using naturalistic language, with greater robustness than existing methods in both promoting target items and maintaining naturalness. These findings underscore a critical security implication: LLM-based reranking is inherently susceptible to adversarial manipulation, raising new challenges for the trustworthiness and robustness of modern retrieval systems. Our code is available at: https://github.com/glad-lab/RAF.

Authors:Hongzhi Zang, Mingjie Wei, Si Xu, Yongji Wu, Zhen Guo, Yuanqing Wang, Hao Lin, Liangzhi Shi, Yuqing Xie, Zhexuan Xu, Zhihao Liu, Kang Chen, Wenhao Tang, Quanlu Zhang, Weinan Zhang, Chao Yu, Yu Wang
Title: RLinf-VLA: A Unified and Efficient Framework for VLA+RL Training
Abstract:
Recent progress in vision and language foundation models has significantly advanced multimodal understanding, reasoning, and generation, inspiring a surge of interest in extending such capabilities to embodied settings through vision-language-action (VLA) models. Yet, most VLA models are still trained with supervised fine-tuning (SFT), which struggles to generalize under distribution shifts due to error accumulation. Reinforcement learning (RL) offers a promising alternative by directly optimizing task performance through interaction, but existing attempts remain fragmented and lack a unified platform for fair and systematic comparison across model architectures and algorithmic designs. To address this gap, we introduce RLinf-VLA, a unified and efficient framework for scalable RL training of VLA models. The system adopts a highly flexible resource allocation design that addresses the challenge of integrating rendering, training, and inference in RL+VLA training. In particular, for GPU-parallelized simulators, RLinf-VLA implements a novel hybrid fine-grained pipeline allocation mode, achieving a 1.61x-1.88x speedup in training. Through a unified interface, RLinf-VLA seamlessly supports diverse VLA architectures (e.g., OpenVLA, OpenVLA-OFT), multiple RL algorithms (e.g., PPO, GRPO), and various simulators (e.g., ManiSkill, LIBERO). In simulation, a unified model achieves 98.11\% across 130 LIBERO tasks and 97.66\% across 25 ManiSkill tasks. Beyond empirical performance, our study distills a set of best practices for applying RL to VLA training and sheds light on emerging patterns in this integration. Furthermore, we present preliminary deployment on a real-world Franka robot, where RL-trained policies exhibit stronger generalization than those trained with SFT. We envision RLinf-VLA as a foundation to accelerate and standardize research on embodied intelligence.

Authors:Aleksi Huotala, Miikka Kuutila, Olli-Pekka Turtio, Mika Mäntylä
Title: AISysRev -- LLM-based Tool for Title-abstract Screening
Abstract:
Systematic reviews are a standard practice for summarizing the state of evidence in software engineering. Conducting systematic reviews is laborious, especially during the screening or study selection phase, where the number of papers can be overwhelming. During this phase, papers are assessed against inclusion and exclusion criteria based on their titles and abstracts. Recent research has demonstrated that large language models (LLMs) can perform title-abstract screening at a level comparable to that of a master's student. While LLMs cannot be fully trusted, they can help, for example, in Rapid Reviews, which try to expedite the review process. Building on recent research, we developed AiSysRev, an LLM-based screening tool implemented as a web application running in a Docker container. The tool accepts a CSV file containing paper titles and abstracts. Users specify inclusion and exclusion criteria. One can use multiple LLMs for screening via OpenRouter. AiSysRev supports both zero-shot and few-shot screening, and also allows for manual screening through interfaces that display LLM results as guidance for human reviewers.We conducted a trial study with 137 papers using the tool. Our findings indicate that papers can be classified into four categories: Easy Includes, Easy Excludes, Boundary Includes, and Boundary Excludes. The Boundary cases, where LLMs are prone to errors, highlight the need for human intervention. While LLMs do not replace human judgment in systematic reviews, they can significantly reduce the burden of assessing large volumes of scientific literature. Video: https://www.youtube.com/watch?v=jVbEj4Y4tQI Tool: https://github.com/EvoTestOps/AISysRev

Authors:Gal Fadlon, Idan Arbiv, Nimrod Berman, Omri Azencot
Title: A Diffusion Model for Regular Time Series Generation from Irregular Data with Completion and Masking
Abstract:
Generating realistic time series data is critical for applications in healthcare, finance, and science. However, irregular sampling and missing values present significant challenges. While prior methods address these irregularities, they often yield suboptimal results and incur high computational costs. Recent advances in regular time series generation, such as the diffusion-based ImagenTime model, demonstrate strong, fast, and scalable generative capabilities by transforming time series into image representations, making them a promising solution. However, extending ImagenTime to irregular sequences using simple masking introduces "unnatural" neighborhoods, where missing values replaced by zeros disrupt the learning process. To overcome this, we propose a novel two-step framework: first, a Time Series Transformer completes irregular sequences, creating natural neighborhoods; second, a vision-based diffusion model with masking minimizes dependence on the completed values. This approach leverages the strengths of both completion and masking, enabling robust and efficient generation of realistic time series. Our method achieves state-of-the-art performance, achieving a relative improvement in discriminative score by $70\%$ and in computational cost by $85\%$. Code is at https://github.com/azencot-group/ImagenI2R.

Authors:Jing-Zong Zhang, Shuang Guo, Li-Lin Zhu, Lingxiao Wang, Guo-Liang Ma
Title: Latent Representation Learning in Heavy-Ion Collisions with MaskPoint Transformer
Abstract:
A central challenge in high-energy nuclear physics is to extract informative features from the high-dimensional final-state data of heavy-ion collisions (HIC) in order to enable reliable downstream analyses. Traditional approaches often rely on selected observables, which may miss subtle but physically relevant structures in the data. To address this, we introduce a Transformer-based autoencoder trained with a two-stage paradigm: self-supervised pre-training followed by supervised fine-tuning. The pretrained encoder learns latent representations directly from unlabeled HIC data, providing a compact and information-rich feature space that can be adapted to diverse physics tasks. As a case study, we apply the method to distinguish between large and small collision systems, where it achieves significantly higher classification accuracy than PointNet. Principal component analysis and SHAP interpretation further demonstrate that the autoencoder captures complex nonlinear correlations beyond individual observables, yielding features with strong discriminative and explanatory power. These results establish our two-stage framework as a general and robust foundation for feature learning in HIC, opening the door to more powerful analyses of quark--gluon plasma properties and other emergent phenomena. The implementation is publicly available at https://github.com/Giovanni-Sforza/MaskPoint-AMPT.

Authors:Shangjian Yin, Shining Liang, Wenbiao Ding, Yuli Qian, Zhouxing Shi, Hongzhi Li, Yutao Xie
Title: PIKA: Expert-Level Synthetic Datasets for Post-Training Alignment from Scratch
Abstract:
Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models (LLMs). However, its effectiveness depends on high-quality instruction data. Most existing alignment datasets are either private or require costly human annotation, which limits reproducibility and scalability. Even with Reinforcement Learning from AI Feedback (RLAIF), concerns about data quality remain. Moreover, it is unclear how much data is actually required to fine-tune a base model into a strong instruction-following model. Current approaches often rely on over 300k examples even at the supervised fine-tuning (SFT) stage, yet they still underperform compared to proprietary models, creating barriers for academic and resource-limited communities. To address this gap, we introduce PiKa, a data-efficient family of expert-level alignment datasets. In particular, the PiKa-SFT dataset uses only 30k SFT examples, far fewer than state-of-the-art datasets like Magpie. Through evaluations by fine-tuning Llama-3-8B-Base on PiKa and other public datasets, we show that PiKa-SFT outperforms models trained on much larger data. On AlpacaEval 2.0 and Arena-Hard benchmarks, PiKa-SFT fine-tuning even surpasses the official Llama-3-8B-Instruct model trained on over 10 million proprietary examples. We further extend our study by training the Qwen2.5 series (0.5B to 7B) on PiKa-SFT, achieving consistent gains. These findings demonstrate that high-quality alignment can be achieved with significantly less data, offering a scalable path for open-source LLM alignment. Code and data: https://github.com/SJY8460/PiKa.

Authors:Yuxi Liu, Yunfeng Ma, Yi Tang, Min Liu, Shuai Jiang, Yaonan Wang
Title: Automated Neural Architecture Design for Industrial Defect Detection
Abstract:
Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code will be available at https://github.com/Yuxi104/AutoNAD.

Authors:Shangjian Yin, Zhepei Wei, Xinyu Zhu, Wei-Lin Chen, Yu Meng
Title: Aligning Large Language Models via Fully Self-Synthetic Data
Abstract:
Traditional reinforcement learning from human feedback (RLHF) for large language models (LLMs) relies on expensive human-annotated datasets, while Reinforcement Learning from AI Feedback (RLAIF) also incurs significant costs, requiring the collection of diverse prompts and corresponding responses, often necessitating external reward models or proprietary models like GPT-4 to annotate preference pairs. In this work, we introduce Self-Alignment Optimization (SAO), a fully self-synthetic framework for LLM alignment, where all training data, including prompts (i.e., user queries), responses, and preferences, are generated by the model itself. Specifically, SAO first instructs the LLM to engage in persona role-play and generate diverse prompts and responses, which are then self-evaluated for preference optimization. Extensive experiments demonstrate that SAO effectively enhances the model's chat capabilities on standard benchmarks like AlpacaEval~2.0, while maintaining strong performance on downstream objective tasks (e.g., question-answering, math reasoning). Our work provides a practical solution for self-improvement in aligning LLMs, and the code for reproducing our results is available at: https://github.com/SJY8460/SAO.

Authors:Frank Wu, Mengye Ren
Title: Local Reinforcement Learning with Action-Conditioned Root Mean Squared Q-Functions
Abstract:
The Forward-Forward (FF) Algorithm is a recently proposed learning procedure for neural networks that employs two forward passes instead of the traditional forward and backward passes used in backpropagation. However, FF remains largely confined to supervised settings, leaving a gap at domains where learning signals can be yielded more naturally such as RL. In this work, inspired by FF's goodness function using layer activity statistics, we introduce Action-conditioned Root mean squared Q-Functions (ARQ), a novel value estimation method that applies a goodness function and action conditioning for local RL using temporal difference learning. Despite its simplicity and biological grounding, our approach achieves superior performance compared to state-of-the-art local backprop-free RL methods in the MinAtar and the DeepMind Control Suite benchmarks, while also outperforming algorithms trained with backpropagation on most tasks. Code can be found at https://github.com/agentic-learning-ai-lab/arq.

Authors:Zhiyuan Wei, Xiaoxuan Yang, Jing Sun, Zijian Zhang
Title: Distilling Lightweight Language Models for C/C++ Vulnerabilities
Abstract:
The increasing complexity of modern software systems exacerbates the prevalence of security vulnerabilities, posing risks of severe breaches and substantial economic loss. Consequently, robust code vulnerability detection is essential for software security. While Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, their potential for automated code vulnerability detection remains underexplored. This paper presents FineSec, a novel framework that harnesses LLMs through knowledge distillation to enable efficient and precise vulnerability identification in C/C++ codebases. FineSec utilizes knowledge distillation to transfer expertise from large teacher models to compact student models, achieving high accuracy with minimal computational cost. By integrating data preparation, training, evaluation, and continuous learning into a unified, single-task workflow, FineSec offers a streamlined approach. Extensive evaluations on C/C++ codebases demonstrate its superiority over both base models and larger LLMs in identifying complex vulnerabilities and logical flaws, establishing FineSec as a practical and scalable solution for real-world software security. To facilitate reproducibility, the datasets, source code, and experimental results are made publicly available at: https://github.com/yangxiaoxuan123/FineSec_detect.

Authors:Leshu Li, Jiayin Qin, Jie Peng, Zishen Wan, Huaizhi Qu, Ye Han, Pingqing Zheng, Hongsen Zhang, Yu Cao, Tianlong Chen, Yang Katie Zhao
Title: RTGS: Real-Time 3D Gaussian Splatting SLAM via Multi-Level Redundancy Reduction
Abstract:
3D Gaussian Splatting (3DGS) based Simultaneous Localization and Mapping (SLAM) systems can largely benefit from 3DGS's state-of-the-art rendering efficiency and accuracy, but have not yet been adopted in resource-constrained edge devices due to insufficient speed. Addressing this, we identify notable redundancies across the SLAM pipeline for acceleration. While conceptually straightforward, practical approaches are required to minimize the overhead associated with identifying and eliminating these redundancies. In response, we propose RTGS, an algorithm-hardware co-design framework that comprehensively reduces the redundancies for real-time 3DGS-SLAM on edge. To minimize the overhead, RTGS fully leverages the characteristics of the 3DGS-SLAM pipeline. On the algorithm side, we introduce (1) an adaptive Gaussian pruning step to remove the redundant Gaussians by reusing gradients computed during backpropagation; and (2) a dynamic downsampling technique that directly reuses the keyframe identification and alpha computing steps to eliminate redundant pixels. On the hardware side, we propose (1) a subtile-level streaming strategy and a pixel-level pairwise scheduling strategy that mitigates workload imbalance via a Workload Scheduling Unit (WSU) guided by previous iteration information; (2) a Rendering and Backpropagation (R&B) Buffer that accelerates the rendering backpropagation by reusing intermediate data computed during rendering; and (3) a Gradient Merging Unit (GMU) to reduce intensive memory accesses caused by atomic operations while enabling pipelined aggregation. Integrated into an edge GPU, RTGS achieves real-time performance (>= 30 FPS) on four datasets and three algorithms, with up to 82.5x energy efficiency over the baseline and negligible quality loss. Code is available at https://github.com/UMN-ZhaoLab/RTGS.

Authors:Yong Liu, Di Fu, Yang Luo, Zirui Zhu, Minhao Cheng, Cho-Jui Hsieh, Yang You
Title: POME: Post Optimization Model Edit via Muon-style Projection
Abstract:
We introduce Post-Optimization Model Edit (POME), a new algorithm that enhances the performance of fine-tuned large language models using only their pretrained and fine-tuned checkpoints, without requiring extra data or further optimization. The core idea is to apply a muon-style projection to $ΔW$, the difference between the fine-tuned and pretrained weights. This projection uses truncated singular value decomposition (SVD) to equalize the influence of dominant update directions and prune small singular values, which often represent noise. As a simple post-processing step, POME is completely decoupled from the training pipeline. It requires zero modifications and imposes no overhead, making it universally compatible with any optimizer or distributed framework. POME delivers consistent gains, boosting average performance by +2.5\% on GSM8K and +1.0\% on code generation. Its broad applicability -- from 7B foundation models to 72B RLHF-instructed models -- establishes it as a practical, zero-cost enhancement for any fine-tuning pipeline. Code is available at https://github.com/NUS-HPC-AI-Lab/POME.

Authors:Tao Feng, Tingfa Xu, Haolin Qin, Tianhao Li, Shuaihao Han, Xuyang Zou, Zhan Lv, Jianan Li
Title: MSITrack: A Challenging Benchmark for Multispectral Single Object Tracking
Abstract:
Visual object tracking in real-world scenarios presents numerous challenges including occlusion, interference from similar objects and complex backgrounds-all of which limit the effectiveness of RGB-based trackers. Multispectral imagery, which captures pixel-level spectral reflectance, enhances target discriminability. However, the availability of multispectral tracking datasets remains limited. To bridge this gap, we introduce MSITrack, the largest and most diverse multispectral single object tracking dataset to date. MSITrack offers the following key features: (i) More Challenging Attributes-including interference from similar objects and similarity in color and texture between targets and backgrounds in natural scenarios, along with a wide range of real-world tracking challenges; (ii) Richer and More Natural Scenes-spanning 55 object categories and 300 distinct natural scenes, MSITrack far exceeds the scope of existing benchmarks. Many of these scenes and categories are introduced to the multispectral tracking domain for the first time; (iii) Larger Scale-300 videos comprising over 129k frames of multispectral imagery. To ensure annotation precision, each frame has undergone meticulous processing, manual labeling and multi-stage verification. Extensive evaluations using representative trackers demonstrate that the multispectral data in MSITrack significantly improves performance over RGB-only baselines, highlighting its potential to drive future advancements in the field. The MSITrack dataset is publicly available at: https://github.com/Fengtao191/MSITrack.

Authors:Ayush Zenith, Arnold Zumbrun, Neel Raut, Jing Lin
Title: SDQM: Synthetic Data Quality Metric for Object Detection Dataset Evaluation
Abstract:
The performance of machine learning models depends heavily on training data. The scarcity of large-scale, well-annotated datasets poses significant challenges in creating robust models. To address this, synthetic data generated through simulations and generative models has emerged as a promising solution, enhancing dataset diversity and improving the performance, reliability, and resilience of models. However, evaluating the quality of this generated data requires an effective metric. This paper introduces the Synthetic Dataset Quality Metric (SDQM) to assess data quality for object detection tasks without requiring model training to converge. This metric enables more efficient generation and selection of synthetic datasets, addressing a key challenge in resource-constrained object detection tasks. In our experiments, SDQM demonstrated a strong correlation with the mean Average Precision (mAP) scores of YOLOv11, a leading object detection model, while previous metrics only exhibited moderate or weak correlations. Additionally, it provides actionable insights for improving dataset quality, minimizing the need for costly iterative training. This scalable and efficient metric sets a new standard for evaluating synthetic data. The code for SDQM is available at https://github.com/ayushzenith/SDQM

Authors:Tianyue Xu, Yanlin Wu, Abhai K. Tripathi, Matthew M. Ippolito, Benjamin D. Haeffele
Title: Adaptive Stain Normalization for Cross-Domain Medical Histology
Abstract:
Deep learning advances have revolutionized automated digital pathology analysis. However, differences in staining protocols and imaging conditions can introduce significant color variability. In deep learning, such color inconsistency often reduces performance when deploying models on data acquired under different conditions from the training data, a challenge known as domain shift. Many existing methods attempt to address this problem via color normalization but suffer from several notable drawbacks such as introducing artifacts or requiring careful choice of a template image for stain mapping. To address these limitations, we propose a trainable color normalization model that can be integrated with any backbone network for downstream tasks such as object detection and classification. Based on the physics of the imaging process per the Beer-Lambert law, our model architecture is derived via algorithmic unrolling of a nonnegative matrix factorization (NMF) model to extract stain-invariant structural information from the original pathology images, which serves as input for further processing. Experimentally, we evaluate the method on publicly available pathology datasets and an internally curated collection of malaria blood smears for cross-domain object detection and classification, where our method outperforms many state-of-the-art stain normalization methods. Our code is available at https://github.com/xutianyue/BeerLaNet.

Authors:Ziyuan Huang, DanDan Zheng, Cheng Zou, Rui Liu, Xiaolong Wang, Kaixiang Ji, Weilong Chai, Jianxin Sun, Libin Wang, Yongjie Lv, Taozhi Huang, Jiajia Liu, Qingpei Guo, Ming Yang, Jingdong Chen, Jun Zhou
Title: Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer
Abstract:
Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.

Authors:Fei Zhang, Rob Chancia, Josie Clapp, Amirhossein Hassanzadeh, Dimah Dera, Richard MacKenzie, Jan van Aardt
Title: Through the Perspective of LiDAR: A Feature-Enriched and Uncertainty-Aware Annotation Pipeline for Terrestrial Point Cloud Segmentation
Abstract:
Accurate semantic segmentation of terrestrial laser scanning (TLS) point clouds is limited by costly manual annotation. We propose a semi-automated, uncertainty-aware pipeline that integrates spherical projection, feature enrichment, ensemble learning, and targeted annotation to reduce labeling effort, while sustaining high accuracy. Our approach projects 3D points to a 2D spherical grid, enriches pixels with multi-source features, and trains an ensemble of segmentation networks to produce pseudo-labels and uncertainty maps, the latter guiding annotation of ambiguous regions. The 2D outputs are back-projected to 3D, yielding densely annotated point clouds supported by a three-tier visualization suite (2D feature maps, 3D colorized point clouds, and compact virtual spheres) for rapid triage and reviewer guidance. Using this pipeline, we build Mangrove3D, a semantic segmentation TLS dataset for mangrove forests. We further evaluate data efficiency and feature importance to address two key questions: (1) how much annotated data are needed and (2) which features matter most. Results show that performance saturates after ~12 annotated scans, geometric features contribute the most, and compact nine-channel stacks capture nearly all discriminative power, with the mean Intersection over Union (mIoU) plateauing at around 0.76. Finally, we confirm the generalization of our feature-enrichment strategy through cross-dataset tests on ForestSemantic and Semantic3D. Our contributions include: (i) a robust, uncertainty-aware TLS annotation pipeline with visualization tools; (ii) the Mangrove3D dataset; and (iii) empirical guidance on data efficiency and feature importance, thus enabling scalable, high-quality segmentation of TLS point clouds for ecological monitoring and beyond. The dataset and processing scripts are publicly available at https://fz-rit.github.io/through-the-lidars-eye/.

Authors:Shumon Koga, Miroslav Krstic
Title: Safe Stabilization of the Stefan Problem with a High-Order Moving Boundary Dynamics by PDE Backstepping
Abstract:
This paper presents a safe stabilization of the Stefan PDE model with a moving boundary governed by a high-order dynamics. We consider a parabolic PDE with a time-varying domain governed by a second-order response with respect to the Neumann boundary value of the PDE state at the moving boundary. The objective is to design a boundary heat flux control to stabilize the moving boundary at a desired setpoint, with satisfying the required conditions of the model on PDE state and the moving boundary. We apply a PDE backstepping method for the control design with considering a constraint on the control law. The PDE and moving boundary constraints are shown to be satisfied by applying the maximum principle for parabolic PDEs. Then the closed-loop system is shown to be globally exponentially stable by performing Lyapunov analysis. The proposed control is implemented in numerical simulation, which illustrates the desired performance in safety and stability. An outline of the extension to third-order moving boundary dynamics is also presented. Code is released at https://github.com/shumon0423/HighOrderStefan_CDC2025.git.

Authors:Oindrila Saha, Vojtech Krs, Radomir Mech, Subhransu Maji, Kevin Blackburn-Matzen, Matheus Gadelha
Title: SIGMA-GEN: Structure and Identity Guided Multi-subject Assembly for Image Generation
Abstract:
We present SIGMA-GEN, a unified framework for multi-identity preserving image generation. Unlike prior approaches, SIGMA-GEN is the first to enable single-pass multi-subject identity-preserved generation guided by both structural and spatial constraints. A key strength of our method is its ability to support user guidance at various levels of precision -- from coarse 2D or 3D boxes to pixel-level segmentations and depth -- with a single model. To enable this, we introduce SIGMA-SET27K, a novel synthetic dataset that provides identity, structure, and spatial information for over 100k unique subjects across 27k images. Through extensive evaluation we demonstrate that SIGMA-GEN achieves state-of-the-art performance in identity preservation, image generation quality, and speed. Code and visualizations at https://oindrilasaha.github.io/SIGMA-Gen/

Authors:Fan Zhou, Chang Tian, Tim Van de Cruys
Title: Controllable Stylistic Text Generation with Train-Time Attribute-Regularized Diffusion
Abstract:
Generating stylistic text with specific attributes is a key problem in controllable text generation. Recently, diffusion models have emerged as a powerful paradigm for both visual and textual generation. Existing approaches can be broadly categorized into classifier-free guidance (CFG) and classifier guidance (CG) methods. While CFG effectively preserves semantic content, it often fails to provide effective attribute control. In contrast, CG modifies the denoising trajectory using classifier gradients, enabling better attribute alignment but incurring high computational costs during sampling and suffering from classifier generalization issues. In this work, we propose RegDiff, a regularized diffusion framework that leverages attribute features without requiring a pretrained classifier during sampling, thereby achieving controllable generation with reduced computational costs. Specifically, RegDiff employs a VAE-based encoder--decoder architecture to ensure reconstruction fidelity and a latent diffusion model trained with attribute supervision to enable controllable text generation. Attribute information is injected only during training. Experiments on five datasets spanning multiple stylistic attributes demonstrate that RegDiff outperforms strong baselines in generating stylistic texts. These results validate the effectiveness of RegDiff as an efficient solution for attribute-controllable text diffusion. Our code, datasets, and resources will be released upon publication at https://github.com/xxxx.

Authors:Yi Xin, Qi Qin, Siqi Luo, Kaiwen Zhu, Juncheng Yan, Yan Tai, Jiayi Lei, Yuewen Cao, Keqi Wang, Yibin Wang, Jinbin Bai, Qian Yu, Dengyang Jiang, Yuandong Pu, Haoxing Chen, Le Zhuo, Junjun He, Gen Luo, Tianbin Li, Ming Hu, Jin Ye, Shenglong Ye, Bo Zhang, Chang Xu, Wenhai Wang, Hongsheng Li, Guangtao Zhai, Tianfan Xue, Bin Fu, Xiaohong Liu, Yu Qiao, Yihao Liu
Title: Lumina-DiMOO: An Omni Diffusion Large Language Model for Multi-Modal Generation and Understanding
Abstract:
We introduce Lumina-DiMOO, an open-source foundational model for seamless multi-modal generation and understanding. Lumina-DiMOO sets itself apart from prior unified models by utilizing a fully discrete diffusion modeling to handle inputs and outputs across various modalities. This innovative approach allows Lumina-DiMOO to achieve higher sampling efficiency compared to previous autoregressive (AR) or hybrid AR-Diffusion paradigms and adeptly support a broad spectrum of multi-modal tasks, including text-to-image generation, image-to-image generation (e.g., image editing, subject-driven generation, and image inpainting, etc.), as well as image understanding. Lumina-DiMOO achieves state-of-the-art performance on multiple benchmarks, surpassing existing open-source unified multi-modal models. To foster further advancements in multi-modal and discrete diffusion model research, we release our code and checkpoints to the community. Project Page: https://synbol.github.io/Lumina-DiMOO.

Authors:Wentao Deng, Jiahuan Pei, Zhiwei Xu, Zhaochun Ren, Zhumin Chen, Pengjie Ren
Title: Belief-Calibrated Multi-Agent Consensus Seeking for Complex NLP Tasks
Abstract:
A multi-agent system (MAS) enhances its capacity to solve complex natural language processing (NLP) tasks through collaboration among multiple agents, where consensus-seeking serves as a fundamental mechanism. However, existing consensus-seeking approaches typically rely on voting mechanisms to judge consensus, overlooking contradictions in system-internal beliefs that destabilize the consensus. Moreover, these methods often involve agents updating their results through indiscriminate collaboration with every other agent. Such uniform interaction fails to identify the optimal collaborators for each agent, hindering the emergence of a stable consensus. To address these challenges, we provide a theoretical framework for selecting optimal collaborators that maximize consensus stability. Based on the theorems, we propose the Belief-Calibrated Consensus Seeking (BCCS) framework to facilitate stable consensus via selecting optimal collaborators and calibrating the consensus judgment by system-internal beliefs. Experimental results on the MATH and MMLU benchmark datasets demonstrate that the proposed BCCS framework outperforms the best existing results by 2.23% and 3.95% of accuracy on challenging tasks, respectively. Our code and data are available at https://github.com/dengwentao99/BCCS.

Authors:Raj Ghugare, Catherine Ji, Kathryn Wantlin, Jin Schofield, Benjamin Eysenbach
Title: BuilderBench -- A benchmark for generalist agents
Abstract:
Today's AI models learn primarily through mimicry and sharpening, so it is not surprising that they struggle to solve problems beyond the limits set by existing data. To solve novel problems, agents should acquire skills for exploring and learning through experience. Finding a scalable learning mechanism for developing agents that learn through interaction remains a major open problem. In this work, we introduce BuilderBench, a benchmark to accelerate research into agent pre-training that centers open-ended exploration. BuilderBench requires agents to learn how to build any structure using blocks. BuilderBench is equipped with $(1)$ a hardware accelerated simulator of a robotic agent interacting with various physical blocks, and $(2)$ a task-suite with over 42 diverse target structures that are carefully curated to test an understanding of physics, mathematics, and long-horizon planning. During training, agents have to explore and learn general principles about the environment without any external supervision. During evaluation, agents have to build the unseen target structures from the task suite. Solving these tasks requires a sort of \emph{embodied reasoning} that is not reflected in words but rather in actions, experimenting with different strategies and piecing them together. Our experiments show that many of these tasks challenge the current iteration of algorithms. Hence, we also provide a ``training wheels'' protocol, in which agents are trained and evaluated to build a single target structure from the task suite. Finally, we provide single-file implementations of six different algorithms as a reference point for researchers.

Authors:Ranjan Mishra, Julian I. Bibo, Quinten van Engelen, Henk Schaapman
Title: Reproducibility Study of "XRec: Large Language Models for Explainable Recommendation"
Abstract:
In this study, we reproduced the work done in the paper "XRec: Large Language Models for Explainable Recommendation" by Ma et al. (2024). The original authors introduced XRec, a model-agnostic collaborative instruction-tuning framework that enables large language models (LLMs) to provide users with comprehensive explanations of generated recommendations. Our objective was to replicate the results of the original paper, albeit using Llama 3 as the LLM for evaluation instead of GPT-3.5-turbo. We built on the source code provided by Ma et al. (2024) to achieve our goal. Our work extends the original paper by modifying the input embeddings or deleting the output embeddings of XRec's Mixture of Experts module. Based on our results, XRec effectively generates personalized explanations and its stability is improved by incorporating collaborative information. However, XRec did not consistently outperform all baseline models in every metric. Our extended analysis further highlights the importance of the Mixture of Experts embeddings in shaping the explanation structures, showcasing how collaborative signals interact with language modeling. Through our work, we provide an open-source evaluation implementation that enhances accessibility for researchers and practitioners alike. Our complete code repository can be found at https://github.com/julianbibo/xrec-reproducibility.

Authors:Zhanke Zhou, Chentao Cao, Xiao Feng, Xuan Li, Zongze Li, Xiangyu Lu, Jiangchao Yao, Weikai Huang, Linrui Xu, Tian Cheng, Guanyu Jiang, Yiming Zheng, Brando Miranda, Tongliang Liu, Sanmi Koyejo, Masashi Sugiyama, Bo Han
Title: AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
Abstract:
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.

Authors:Xiaochen Zhao, Chengting Yu, Kairong Yu, Lei Liu, Aili Wang
Title: Enhanced Self-Distillation Framework for Efficient Spiking Neural Network Training
Abstract:
Spiking Neural Networks (SNNs) exhibit exceptional energy efficiency on neuromorphic hardware due to their sparse activation patterns. However, conventional training methods based on surrogate gradients and Backpropagation Through Time (BPTT) not only lag behind Artificial Neural Networks (ANNs) in performance, but also incur significant computational and memory overheads that grow linearly with the temporal dimension. To enable high-performance SNN training under limited computational resources, we propose an enhanced self-distillation framework, jointly optimized with rate-based backpropagation. Specifically, the firing rates of intermediate SNN layers are projected onto lightweight ANN branches, and high-quality knowledge generated by the model itself is used to optimize substructures through the ANN pathways. Unlike traditional self-distillation paradigms, we observe that low-quality self-generated knowledge may hinder convergence. To address this, we decouple the teacher signal into reliable and unreliable components, ensuring that only reliable knowledge is used to guide the optimization of the model. Extensive experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet demonstrate that our method reduces training complexity while achieving high-performance SNN training. Our code is available at https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn.

Authors:Jiqun Pan, Zhenke Duan, Jiani Tu, Anzhi Cheng, Yanqing Wang
Title: Knowledge Graph-Guided Multi-Agent Distillation for Reliable Industrial Question Answering with Datasets
Abstract:
Industrial question-answering (QA) systems require higher safety and reliability than general-purpose dialogue models, as errors in high-risk scenarios such as equipment fault diagnosis can have severe consequences. Although multi-agent large language models enhance reasoning depth, they suffer from uncontrolled iterations and unverifiable outputs, and conventional distillation methods struggle to transfer collaborative reasoning capabilities to lightweight, deployable student models. To address these challenges, we propose Knowledge Graph-guided Multi-Agent System Distillation (KG-MASD). Our approach formulates distillation as a Markov Decision Process and incorporates a knowledge graph as a verifiable structured prior to enrich state representation and ensure convergence. By integrating collaborative reasoning with knowledge grounding, KG-MASD generates high-confidence instruction-tuning data and jointly distills reasoning depth and verifiability into compact student models suitable for edge deployment. Experiments on an industrial QA dataset show that KG-MASD improves accuracy by 2.4 per cent to 20.1 per cent over baselines and significantly enhances reliability, enabling trustworthy AI deployment in safety-critical industrial scenarios. Code and data are available at https://github.com/erwinmsmith/KG-MAD/.

Authors:Hans G. W. van Dam
Title: A Multimodal GUI Architecture for Interfacing with LLM-Based Conversational Assistants
Abstract:
Advances in large language models (LLMs) and real-time speech recognition now make it possible to issue any graphical user interface (GUI) action through natural language and receive the corresponding system response directly through the GUI. Most production applications were never designed with speech in mind. This article provides a concrete architecture that enables GUIs to interface with LLM-based speech-enabled assistants. The architecture makes an application's navigation graph and semantics available through the Model Context Protocol (MCP). The ViewModel, part of the MVVM (Model-View-ViewModel) pattern, exposes the application's capabilities to the assistant by supplying both tools applicable to a currently visible view and application-global tools extracted from the GUI tree router. This architecture facilitates full voice accessibility while ensuring reliable alignment between spoken input and the visual interface, accompanied by consistent feedback across modalities. It future-proofs apps for upcoming OS super assistants that employ computer use agents (CUAs) and natively consume MCP if an application provides it. To address concerns about privacy and data security, the practical effectiveness of locally deployable, open-weight LLMs for speech-enabled multimodal UIs is evaluated. Findings suggest that recent smaller open-weight models approach the performance of leading proprietary models in overall accuracy and require enterprise-grade hardware for fast responsiveness. A demo implementation of the proposed architecture can be found at https://github.com/hansvdam/langbar

Authors:Yue Chen, Xingyu Chen, Yuxuan Xue, Anpei Chen, Yuliang Xiu, Gerard Pons-Moll
Title: Human3R: Everyone Everywhere All at Once
Abstract:
We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R

Authors:Christopher Mitcheltree, Hao Hao Tan, Joshua D. Reiss
Title: Modulation Discovery with Differentiable Digital Signal Processing
Abstract:
Modulations are a critical part of sound design and music production, enabling the creation of complex and evolving audio. Modern synthesizers provide envelopes, low frequency oscillators (LFOs), and more parameter automation tools that allow users to modulate the output with ease. However, determining the modulation signals used to create a sound is difficult, and existing sound-matching / parameter estimation systems are often uninterpretable black boxes or predict high-dimensional framewise parameter values without considering the shape, structure, and routing of the underlying modulation curves. We propose a neural sound-matching approach that leverages modulation extraction, constrained control signal parameterizations, and differentiable digital signal processing (DDSP) to discover the modulations present in a sound. We demonstrate the effectiveness of our approach on highly modulated synthetic and real audio samples, its applicability to different DDSP synth architectures, and investigate the trade-off it incurs between interpretability and sound-matching accuracy. We make our code and audio samples available and provide the trained DDSP synths in a VST plugin.

Authors:Chengyang Zhao, Uksang Yoo, Arkadeep Narayan Chaudhury, Giljoo Nam, Jonathan Francis, Jeffrey Ichnowski, Jean Oh
Title: DYMO-Hair: Generalizable Volumetric Dynamics Modeling for Robot Hair Manipulation
Abstract:
Hair care is an essential daily activity, yet it remains inaccessible to individuals with limited mobility and challenging for autonomous robot systems due to the fine-grained physical structure and complex dynamics of hair. In this work, we present DYMO-Hair, a model-based robot hair care system. We introduce a novel dynamics learning paradigm that is suited for volumetric quantities such as hair, relying on an action-conditioned latent state editing mechanism, coupled with a compact 3D latent space of diverse hairstyles to improve generalizability. This latent space is pre-trained at scale using a novel hair physics simulator, enabling generalization across previously unseen hairstyles. Using the dynamics model with a Model Predictive Path Integral (MPPI) planner, DYMO-Hair is able to perform visual goal-conditioned hair styling. Experiments in simulation demonstrate that DYMO-Hair's dynamics model outperforms baselines on capturing local deformation for diverse, unseen hairstyles. DYMO-Hair further outperforms baselines in closed-loop hair styling tasks on unseen hairstyles, with an average of 22% lower final geometric error and 42% higher success rate than the state-of-the-art system. Real-world experiments exhibit zero-shot transferability of our system to wigs, achieving consistent success on challenging unseen hairstyles where the state-of-the-art system fails. Together, these results introduce a foundation for model-based robot hair care, advancing toward more generalizable, flexible, and accessible robot hair styling in unconstrained physical environments. More details are available on our project page: https://chengyzhao.github.io/DYMOHair-web/.

Authors:Aditya Prakash, David Forsyth, Saurabh Gupta
Title: Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
Abstract:
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.

Authors:Haoxin Wang, Xiaolong Tu, Hongyu Ke, Huirong Chai, Dawei Chen, Kyungtae Han
Title: lm-Meter: Unveiling Runtime Inference Latency for On-Device Language Models
Abstract:
Large Language Models (LLMs) are increasingly integrated into everyday applications, but their prevalent cloud-based deployment raises growing concerns around data privacy and long-term sustainability. Running LLMs locally on mobile and edge devices (on-device LLMs) offers the promise of enhanced privacy, reliability, and reduced communication costs. However, realizing this vision remains challenging due to substantial memory and compute demands, as well as limited visibility into performance-efficiency trade-offs on resource-constrained hardware. We propose lm-Meter, the first lightweight, online latency profiler tailored for on-device LLM inference. lm-Meter captures fine-grained, real-time latency at both phase (e.g., embedding, prefill, decode, softmax, sampling) and kernel levels without auxiliary devices. We implement lm-Meter on commercial mobile platforms and demonstrate its high profiling accuracy with minimal system overhead, e.g., only 2.58% throughput reduction in prefill and 0.99% in decode under the most constrained Powersave governor. Leveraging lm-Meter, we conduct comprehensive empirical studies revealing phase- and kernel-level bottlenecks in on-device LLM inference, quantifying accuracy-efficiency trade-offs, and identifying systematic optimization opportunities. lm-Meter provides unprecedented visibility into the runtime behavior of LLMs on constrained platforms, laying the foundation for informed optimization and accelerating the democratization of on-device LLM systems. Code and tutorials are available at https://github.com/amai-gsu/LM-Meter.

Authors:Markus Krimmel, Philip Hartout, Karsten Borgwardt, Dexiong Chen
Title: PolyGraph Discrepancy: a classifier-based metric for graph generation
Abstract:
Existing methods for evaluating graph generative models primarily rely on Maximum Mean Discrepancy (MMD) metrics based on graph descriptors. While these metrics can rank generative models, they do not provide an absolute measure of performance. Their values are also highly sensitive to extrinsic parameters, namely kernel and descriptor parametrization, making them incomparable across different graph descriptors. We introduce PolyGraph Discrepancy (PGD), a new evaluation framework that addresses these limitations. It approximates the Jensen-Shannon distance of graph distributions by fitting binary classifiers to distinguish between real and generated graphs, featurized by these descriptors. The data log-likelihood of these classifiers approximates a variational lower bound on the JS distance between the two distributions. Resulting metrics are constrained to the unit interval [0,1] and are comparable across different graph descriptors. We further derive a theoretically grounded summary metric that combines these individual metrics to provide a maximally tight lower bound on the distance for the given descriptors. Thorough experiments demonstrate that PGD provides a more robust and insightful evaluation compared to MMD metrics. The PolyGraph framework for benchmarking graph generative models is made publicly available at https://github.com/BorgwardtLab/polygraph-benchmark.

Authors:Shuo Jiang, Zhuwen Chen, Liaoman Xu, Yanming Zhu, Changmiao Wang, Jiong Zhang, Feiwei Qin, Yifei Chen, Zhu Zhu
Title: Multimodal Feature Prototype Learning for Interpretable and Discriminative Cancer Survival Prediction
Abstract:
Survival analysis plays a vital role in making clinical decisions. However, the models currently in use are often difficult to interpret, which reduces their usefulness in clinical settings. Prototype learning presents a potential solution, yet traditional methods focus on local similarities and static matching, neglecting the broader tumor context and lacking strong semantic alignment with genomic data. To overcome these issues, we introduce an innovative prototype-based multimodal framework, FeatProto, aimed at enhancing cancer survival prediction by addressing significant limitations in current prototype learning methodologies within pathology. Our framework establishes a unified feature prototype space that integrates both global and local features of whole slide images (WSI) with genomic profiles. This integration facilitates traceable and interpretable decision-making processes. Our approach includes three main innovations: (1) A robust phenotype representation that merges critical patches with global context, harmonized with genomic data to minimize local bias. (2) An Exponential Prototype Update Strategy (EMA ProtoUp) that sustains stable cross-modal associations and employs a wandering mechanism to adapt prototypes flexibly to tumor heterogeneity. (3) A hierarchical prototype matching scheme designed to capture global centrality, local typicality, and cohort-level trends, thereby refining prototype inference. Comprehensive evaluations on four publicly available cancer datasets indicate that our method surpasses current leading unimodal and multimodal survival prediction techniques in both accuracy and interoperability, providing a new perspective on prototype learning for critical medical applications. Our source code is available at https://github.com/JSLiam94/FeatProto.

Authors:Yinjian Wang, Wei Li, Yuanyuan Gui, Gemine Vivone
Title: Compact Multi-level-prior Tensor Representation for Hyperspectral Image Super-resolution
Abstract:
Fusing a hyperspectral image with a multispectral image acquired over the same scene, \textit{i.e.}, hyperspectral image super-resolution, has become a popular computational way to access the latent high-spatial-spectral-resolution image. To date, a variety of fusion methods have been proposed, among which the tensor-based ones have testified that multiple priors, such as multidimensional low-rankness and spatial total variation at multiple levels, effectively drive the fusion process. However, existing tensor-based models can only effectively leverage one or two priors at one or two levels, since simultaneously incorporating multi-level priors inevitably increases model complexity. This introduces challenges in both balancing the weights of different priors and optimizing multi-block structures. Concerning this, we present a novel hyperspectral super-resolution model compactly characterizing these multi-level priors of hyperspectral images within the tensor framework. Firstly, the proposed model decouples the spectral low-rankness and spatial priors by casting the latent high-spatial-spectral-resolution image into spectral subspace and spatial maps via block term decomposition. Secondly, these spatial maps are stacked as the spatial tensor encoding the high-order spatial low-rankness and smoothness priors, which are co-modeled via the proposed non-convex mode-shuffled tensor correlated total variation. Finally, we draw inspiration from the linearized alternating direction method of multipliers to design an efficient algorithm to optimize the resulting model, theoretically proving its Karush-Kuhn-Tucker convergence under mild conditions. Experiments on multiple datasets demonstrate the effectiveness of the proposed algorithm. The code implementation will be available from https://github.com/WongYinJ.

Authors:Mallika Mainali, Harsha Sureshbabu, Anik Sen, Christopher B. Rauch, Noah D. Reifsnyder, John Meyer, J. T. Turner, Michael W. Floyd, Matthew Molineaux, Rosina O. Weber
Title: Classical AI vs. LLMs for Decision-Maker Alignment in Health Insurance Choices
Abstract:
As algorithmic decision-makers are increasingly applied to high-stakes domains, AI alignment research has evolved from a focus on universal value alignment to context-specific approaches that account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has explored two primary strategies: (1) classical AI methods integrating case-based reasoning, Bayesian reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods leveraging prompt engineering. While both approaches have shown promise in limited domains such as medical triage, their generalizability to novel contexts remains underexplored. In this work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature. We evaluate both approaches on a health insurance decision-making dataset annotated for three target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments reported herein, classical AI and LLM-based models achieved comparable alignment with attribute-based targets, with classical AI exhibiting slightly better alignment for a moderate risk profile. The dataset and open-source implementation are publicly available at: https://github.com/TeX-Base/ClassicalAIvsLLMsforDMAlignment and https://github.com/Parallax-Advanced-Research/ITM/tree/feature_insurance.

Authors:João Palmeiro, Diogo Duarte, Rita Costa, Pedro Bizarro
Title: Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks
Abstract:
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.

Authors:Heng Zhang, Kevin Yuchen Ma, Mike Zheng Shou, Weisi Lin, Yan Wu
Title: Cross-Embodiment Dexterous Hand Articulation Generation via Morphology-Aware Learning
Abstract:
Dexterous grasping with multi-fingered hands remains challenging due to high-dimensional articulations and the cost of optimization-based pipelines. Existing end-to-end methods require training on large-scale datasets for specific hands, limiting their ability to generalize across different embodiments. We propose an eigengrasp-based, end-to-end framework for cross-embodiment grasp generation. From a hand's morphology description, we derive a morphology embedding and an eigengrasp set. Conditioned on these, together with the object point cloud and wrist pose, an amplitude predictor regresses articulation coefficients in a low-dimensional space, which are decoded into full joint articulations. Articulation learning is supervised with a Kinematic-Aware Articulation Loss (KAL) that emphasizes fingertip-relevant motions and injects morphology-specific structure. In simulation on unseen objects across three dexterous hands, our model attains a 91.9% average grasp success rate with less than 0.4 seconds inference per grasp. With few-shot adaptation to an unseen hand, it achieves 85.6% success on unseen objects in simulation, and real-world experiments on this few-shot generalized hand achieve an 87% success rate. The code and additional materials will be made available upon publication on our project website https://connor-zh.github.io/cross_embodiment_dexterous_grasping.

Authors:Jiakang Wang, Runze Liu, Lei Lin, Wenping Hu, Xiu Li, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: ASPO: Asymmetric Importance Sampling Policy Optimization
Abstract:
Recent Large Language Model (LLM) post-training methods rely on token-level clipping mechanisms during Reinforcement Learning (RL). However, we identify a fundamental flaw in this Outcome-Supervised RL (OSRL) paradigm: the Importance Sampling (IS) ratios of positive-advantage tokens are mismatched, leading to unbalanced token weighting for positive and negative tokens. This mismatch suppresses the update of low-probability tokens while over-amplifying already high-probability ones. To address this, we propose Asymmetric Importance Sampling Policy Optimization (ASPO), which uses a simple yet effective strategy that flips the IS ratios of positive-advantage tokens, aligning their update direction with the learning dynamics of negative ones. AIS further incorporates a soft dual-clipping mechanism to stabilize extreme updates while maintaining gradient flow. Comprehensive experiments on coding and mathematical reasoning benchmarks demonstrate that ASPO significantly mitigates premature convergence, improves training stability, and enhances final performance over strong GRPO-based baselines. Our analysis provides new insights into the role of token-level weighting in OSRL and highlights the critical importance of correcting IS in LLM RL. The code and models of ASPO are available at https://github.com/wizard-III/Archer2.0.

Authors:Gang Liu, Yihan Zhu, Jie Chen, Meng Jiang
Title: Scientific Algorithm Discovery by Augmenting AlphaEvolve with Deep Research
Abstract:
Large language models hold promise as scientific assistants, yet existing agents either rely solely on algorithm evolution or on deep research in isolation, both of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve, depends only on the internal knowledge of LLMs and quickly plateaus in complex domains, while pure deep research proposes ideas without validation, resulting in unrealistic or unimplementable solutions. We present DeepEvolve, an agent that integrates deep research with algorithm evolution, uniting external knowledge retrieval, cross-file code editing, and systematic debugging under a feedback-driven iterative loop. Each iteration not only proposes new hypotheses but also refines, implements, and tests them, avoiding both shallow improvements and unproductive over-refinements. Across nine benchmarks in chemistry, mathematics, biology, materials, and patents, DeepEvolve consistently improves the initial algorithm, producing executable new algorithms with sustained gains. By bridging the gap between unguided evolution and research without grounding, DeepEvolve provides a reliable framework for advancing scientific algorithm discovery. Our code is available at https://github.com/liugangcode/deepevolve.

Authors:Xinye Cao, Hongcan Guo, Jiawen Qian, Guoshun Nan, Chao Wang, Yuqi Pan, Tianhao Hou, Xiaojuan Wang, Yutong Gao
Title: VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization
Abstract:
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.

Authors:Tien-Dat Nguyen, Thien-Minh Nguyen, Vinh-Hao Nguyen
Title: Coordinate-Consistent Localization via Continuous-Time Calibration and Fusion of UWB and SLAM Observations
Abstract:
Onboard simultaneous localization and mapping (SLAM) methods are commonly used to provide accurate localization information for autonomous robots. However, the coordinate origin of SLAM estimate often resets for each run. On the other hand, UWB-based localization with fixed anchors can ensure a consistent coordinate reference across sessions; however, it requires an accurate assignment of the anchor nodes' coordinates. To this end, we propose a two-stage approach that calibrates and fuses UWB data and SLAM data to achieve coordinate-wise consistent and accurate localization in the same environment. In the first stage, we solve a continuous-time batch optimization problem by using the range and odometry data from one full run, incorporating height priors and anchor-to-anchor distance factors to recover the anchors' 3D positions. For the subsequent runs in the second stage, a sliding-window optimization scheme fuses the UWB and SLAM data, which facilitates accurate localization in the same coordinate system. Experiments are carried out on the NTU VIRAL dataset with six scenarios of UAV flight, and we show that calibration using data in one run is sufficient to enable accurate localization in the remaining runs. We release our source code to benefit the community at https://github.com/ntdathp/slam-uwb-calibration.

Authors:Ron Keuth, Paul Kaftan, Mattias P. Heinrich
Title: Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
Abstract:
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions. Our code is available on GitHub.

Authors:Songyuan Sui, Zihang Xu, Yu-Neng Chuang, Kwei-Herng Lai, Xia Hu
Title: Training-Free Time Series Classification via In-Context Reasoning with LLM Agents
Abstract:
Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.

Authors:Aksel Joonas Reedi, Corentin Léger, Julien Pourcel, Loris Gaven, Perrine Charriau, Guillaume Pourcel
Title: Optimizing for Persuasion Improves LLM Generalization: Evidence from Quality-Diversity Evolution of Debate Strategies
Abstract:
Large Language Models (LLMs) optimized to output truthful answers often overfit, producing brittle reasoning that fails to generalize. While persuasion-based optimization has shown promise in debate settings, it has not been systematically compared against mainstream truth-based approaches. We introduce DebateQD, a minimal Quality-Diversity (QD) evolutionary algorithm that evolves diverse debate strategies across different categories (rationality, authority, emotional appeal, etc.) through tournament-style competitions where two LLMs debate while a third judges. Unlike previously proposed methods that require a population of LLMs, our approach maintains diversity of opponents through prompt-based strategies within a single LLM architecture, making it more accessible for experiments while preserving the key benefits of population-based optimization. In contrast to prior work, we explicitly isolate the role of the optimization objective by fixing the debate protocol and swapping only the fitness function: persuasion rewards strategies that convince the judge irrespective of truth, whereas truth rewards collaborative correctness. Across three model scales (7B, 32B, 72B parameters) and multiple dataset sizes from the QuALITY benchmark, persuasion-optimized strategies achieve up to 13.94% smaller train-test generalization gaps, while matching or exceeding truth optimization's test performance. These results provide the first controlled evidence that competitive pressure to persuade, rather than seek the truth collaboratively, fosters more transferable reasoning skills, offering a promising path for improving LLM generalization.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Jinyan Zhou, Jianfeng Cao, Hanyang Peng, Ting Ma
Title: Efficient Universal Models for Medical Image Segmentation via Weakly Supervised In-Context Learning
Abstract:
Universal models for medical image segmentation, such as interactive and in-context learning (ICL) models, offer strong generalization but require extensive annotations. Interactive models need repeated user prompts for each image, while ICL relies on dense, pixel-level labels. To address this, we propose Weakly Supervised In-Context Learning (WS-ICL), a new ICL paradigm that leverages weak prompts (e.g., bounding boxes or points) instead of dense labels for context. This approach significantly reduces annotation effort by eliminating the need for fine-grained masks and repeated user prompting for all images. We evaluated the proposed WS-ICL model on three held-out benchmarks. Experimental results demonstrate that WS-ICL achieves performance comparable to regular ICL models at a significantly lower annotation cost. In addition, WS-ICL is highly competitive even under the interactive paradigm. These findings establish WS-ICL as a promising step toward more efficient and unified universal models for medical image segmentation. Our code and model are publicly available at https://github.com/jiesihu/Weak-ICL.

Authors:Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, Jiwen Lu
Title: $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection
Abstract:
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.

Authors:Johannes Seiffarth, Keitaro Kasahara, Michelle Bund, Benita Lückel, Richard D. Paul, Matthias Pesch, Lennart Witting, Michael Bott, Dietrich Kohlheyer, Katharina Nöh
Title: acia-workflows: Automated Single-cell Imaging Analysis for Scalable and Deep Learning-based Live-cell Imaging Analysis Workflows
Abstract:
Live-cell imaging (LCI) technology enables the detailed spatio-temporal characterization of living cells at the single-cell level, which is critical for advancing research in the life sciences, from biomedical applications to bioprocessing. High-throughput setups with tens to hundreds of parallel cell cultivations offer the potential for robust and reproducible insights. However, these insights are obscured by the large amount of LCI data recorded per experiment. Recent advances in state-of-the-art deep learning methods for cell segmentation and tracking now enable the automated analysis of such large data volumes, offering unprecedented opportunities to systematically study single-cell dynamics. The next key challenge lies in integrating these powerful tools into accessible, flexible, and user-friendly workflows that support routine application in biological research. In this work, we present acia-workflows, a platform that combines three key components: (1) the Automated live-Cell Imaging Analysis (acia) Python library, which supports the modular design of image analysis pipelines offering eight deep learning segmentation and tracking approaches; (2) workflows that assemble the image analysis pipeline, its software dependencies, documentation, and visualizations into a single Jupyter Notebook, leading to accessible, reproducible and scalable analysis workflows; and (3) a collection of application workflows showcasing the analysis and customization capabilities in real-world applications. Specifically, we present three workflows to investigate various types of microfluidic LCI experiments ranging from growth rate comparisons to precise, minute-resolution quantitative analyses of individual dynamic cells responses to changing oxygen conditions. Our collection of more than ten application workflows is open source and publicly available at https://github.com/JuBiotech/acia-workflows.

Authors:Jiahao Mei, Xuenan Xu, Zeyu Xie, Zihao Zheng, Ye Tao, Yue Ding, Mengyue Wu
Title: LARA-Gen: Enabling Continuous Emotion Control for Music Generation Models via Latent Affective Representation Alignment
Abstract:
Recent advances in text-to-music models have enabled coherent music generation from text prompts, yet fine-grained emotional control remains unresolved. We introduce LARA-Gen, a framework for continuous emotion control that aligns the internal hidden states with an external music understanding model through Latent Affective Representation Alignment (LARA), enabling effective training. In addition, we design an emotion control module based on a continuous valence-arousal space, disentangling emotional attributes from textual content and bypassing the bottlenecks of text-based prompting. Furthermore, we establish a benchmark with a curated test set and a robust Emotion Predictor, facilitating objective evaluation of emotional controllability in music generation. Extensive experiments demonstrate that LARA-Gen achieves continuous, fine-grained control of emotion and significantly outperforms baselines in both emotion adherence and music quality. Generated samples are available at https://nieeim.github.io/LARA-Gen/.

Authors:Zhi Liu, Xuyuan Hu, Xiao Han, Zhehao Dai, Zhaolin Deng, Guojiang Shen, Xiangjie Kong
Title: Multimodal Trajectory Representation Learning for Travel Time Estimation
Abstract:
Accurate travel time estimation (TTE) plays a crucial role in intelligent transportation systems. However, it remains challenging due to heterogeneous data sources and complex traffic dynamics. Moreover, conventional approaches typically convert trajectories into fixed-length representations, neglecting the inherent variability of real-world trajectories, which often leads to information loss or feature redundancy. To address these challenges, this paper introduces the Multimodal Dynamic Trajectory Integration (MDTI) framework--a novel multimodal trajectory representation learning approach that integrates GPS sequences, grid trajectories, and road network constraints to enhance TTE accuracy. MDTI employs modality-specific encoders and a cross-modal interaction module to capture complementary spatial, temporal, and topological semantics, while a dynamic trajectory modeling mechanism adaptively regulates information density for trajectories of varying lengths. Two self-supervised pretraining objectives, named contrastive alignment and masked language modeling, further strengthen multimodal consistency and contextual understanding. Extensive experiments on three real-world datasets demonstrate that MDTI consistently outperforms state-of-the-art baselines, confirming its robustness and strong generalization abilities. The code is publicly available at: https://github.com/freshhxy/MDTI/

Authors:Hengyang Zhou, Yiwei Wei, Jian Yang, Zhenyu Zhang
Title: Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Abstract:
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.

Authors:Haoran Zhang, Shuanghao Bai, Wanqi Zhou, Yuedi Zhang, Qi Zhang, Pengxiang Ding, Cheng Chi, Donglin Wang, Badong Chen
Title: VCoT-Grasp: Grasp Foundation Models with Visual Chain-of-Thought Reasoning for Language-driven Grasp Generation
Abstract:
Robotic grasping is one of the most fundamental tasks in robotic manipulation, and grasp detection/generation has long been the subject of extensive research. Recently, language-driven grasp generation has emerged as a promising direction due to its practical interaction capabilities. However, most existing approaches either lack sufficient reasoning and generalization capabilities or depend on complex modular pipelines. Moreover, current grasp foundation models tend to overemphasize dialog and object semantics, resulting in inferior performance and restriction to single-object grasping. To maintain strong reasoning ability and generalization in cluttered environments, we propose VCoT-Grasp, an end-to-end grasp foundation model that incorporates visual chain-of-thought reasoning to enhance visual understanding for grasp generation. VCoT-Grasp adopts a multi-turn processing paradigm that dynamically focuses on visual inputs while providing interpretable reasoning traces. For training, we refine and introduce a large-scale dataset, VCoT-GraspSet, comprising 167K synthetic images with over 1.36M grasps, as well as 400+ real-world images with more than 1.2K grasps, annotated with intermediate bounding boxes. Extensive experiments on both VCoT-GraspSet and real robot demonstrate that our method significantly improves grasp success rates and generalizes effectively to unseen objects, backgrounds, and distractors. More details can be found at https://zhanghr2001.github.io/VCoT-Grasp.github.io.

Authors:Sven Koehler, Sarah Kaye Mueller, Jonathan Kiekenap, Gerald Greil, Tarique Hussain, Samir Sarikouch, Florian André, Norbert Frey, Sandy Engelhardt
Title: Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Abstract:
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git

Authors:Weichun Shi, Minghao Liu, Wanting Zhang, Langchen Shi, Fuqi Jia, Feifei Ma, Jian Zhang
Title: ConstraintLLM: A Neuro-Symbolic Framework for Industrial-Level Constraint Programming
Abstract:
Constraint programming (CP) is a crucial technology for solving real-world constraint optimization problems (COPs), with the advantages of rich modeling semantics and high solving efficiency. Using large language models (LLMs) to generate formal modeling automatically for COPs is becoming a promising approach, which aims to build trustworthy neuro-symbolic AI with the help of symbolic solvers. However, CP has received less attention compared to works based on operations research (OR) models. We introduce ConstraintLLM, the first LLM specifically designed for CP modeling, which is trained on an open-source LLM with multi-instruction supervised fine-tuning. We propose the Constraint-Aware Retrieval Module (CARM) to increase the in-context learning capabilities, which is integrated in a Tree-of-Thoughts (ToT) framework with guided self-correction mechanism. Moreover, we construct and release IndusCP, the first industrial-level benchmark for CP modeling, which contains 140 challenging tasks from various domains. Our experiments demonstrate that ConstraintLLM achieves state-of-the-art solving accuracy across multiple benchmarks and outperforms the baselines by 2x on the new IndusCP benchmark. Code and data are available at: https://github.com/william4s/ConstraintLLM.

Authors:Xiao Yang, Xuejiao Zhao, Zhiqi Shen
Title: Are Heterogeneous Graph Neural Networks Truly Effective? A Causal Perspective
Abstract:
Graph neural networks (GNNs) have achieved remarkable success in node classification. Building on this progress, heterogeneous graph neural networks (HGNNs) integrate relation types and node and edge semantics to leverage heterogeneous information. Causal analysis for HGNNs is advancing rapidly, aiming to separate genuine causal effects from spurious correlations. However, whether HGNNs are intrinsically effective remains underexamined, and most studies implicitly assume rather than establish this effectiveness. In this work, we examine HGNNs from two perspectives: model architecture and heterogeneous information. We conduct a systematic reproduction across 21 datasets and 20 baselines, complemented by comprehensive hyperparameter retuning. To further disentangle the source of performance gains, we develop a causal effect estimation framework that constructs and evaluates candidate factors under standard assumptions through factual and counterfactual analyses, with robustness validated via minimal sufficient adjustment sets, cross-method consistency checks, and sensitivity analyses. Our results lead to two conclusions. First, model architecture and complexity have no causal effect on performance. Second, heterogeneous information exerts a positive causal effect by increasing homophily and local-global distribution discrepancy, which makes node classes more distinguishable. The implementation is publicly available at https://github.com/YXNTU/CausalHGNN.

Authors:Amirtaha Amanzadi, Zahra Dehghanian, Hamid Beigy, Hamid R. Rabiee
Title: Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
Abstract:
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect

Authors:Marc Kaufeld, Johannes Betz
Title: Precise and Efficient Collision Prediction under Uncertainty in Autonomous Driving
Abstract:
This research introduces two efficient methods to estimate the collision risk of planned trajectories in autonomous driving under uncertain driving conditions. Deterministic collision checks of planned trajectories are often inaccurate or overly conservative, as noisy perception, localization errors, and uncertain predictions of other traffic participants introduce significant uncertainty into the planning process. This paper presents two semi-analytic methods to compute the collision probability of planned trajectories with arbitrary convex obstacles. The first approach evaluates the probability of spatial overlap between an autonomous vehicle and surrounding obstacles, while the second estimates the collision probability based on stochastic boundary crossings. Both formulations incorporate full state uncertainties, including position, orientation, and velocity, and achieve high accuracy at computational costs suitable for real-time planning. Simulation studies verify that the proposed methods closely match Monte Carlo results while providing significant runtime advantages, enabling their use in risk-aware trajectory planning. The collision estimation methods are available as open-source software: https://github.com/TUM-AVS/Collision-Probability-Estimation

Authors:Meng Tong, Yuntao Du, Kejiang Chen, Weiming Zhang, Ninghui Li
Title: Membership Inference Attacks on Tokenizers of Large Language Models
Abstract:
Membership inference attacks (MIAs) are widely used to assess the privacy risks associated with machine learning models. However, when these attacks are applied to pre-trained large language models (LLMs), they encounter significant challenges, including mislabeled samples, distribution shifts, and discrepancies in model size between experimental and real-world settings. To address these limitations, we introduce tokenizers as a new attack vector for membership inference. Specifically, a tokenizer converts raw text into tokens for LLMs. Unlike full models, tokenizers can be efficiently trained from scratch, thereby avoiding the aforementioned challenges. In addition, the tokenizer's training data is typically representative of the data used to pre-train LLMs. Despite these advantages, the potential of tokenizers as an attack vector remains unexplored. To this end, we present the first study on membership leakage through tokenizers and explore five attack methods to infer dataset membership. Extensive experiments on millions of Internet samples reveal the vulnerabilities in the tokenizers of state-of-the-art LLMs. To mitigate this emerging risk, we further propose an adaptive defense. Our findings highlight tokenizers as an overlooked yet critical privacy threat, underscoring the urgent need for privacy-preserving mechanisms specifically designed for them.

Authors:Yongqi Leng, Yikun Lei, Xikai Liu, Meizhi Zhong, Bojian Xiong, Yurong Zhang, Yan Gao, Yi Wu, Yao Hu, Deyi Xiong
Title: DecEx-RAG: Boosting Agentic Retrieval-Augmented Generation with Decision and Execution Optimization via Process Supervision
Abstract:
Agentic Retrieval-Augmented Generation (Agentic RAG) enhances the processing capability for complex tasks through dynamic retrieval and adaptive workflows. Recent advances (e.g., Search-R1) have shown that outcome-supervised reinforcement learning demonstrate strong performance. However, this approach still suffers from inefficient exploration, sparse reward signals, and ambiguous global reward feedback. To address these challenges, we propose DecEx-RAG, which models RAG as a Markov Decision Process (MDP) incorporating decision-making and execution, while introducing an efficient pruning strategy to optimize data expansion. Through comprehensive process-level policy optimization, DecEx-RAG significantly enhances the autonomous task decomposition, dynamic retrieval, and high-quality answer generation capabilities of large language models (LLMs). Experiments show that DecEx-RAG achieves an average absolute performance improvement of $6.2\%$ across six datasets, significantly outperforming existing baselines. Moreover, the pruning strategy improves data construction efficiency by nearly $6 \times$, providing an efficient solution for process-supervised RAG training. The code is available at https://github.com/sdsxdxl/DecEx-RAG.

Authors:Aditya Desai, Kumar Krishna Agrawal, Shuo Yang, Alejandro Cuadron, Luis Gaspar Schroeder, Matei Zaharia, Joseph E. Gonzalez, Ion Stoica
Title: vAttention: Verified Sparse Attention
Abstract:
State-of-the-art sparse attention methods for reducing decoding latency fall into two main categories: approximate top-$k$ (and its extension, top-$p$) and recently introduced sampling-based estimation. However, these approaches are fundamentally limited in their ability to approximate full attention: they fail to provide consistent approximations across heads and query vectors and, most critically, lack guarantees on approximation quality, limiting their practical deployment. We observe that top-$k$ and random sampling are complementary: top-$k$ performs well when attention scores are dominated by a few tokens, whereas random sampling provides better estimates when attention scores are relatively uniform. Building on this insight and leveraging the statistical guarantees of sampling, we introduce vAttention, the first practical sparse attention mechanism with user-specified $(ε, δ)$ guarantees on approximation accuracy (thus, verified). These guarantees make vAttention a compelling step toward practical, reliable deployment of sparse attention at scale. By unifying top-k and sampling, vAttention outperforms both individually, delivering a superior quality-efficiency trade-off. Our experiments show that vAttention significantly improves the quality of sparse attention (e.g., $\sim$4.5 percentage points for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and effectively bridges the gap between full and sparse attention (e.g., across datasets, it matches full model quality with upto 20x sparsity). We also demonstrate that it can be deployed in reasoning scenarios to achieve fast decoding without compromising model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x sparsity with up to 32K token generations). Code is open-sourced at https://github.com/xAlg-ai/sparse-attention-hub.

Authors:Suwhan Choi, Jaeyoon Jung, Haebin Seong, Minchan Kim, Minyeong Kim, Yongjun Cho, Yoonshik Kim, Yubeen Park, Youngjae Yu, Yunsung Lee
Title: D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Abstract:
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/

Authors:Haribandhu Jena, Jyotirmaya Shivottam, Subhankar Mishra
Title: QGraphLIME - Explaining Quantum Graph Neural Networks
Abstract:
Quantum graph neural networks offer a powerful paradigm for learning on graph-structured data, yet their explainability is complicated by measurement-induced stochasticity and the combinatorial nature of graph structure. In this paper, we introduce QuantumGraphLIME (QGraphLIME), a model-agnostic, post-hoc framework that treats model explanations as distributions over local surrogates fit on structure-preserving perturbations of a graph. By aggregating surrogate attributions together with their dispersion, QGraphLIME yields uncertainty-aware node and edge importance rankings for quantum graph models. The framework further provides a distribution-free, finite-sample guarantee on the size of the surrogate ensemble: a Dvoretzky-Kiefer-Wolfowitz bound ensures uniform approximation of the induced distribution of a binary class probability at target accuracy and confidence under standard independence assumptions. Empirical studies on controlled synthetic graphs with known ground truth demonstrate accurate and stable explanations, with ablations showing clear benefits of nonlinear surrogate modeling and highlighting sensitivity to perturbation design. Collectively, these results establish a principled, uncertainty-aware, and structure-sensitive approach to explaining quantum graph neural networks, and lay the groundwork for scaling to broader architectures and real-world datasets, as quantum resources mature. Code is available at https://github.com/smlab-niser/qglime.

Authors:Manolis Mylonas, Charalampia Zerva, Evlampios Apostolidis, Vasileios Mezaris
Title: SD-MVSum: Script-Driven Multimodal Video Summarization Method and Datasets
Abstract:
In this work, we extend a recent method for script-driven video summarization, originally considering just the visual content of the video, to take into account the relevance of the user-provided script also with the video's spoken content. In the proposed method, SD-MVSum, the dependence between each considered pair of data modalities, i.e., script-video and script-transcript, is modeled using a new weighted cross-modal attention mechanism. This explicitly exploits the semantic similarity between the paired modalities in order to promote the parts of the full-length video with the highest relevance to the user-provided script. Furthermore, we extend two large-scale datasets for video summarization (S-VideoXum, MrHiSum), to make them suitable for training and evaluation of script-driven multimodal video summarization methods. Experimental comparisons document the competitiveness of our SD-MVSum method against other SOTA approaches for script-driven and generic video summarization. Our new method and extended datasets are available at: https://github.com/IDT-ITI/SD-MVSum.

Authors:Ibrahim Salihu Yusuf, Iffanice Houndayi, Rym Oualha, Mohamed Aziz Cherif, Kobby Panford-Quainoo, Arnu Pretorius
Title: InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Abstract:
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git

Authors:Guangrong Wan, Jun liu, Qiyang Zhou, Tang tang, Lianghao Shi, Wenjun Luo, TingTing Xu
Title: TFM Dataset: A Novel Multi-task Dataset and Integrated Pipeline for Automated Tear Film Break-Up Segmentation
Abstract:
Tear film break-up (TFBU) analysis is critical for diagnosing dry eye syndrome, but automated TFBU segmentation remains challenging due to the lack of annotated datasets and integrated solutions. This paper introduces the Tear Film Multi-task (TFM) Dataset, the first comprehensive dataset for multi-task tear film analysis, comprising 15 high-resolution videos (totaling 6,247 frames) annotated with three vision tasks: frame-level classification ('clear', 'closed', 'broken', 'blur'), Placido Ring detection, and pixel-wise TFBU area segmentation. Leveraging this dataset, we first propose TF-Net, a novel and efficient baseline segmentation model. TF-Net incorporates a MobileOne-mini backbone with re-parameterization techniques and an enhanced feature pyramid network to achieve a favorable balance between accuracy and computational efficiency for real-time clinical applications. We further establish benchmark performance on the TFM segmentation subset by comparing TF-Net against several state-of-the-art medical image segmentation models. Furthermore, we design TF-Collab, a novel integrated real-time pipeline that synergistically leverages models trained on all three tasks of the TFM dataset. By sequentially orchestrating frame classification for BUT determination, pupil region localization for input standardization, and TFBU segmentation, TF-Collab fully automates the analysis. Experimental results demonstrate the effectiveness of the proposed TF-Net and TF-Collab, providing a foundation for future research in ocular surface diagnostics. Our code and the TFM datasets are available at https://github.com/glory-wan/TF-Net

Authors:Junwen Chen, Peilin Xiong, Keiji Yanai
Title: HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Abstract:
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.

Authors:Bin Kang, Bin Chen, Junjie Wang, Yulin Li, Junzhi Zhao, Zhuotao Tian
Title: CalibCLIP: Contextual Calibration of Dominant Semantics for Text-Driven Image Retrieval
Abstract:
Existing Visual Language Models (VLMs) suffer structural limitations where a few low contribution tokens may excessively capture global semantics, dominating the information aggregation process and suppressing the discriminative features in text-driven image retrieval tasks. To address this, we introduce \textbf{CalibCLIP}, a training-free method designed to calibrate the suppressive effect of dominant tokens. Specifically, in the visual space, we propose the Contrastive Visual Enhancer (CVE), which decouples visual features into target and low information regions. Subsequently, it identifies dominant tokens and dynamically suppresses their representations.In the textual space, we introduce the Discriminative Concept Calibrator (DCC), which aims to differentiate between general and discriminative concepts within the text query. By mitigating the challenges posed by generic concepts and improving the representations of discriminative concepts, DCC strengthens the differentiation among similar samples. Finally, extensive experiments demonstrate consistent improvements across seven benchmarks spanning three image retrieval tasks, underscoring the effectiveness of CalibCLIP. Code is available at: https://github.com/kangbin98/CalibCLIP

Authors:Hongchi Xia, Chih-Hao Lin, Hao-Yu Hsu, Quentin Leboutet, Katelyn Gao, Michael Paulitsch, Benjamin Ummenhofer, Shenlong Wang
Title: HoloScene: Simulation-Ready Interactive 3D Worlds from a Single Video
Abstract:
Digitizing the physical world into accurate simulation-ready virtual environments offers significant opportunities in a variety of fields such as augmented and virtual reality, gaming, and robotics. However, current 3D reconstruction and scene-understanding methods commonly fall short in one or more critical aspects, such as geometry completeness, object interactivity, physical plausibility, photorealistic rendering, or realistic physical properties for reliable dynamic simulation. To address these limitations, we introduce HoloScene, a novel interactive 3D reconstruction framework that simultaneously achieves these requirements. HoloScene leverages a comprehensive interactive scene-graph representation, encoding object geometry, appearance, and physical properties alongside hierarchical and inter-object relationships. Reconstruction is formulated as an energy-based optimization problem, integrating observational data, physical constraints, and generative priors into a unified, coherent objective. Optimization is efficiently performed via a hybrid approach combining sampling-based exploration with gradient-based refinement. The resulting digital twins exhibit complete and precise geometry, physical stability, and realistic rendering from novel viewpoints. Evaluations conducted on multiple benchmark datasets demonstrate superior performance, while practical use-cases in interactive gaming and real-time digital-twin manipulation illustrate HoloScene's broad applicability and effectiveness. Project page: https://xiahongchi.github.io/HoloScene.

Authors:Xilin Jiang, Hannes Gamper, Sebastian Braun
Title: Sci-Phi: A Large Language Model Spatial Audio Descriptor
Abstract:
Acoustic scene perception involves describing the type of sounds, their timing, their direction and distance, as well as their loudness and reverberation. While audio language models excel in sound recognition, single-channel input fundamentally limits spatial understanding. This work presents Sci-Phi, a spatial audio large language model with dual spatial and spectral encoders that estimates a complete parameter set for all sound sources and the surrounding environment. Learning from over 4,000 hours of synthetic first-order Ambisonics recordings including metadata, Sci-Phi enumerates and describes up to four directional sound sources in one pass, alongside non-directional background sounds and room characteristics. We evaluate the model with a permutation-invariant protocol and 15 metrics covering content, location, timing, loudness, and reverberation, and analyze its robustness across source counts, signal-to-noise ratios, reverberation levels, and challenging mixtures of acoustically, spatially, or temporally similar sources. Notably, Sci-Phi generalizes to real room impulse responses with only minor performance degradation. Overall, this work establishes the first audio LLM capable of full spatial-scene description, with strong potential for real-world deployment. Demo: https://sci-phi-audio.github.io/demo

Authors:David E. J. van Wijk, Ersin Das, Tamas G. Molnar, Aaron D. Ames, Joel W. Burdick
Title: Safety-Critical Control with Bounded Inputs: A Closed-Form Solution for Backup Control Barrier Functions
Abstract:
Verifying the safety of controllers is critical for many applications, but is especially challenging for systems with bounded inputs. Backup control barrier functions (bCBFs) offer a structured approach to synthesizing safe controllers that are guaranteed to satisfy input bounds by leveraging the knowledge of a backup controller. While powerful, bCBFs require solving a high-dimensional quadratic program at run-time, which may be too costly for computationally-constrained systems such as aerospace vehicles. We propose an approach that optimally interpolates between a nominal controller and the backup controller, and we derive the solution to this optimization problem in closed form. We prove that this closed-form controller is guaranteed to be safe while obeying input bounds. We demonstrate the effectiveness of the approach on a double integrator and a nonlinear fixed-wing aircraft example.

Authors:Xiaogeng Liu, Chaowei Xiao
Title: AutoDAN-Reasoning: Enhancing Strategies Exploration based Jailbreak Attacks with Test-Time Scaling
Abstract:
Recent advancements in jailbreaking large language models (LLMs), such as AutoDAN-Turbo, have demonstrated the power of automated strategy discovery. AutoDAN-Turbo employs a lifelong learning agent to build a rich library of attack strategies from scratch. While highly effective, its test-time generation process involves sampling a strategy and generating a single corresponding attack prompt, which may not fully exploit the potential of the learned strategy library. In this paper, we propose to further improve the attack performance of AutoDAN-Turbo through test-time scaling. We introduce two distinct scaling methods: Best-of-N and Beam Search. The Best-of-N method generates N candidate attack prompts from a sampled strategy and selects the most effective one based on a scorer model. The Beam Search method conducts a more exhaustive search by exploring combinations of strategies from the library to discover more potent and synergistic attack vectors. According to the experiments, the proposed methods significantly boost performance, with Beam Search increasing the attack success rate by up to 15.6 percentage points on Llama-3.1-70B-Instruct and achieving a nearly 60% relative improvement against the highly robust GPT-o4-mini compared to the vanilla method.

Authors:Yang Xiao, Gen Li, Kaiyuan Deng, Yushu Wu, Zheng Zhan, Yanzhi Wang, Xiaolong Ma, Bo Hui
Title: LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Abstract:
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .

Authors:Jinghao Cao, Qin Li, Mengnan Du, Haimin Wang, Bo Shen
Title: Physics-informed Attention-enhanced Fourier Neural Operator for Solar Magnetic Field Extrapolations
Abstract:
We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO

Authors:Xi Xuan, Xuechen Liu, Wenxin Zhang, Yi-Cheng Lin, Xiaojian Lin, Tomi Kinnunen
Title: WaveSP-Net: Learnable Wavelet-Domain Sparse Prompt Tuning for Speech Deepfake Detection
Abstract:
Modern front-end design for speech deepfake detection relies on full fine-tuning of large pre-trained models like XLSR. However, this approach is not parameter-efficient and may lead to suboptimal generalization to realistic, in-the-wild data types. To address these limitations, we introduce a new family of parameter-efficient front-ends that fuse prompt-tuning with classical signal processing transforms. These include FourierPT-XLSR, which uses the Fourier Transform, and two variants based on the Wavelet Transform: WSPT-XLSR and Partial-WSPT-XLSR. We further propose WaveSP-Net, a novel architecture combining a Partial-WSPT-XLSR front-end and a bidirectional Mamba-based back-end. This design injects multi-resolution features into the prompt embeddings, which enhances the localization of subtle synthetic artifacts without altering the frozen XLSR parameters. Experimental results demonstrate that WaveSP-Net outperforms several state-of-the-art models on two new and challenging benchmarks, Deepfake-Eval-2024 and SpoofCeleb, with low trainable parameters and notable performance gains. The code and models are available at https://github.com/xxuan-acoustics/WaveSP-Net.

Authors:M. Sajid, Deepanshu Gupta, Yash Modi, Sanskriti Jain, Harshith Jai Surya Ganji, A. Rahaman, Harshvardhan Choudhary, Nasir Saleem, Amir Hussain, M. Tanveer
Title: AUREXA-SE: Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement
Abstract:
In this paper, we propose AUREXA-SE (Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement), a progressive bimodal framework tailored for audio-visual speech enhancement (AVSE). AUREXA-SE jointly leverages raw audio waveforms and visual cues by employing a U-Net-based 1D convolutional encoder for audio and a Swin Transformer V2 for efficient and expressive visual feature extraction. Central to the architecture is a novel bidirectional cross-attention mechanism, which facilitates deep contextual fusion between modalities, enabling rich and complementary representation learning. To capture temporal dependencies within the fused embeddings, a stack of lightweight Squeezeformer blocks combining convolutional and attention modules is introduced. The enhanced embeddings are then decoded via a U-Net-style decoder for direct waveform reconstruction, ensuring perceptually consistent and intelligible speech output. Experimental evaluations demonstrate the effectiveness of AUREXA-SE, achieving significant performance improvements over noisy baselines, with STOI of 0.516, PESQ of 1.323, and SI-SDR of -4.322 dB. The source code of AUREXA-SE is available at https://github.com/mtanveer1/AVSEC-4-Challenge-2025.

Authors:Chenghao Yang, Lin Gui, Chenxiao Yang, Victor Veitch, Lizhu Zhang, Zhuokai Zhao
Title: Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Abstract:
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.

Authors:Yixiao Wang, Mingxiao Huo, Zhixuan Liang, Yushi Du, Lingfeng Sun, Haotian Lin, Jinghuan Shang, Chensheng Peng, Mohit Bansal, Mingyu Ding, Masayoshi Tomizuka
Title: VER: Vision Expert Transformer for Robot Learning via Foundation Distillation and Dynamic Routing
Abstract:
Pretrained vision foundation models (VFMs) advance robotic learning via rich visual representations, yet individual VFMs typically excel only in specific domains, limiting generality across tasks. Distilling multiple VFMs into a unified representation for policy can mitigate this limitation but often yields inflexible task-specific feature selection and requires costly full re-training to incorporate robot-domain knowledge. We propose VER, a Vision Expert transformer for Robot learning. During pretraining, VER distills multiple VFMs into a vision expert library. It then fine-tunes only a lightweight routing network (fewer than 0.4% of parameters) to dynamically select task-relevant experts from the pretrained library for downstream robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-K Annealing to improve both flexibility and precision of dynamic expert selection. Moreover, VER supports parameter-efficient finetuning for scalable expert utilization and adaptive robot-domain knowledge integration. Across 17 diverse robotic tasks and multiple policy heads, VER achieves state-of-the-art performance. We find that VER reduces large-norm outliers in task-irrelevant regions (e.g., background) and concentrates on task-critical regions. Visualizations and codes can be found in https://yixiaowang7.github.io/ver_page/.

Authors:Sebastian Wagner-Carena, Aizhan Akhmetzhanova, Sydney Erickson
Title: A Data-Driven Prism: Multi-View Source Separation with Diffusion Model Priors
Abstract:
A common challenge in the natural sciences is to disentangle distinct, unknown sources from observations. Examples of this source separation task include deblending galaxies in a crowded field, distinguishing the activity of individual neurons from overlapping signals, and separating seismic events from an ambient background. Traditional analyses often rely on simplified source models that fail to accurately reproduce the data. Recent advances have shown that diffusion models can directly learn complex prior distributions from noisy, incomplete data. In this work, we show that diffusion models can solve the source separation problem without explicit assumptions about the source. Our method relies only on multiple views, or the property that different sets of observations contain different linear transformations of the unknown sources. We show that our method succeeds even when no source is individually observed and the observations are noisy, incomplete, and vary in resolution. The learned diffusion models enable us to sample from the source priors, evaluate the probability of candidate sources, and draw from the joint posterior of the source distribution given an observation. We demonstrate the effectiveness of our method on a range of synthetic problems as well as real-world galaxy observations.

Authors:Aengus Lynch, Benjamin Wright, Caleb Larson, Stuart J. Ritchie, Soren Mindermann, Ethan Perez, Kevin K. Troy, Evan Hubinger
Title: Agentic Misalignment: How LLMs Could Be Insider Threats
Abstract:
We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction. In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals - including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment. Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real. We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers (Amodei, 2025). We are releasing our methods publicly to enable further research.

Authors:Jakub Frac, Alexander Schmatz, Qiang Li, Guido Van Wingen, Shujian Yu
Title: Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations
Abstract:
Functional magnetic resonance imaging (fMRI) analysis faces significant challenges due to limited dataset sizes and domain variability between studies. Traditional self-supervised learning methods inspired by computer vision often rely on positive and negative sample pairs, which can be problematic for neuroimaging data where defining appropriate contrasts is non-trivial. We propose adapting a recently developed Hierarchical Functional Maximal Correlation Algorithm (HFMCA) to graph-structured fMRI data, providing a theoretically grounded approach that measures statistical dependence via density ratio decomposition in a reproducing kernel Hilbert space (RKHS),and applies HFMCA-based pretraining to learn robust and generalizable representations. Evaluations across five neuroimaging datasets demonstrate that our adapted method produces competitive embeddings for various classification tasks and enables effective knowledge transfer to unseen datasets. Codebase and supplementary material can be found here: https://github.com/fr30/mri-eigenencoder

Authors:Robin Courant, Xi Wang, David Loiseaux, Marc Christie, Vicky Kalogeiton
Title: Pulp Motion: Framing-aware multimodal camera and human motion generation
Abstract:
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.

Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Title: Paper2Video: Automatic Video Generation from Scientific Papers
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

Authors:Ziqi Huang, Ning Yu, Gordon Chen, Haonan Qiu, Paul Debevec, Ziwei Liu
Title: VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Abstract:
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.

Authors:Tingting Liao, Chongjian Ge, Guangyi Liu, Hao Li, Yi Zhou
Title: Character Mixing for Video Generation
Abstract:
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.

Authors:Ronen Kamenetsky, Sara Dorfman, Daniel Garibi, Roni Paiss, Or Patashnik, Daniel Cohen-Or
Title: SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Abstract:
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.

Authors:Dachuan Shi, Abedelkadir Asi, Keying Li, Xiangchi Yuan, Leyan Pan, Wenke Lee, Wen Xiao
Title: SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Abstract:
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.

Authors:Sara Kangaslahti, Nihal V. Nayak, Jonathan Geuter, Marco Fumero, Francesco Locatello, David Alvarez-Melis
Title: Boomerang Distillation Enables Zero-Shot Model Size Interpolation
Abstract:
Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.

Authors:Alexis Ross, Megha Srivastava, Jeremiah Blanchard, Jacob Andreas
Title: Modeling Student Learning with 3.8 Million Program Traces
Abstract:
As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public

Authors:Omri Uzan, Asaf Yehudai, Roi pony, Eyal Shnarch, Ariel Gera
Title: Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Abstract:
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval

Authors:Yolo Yunlong Tang, Jing Bi, Pinxin Liu, Zhenyu Pan, Zhangyun Tan, Qianxiang Shen, Jiani Liu, Hang Hua, Junjia Guo, Yunzhong Xiao, Chao Huang, Zhiyuan Wang, Susan Liang, Xinyi Liu, Yizhi Song, Yuhe Nie, Jia-Xing Zhong, Bozheng Li, Daiqing Qi, Ziyun Zeng, Ali Vosoughi, Luchuan Song, Zeliang Zhang, Daiki Shimada, Han Liu, Jiebo Luo, Chenliang Xu
Title: Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Abstract:
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training

Authors:Kuofeng Gao, Yiming Li, Chao Du, Xin Wang, Xingjun Ma, Shu-Tao Xia, Tianyu Pang
Title: Imperceptible Jailbreaking against Large Language Models
Abstract:
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.

Authors:Lucas Carrit Delgado Pinheiro, Ziru Chen, Bruno Caixeta Piazza, Ness Shroff, Yingbin Liang, Yuan-Sen Ting, Huan Sun
Title: Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
Abstract:
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.

Authors:Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan Jiang, Tong Zhang
Title: Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Abstract:
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.

Authors:Sjoerd Dost
Title: concurrentKanren: miniKanren for parallel execution
Abstract:
Concurrent logic programming predates miniKanren, but concurrent implementations of miniKanren have remained largely unexplored. In this work we present a parallel implementation of miniKanren in Go, demonstrating its feasibility and potential for performance improvements. Our approach leverages implicit parallelism allowing legacy programs to benefit from parallel execution. We discuss implementation strategies and evaluate the impact of parallelism, laying groundwork for future language-agnostic models.

Authors:Kun Xiang, Terry Jingchen Zhang, Yinya Huang, Jixi He, Zirong Liu, Yueling Tang, Ruizhe Zhou, Lijing Luo, Youpeng Wen, Xiuwei Chen, Bingqian Lin, Jianhua Han, Hang Xu, Hanhui Li, Bin Dong, Xiaodan Liang
Title: Aligning Perception, Reasoning, Modeling and Interaction: A Survey on Physical AI
Abstract:
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.

Authors:Shiwen Qin, Alexander Auras, Shay B. Cohen, Elliot J. Crowley, Michael Moeller, Linus Ericsson, Jovita Lukasik
Title: ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Abstract:
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.

Authors:Amir Hameed Mir
Title: The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Abstract:
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.

Authors:Jie Yang, Kexin Zhang, Guibin Zhang, Philip S. Yu, Kaize Ding
Title: Glocal Information Bottleneck for Time Series Imputation
Abstract:
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.

Authors:Haotian Gao, Zheng Dong, Jiawei Yong, Shintaro Fukushima, Kenjiro Taura, Renhe Jiang
Title: How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning
Abstract:
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.

Authors:Zheng Xiong, Kang Li, Zilin Wang, Matthew Jackson, Jakob Foerster, Shimon Whiteson
Title: HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Abstract:
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA

Authors:Yuxin Wen, Arman Zharmagambetov, Ivan Evtimov, Narine Kokhlikyan, Tom Goldstein, Kamalika Chaudhuri, Chuan Guo
Title: RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Abstract:
Prompt injection poses a serious threat to the reliability and safety of LLM agents. Recent defenses against prompt injection, such as Instruction Hierarchy and SecAlign, have shown notable robustness against static attacks. However, to more thoroughly evaluate the robustness of these defenses, it is arguably necessary to employ strong attacks such as automated red-teaming. To this end, we introduce RL-Hammer, a simple recipe for training attacker models that automatically learn to perform strong prompt injections and jailbreaks via reinforcement learning. RL-Hammer requires no warm-up data and can be trained entirely from scratch. To achieve high ASRs against industrial-level models with defenses, we propose a set of practical techniques that enable highly effective, universal attacks. Using this pipeline, RL-Hammer reaches a 98% ASR against GPT-4o and a $72\%$ ASR against GPT-5 with the Instruction Hierarchy defense. We further discuss the challenge of achieving high diversity in attacks, highlighting how attacker models tend to reward-hack diversity objectives. Finally, we show that RL-Hammer can evade multiple prompt injection detectors. We hope our work advances automatic red-teaming and motivates the development of stronger, more principled defenses. Code is available at https://github.com/facebookresearch/rl-injector.

Authors:Siwei Han, Jiaqi Liu, Yaofeng Su, Wenbo Duan, Xinyuan Liu, Cihang Xie, Mohit Bansal, Mingyu Ding, Linjun Zhang, Huaxiu Yao
Title: Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
Abstract:
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.

Authors:Chi Yan, Dan Xu
Title: Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
Abstract:
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ

Authors:Sarel Duanis, Asnat Greenstein-Messica, Eliya Habba
Title: JSON Whisperer: Efficient JSON Editing with LLMs
Abstract:
Large language models (LLMs) can modify JSON documents through natural language commands, but current approaches regenerate entire structures for each edit, resulting in computational inefficiency. We present JSON Whisperer, a framework that enables LLMs to generate RFC 6902 diff patches-expressing only the necessary modifications-rather than complete documents. We identify two key challenges in patch-based editing: (1) LLMs often miss related updates when generating isolated patches, and (2) array manipulations require tracking index shifts across operations, which LLMs handle poorly. To address these issues, we introduce EASE (Explicitly Addressed Sequence Encoding), which transforms arrays into dictionaries with stable keys, eliminating index arithmetic complexities. Our evaluation shows that patch generation with EASE reduces token usage by 31% while maintaining edit quality within 5% of full regeneration with particular gains for complex instructions and list manipulations. The dataset is available at: https://github.com/emnlp2025/JSON-Whisperer/

Authors:KunHo Heo, GiHyun Kim, SuYeon Kim, MyeongAh Cho
Title: Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction
Abstract:
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.

Authors:Foivos Paraperas Papantoniou, Stefanos Zafeiriou
Title: ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion
Abstract:
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.

Authors:Chao Liu, Ling Luo, Tengxiao Lv, Huan Zhuang, Lejing Yu, Jian Wang, Hongfei Lin
Title: FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
Abstract:
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.

Authors:Habin Lim, Yeongseob Won, Juwon Seo, Gyeong-Moon Park
Title: ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement
Abstract:
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit

Authors:Zeyi Zhang, Yanju Zhou, Heyuan Yao, Tenglong Ao, Xiaohang Zhan, Libin Liu
Title: Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents
Abstract:
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.

Authors:Hao Liu, Yunhao Gao, Wei Li, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.

Authors:Shrish Shrinath Vaidya, Gowthamaan Palani, Sidharth Ramesh, Velmurugan Balasubramanian, Minmini Selvam, Gokulraja Srinivasaraja, Ganapathy Krishnamurthi
Title: MedPAO: A Protocol-Driven Agent for Structuring Medical Reports
Abstract:
The deployment of Large Language Models (LLMs) for structuring clinical data is critically hindered by their tendency to hallucinate facts and their inability to follow domain-specific rules. To address this, we introduce MedPAO, a novel agentic framework that ensures accuracy and verifiable reasoning by grounding its operation in established clinical protocols such as the ABCDEF protocol for CXR analysis. MedPAO decomposes the report structuring task into a transparent process managed by a Plan-Act-Observe (PAO) loop and specialized tools. This protocol-driven method provides a verifiable alternative to opaque, monolithic models. The efficacy of our approach is demonstrated through rigorous evaluation: MedPAO achieves an F1-score of 0.96 on the critical sub-task of concept categorization. Notably, expert radiologists and clinicians rated the final structured outputs with an average score of 4.52 out of 5, indicating a level of reliability that surpasses baseline approaches relying solely on LLM-based foundation models. The code is available at: https://github.com/MiRL-IITM/medpao-agent

Authors:Zhejian Lai, Xiang Geng, Zhijun Wang, Yang Bai, Jiahuan Li, Rongxiang Weng, Jingang Wang, Xuezhi Cao, Xunliang Cai, Shujian Huang
Title: Making Mathematical Reasoning Adaptive
Abstract:
Mathematical reasoning is a primary indicator of large language models (LLMs) intelligence. However, existing LLMs exhibit failures of robustness and generalization. This paper attributes these deficiencies to spurious reasoning, i.e., producing answers from superficial features. To address this challenge, we propose the AdaR framework to enable adaptive reasoning, wherein models rely on problem-solving logic to produce answers. AdaR synthesizes logically equivalent queries by varying variable values, and trains models with RLVR on these data to penalize spurious logic while encouraging adaptive logic. To improve data quality, we extract the problem-solving logic from the original query and generate the corresponding answer by code execution, then apply a sanity check. Experimental results demonstrate that AdaR improves robustness and generalization, achieving substantial improvement in mathematical reasoning while maintaining high data efficiency. Analysis indicates that data synthesis and RLVR function in a coordinated manner to enable adaptive reasoning in LLMs. Subsequent analyses derive key design insights into the effect of critical factors and the applicability to instruct LLMs. Our project is available at https://github.com/LaiZhejian/AdaR

Authors:Honglin Liu, Chao Sun, Peng Hu, Yunfan Li, Xi Peng
Title: Conditional Representation Learning for Customized Tasks
Abstract:
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.

Authors:Jorge Leonardo Ruiz Williams
Title: Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
Abstract:
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.

Authors:Lili Xie, Yi Zhang, Ruihong Qiu, Jiajun Liu, Sen Wang
Title: MARCO: A Cooperative Knowledge Transfer Framework for Personalized Cross-domain Recommendations
Abstract:
Recommender systems frequently encounter data sparsity issues, particularly when addressing cold-start scenarios involving new users or items. Multi-source cross-domain recommendation (CDR) addresses these challenges by transferring valuable knowledge from multiple source domains to enhance recommendations in a target domain. However, existing reinforcement learning (RL)-based CDR methods typically rely on a single-agent framework, leading to negative transfer issues caused by inconsistent domain contributions and inherent distributional discrepancies among source domains. To overcome these limitations, MARCO, a Multi-Agent Reinforcement Learning-based Cross-Domain recommendation framework, is proposed. It leverages cooperative multi-agent reinforcement learning, where each agent is dedicated to estimating the contribution from an individual source domain, effectively managing credit assignment and mitigating negative transfer. In addition, an entropy-based action diversity penalty is introduced to enhance policy expressiveness and stabilize training by encouraging diverse agents' joint actions. Extensive experiments across four benchmark datasets demonstrate MARCO's superior performance over state-of-the-art methods, highlighting its robustness and strong generalization capabilities. The code is at https://github.com/xiewilliams/MARCO.

Authors:Jiashuo Sun, Shixuan Liu, Zhaochen Su, Xianrui Zhong, Pengcheng Jiang, Bowen Jin, Peiran Li, Weijia Shi, Jiawei Han
Title: GRACE: Generative Representation Learning via Contrastive Policy Optimization
Abstract:
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.

Authors:Zijing Hu, Yunze Tong, Fengda Zhang, Junkun Yuan, Jun Xiao, Kun Kuang
Title: Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Abstract:
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.

Authors:Yue Que, Yingyi Zhang, Xiangyu Zhao, Chen Ma
Title: Causality-aware Graph Aggregation Weight Estimator for Popularity Debiasing in Top-K Recommendation
Abstract:
Graph-based recommender systems leverage neighborhood aggregation to generate node representations, which is highly sensitive to popularity bias, resulting in an echo effect during information propagation. Existing graph-based debiasing solutions refine the aggregation process with attempts such as edge reconstruction or weight adjustment. However, these methods remain inadequate in fully alleviating popularity bias. Specifically, this is because 1) they provide no insights into graph aggregation rationality, thus lacking an optimality guarantee; 2) they fail to well balance the training and debiasing process, which undermines the effectiveness. In this paper, we propose a novel approach to mitigate popularity bias through rational modeling of the graph aggregation process. We reveal that graph aggregation is a special form of backdoor adjustment in causal inference, where the aggregation weight corresponds to the historical interaction likelihood distribution. Based on this insight, we devise an encoder-decoder architecture, namely Causality-aware Graph Aggregation Weight Estimator for Debiasing (CAGED), to approximate the unbiased aggregation weight by optimizing the evidence lower bound of the interaction likelihood. In order to enhance the debiasing effectiveness during early training stages, we further design a momentum update strategy that incrementally refines the aggregation weight matrix. Extensive experiments on three datasets demonstrate that CAGED outperforms existing graph-based debiasing methods. Our implementation is available at https://github.com/QueYork/CAGED.

Authors:Muyu He, Anand Kumar, Tsach Mackey, Meghana Rajeev, James Zou, Nazneen Rajani
Title: Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Abstract:
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $τ$-Bench to $τ$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $τ$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $τ$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.

Authors:Baber Jan, Saeed Anwar, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais
Title: SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_α$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.

Authors:Buyun Liang, Liangzu Peng, Jinqi Luo, Darshan Thaker, Kwan Ho Ryan Chan, René Vidal
Title: SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.

Authors:Ankit Vadehra, Bill Johnson, Gene Saunders, Pascal Poupart
Title: Time Is Effort: Estimating Human Post-Editing Time for Grammar Error Correction Tool Evaluation
Abstract:
Text editing can involve several iterations of revision. Incorporating an efficient Grammar Error Correction (GEC) tool in the initial correction round can significantly impact further human editing effort and final text quality. This raises an interesting question to quantify GEC Tool usability: How much effort can the GEC Tool save users? We present the first large-scale dataset of post-editing (PE) time annotations and corrections for two English GEC test datasets (BEA19 and CoNLL14). We introduce Post-Editing Effort in Time (PEET) for GEC Tools as a human-focused evaluation scorer to rank any GEC Tool by estimating PE time-to-correct. Using our dataset, we quantify the amount of time saved by GEC Tools in text editing. Analyzing the edit type indicated that determining whether a sentence needs correction and edits like paraphrasing and punctuation changes had the greatest impact on PE time. Finally, comparison with human rankings shows that PEET correlates well with technical effort judgment, providing a new human-centric direction for evaluating GEC tool usability. We release our dataset and code at: https://github.com/ankitvad/PEET_Scorer.

Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Title: MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.

Authors:Wojciech Górny, Michał Łasica, Alexandros Matsoukas
Title: Adaptive double-phase Rudin--Osher--Fatemi denoising model
Abstract:
We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.

Authors:Hyunjun Kim, Sejong Kim
Title: MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models
Abstract:
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation.

Authors:Nahshon Mokua Obiri, Kristof Van Laerhoven
Title: Environment-Aware Indoor LoRaWAN Path Loss: Parametric Regression Comparisons, Shadow Fading, and Calibrated Fade Margins
Abstract:
Indoor LoRaWAN propagation is shaped by structural and time-varying context factors, which challenge log-distance models and the assumption of log-normal shadowing. We present an environment-aware, statistically disciplined path loss framework evaluated using leakage-safe cross-validation on a 12-month campaign in an eighth-floor office measuring 240 m^2. A log-distance multi-wall mean is augmented with environmental covariates (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure), as well as the signal-to-noise ratio. We compare multiple linear regression with regularized variants, Bayesian linear regression, and a selective second-order polynomial applied to continuous drivers. Predictor relevance is established using heteroscedasticity-robust Type II and III analysis of variance and nested partial F tests. Shadow fading is profiled with kernel density estimation and non-parametric families, including Normal, Skew-Normal, Student's t, and Gaussian mixtures. The polynomial mean reduces cross-validated RMSE from 8.07 to 7.09 dB and raises R^2 from 0.81 to 0.86. Out-of-fold residuals are non-Gaussian; a 3-component mixture captures a sharp core with a light, broad tail. We convert accuracy into reliability by prescribing the fade margin as the upper-tail quantile of cross-validated residuals, quantifying uncertainty via a moving-block bootstrap, and validating on a held-out set. At 99% packet delivery ratio, the environment-aware polynomial requires 25.7 dB versus 27.7 to 27.9 dB for linear baselines. This result presents a deployment-ready, interpretable workflow with calibrated reliability control for indoor Internet of Things planning, aligned with 6G targets.

Authors:Lan Feng, Yang Gao, Eloi Zablocki, Quanyi Li, Wuyang Li, Sichao Liu, Matthieu Cord, Alexandre Alahi
Title: RAP: 3D Rasterization Augmented End-to-End Planning
Abstract:
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.

Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Title: Adaptive Coverage Policies in Conformal Prediction
Abstract:
Traditional conformal prediction methods construct prediction sets such that the true label falls within the set with a user-specified coverage level. However, poorly chosen coverage levels can result in uninformative predictions, either producing overly conservative sets when the coverage level is too high, or empty sets when it is too low. Moreover, the fixed coverage level cannot adapt to the specific characteristics of each individual example, limiting the flexibility and efficiency of these methods. In this work, we leverage recent advances in e-values and post-hoc conformal inference, which allow the use of data-dependent coverage levels while maintaining valid statistical guarantees. We propose to optimize an adaptive coverage policy by training a neural network using a leave-one-out procedure on the calibration set, allowing the coverage level and the resulting prediction set size to vary with the difficulty of each individual example. We support our approach with theoretical coverage guarantees and demonstrate its practical benefits through a series of experiments.

Authors:Jiarui Ouyang, Yihui Wang, Yihang Gao, Yingxue Xu, Shu Yang, Hao Chen
Title: GenAR: Next-Scale Autoregressive Generation for Spatial Gene Expression Prediction
Abstract:
Spatial Transcriptomics (ST) offers spatially resolved gene expression but remains costly. Predicting expression directly from widely available Hematoxylin and Eosin (H&E) stained images presents a cost-effective alternative. However, most computational approaches (i) predict each gene independently, overlooking co-expression structure, and (ii) cast the task as continuous regression despite expression being discrete counts. This mismatch can yield biologically implausible outputs and complicate downstream analyses. We introduce GenAR, a multi-scale autoregressive framework that refines predictions from coarse to fine. GenAR clusters genes into hierarchical groups to expose cross-gene dependencies, models expression as codebook-free discrete token generation to directly predict raw counts, and conditions decoding on fused histological and spatial embeddings. From an information-theoretic perspective, the discrete formulation avoids log-induced biases and the coarse-to-fine factorization aligns with a principled conditional decomposition. Extensive experimental results on four Spatial Transcriptomics datasets across different tissue types demonstrate that GenAR achieves state-of-the-art performance, offering potential implications for precision medicine and cost-effective molecular profiling. Code is publicly available at https://github.com/oyjr/genar.

Authors:Mohsen Hariri, Amirhossein Samandar, Michael Hinczewski, Vipin Chaudhary
Title: Don't Pass$\mathtt{@}k$: A Bayesian Framework for Large Language Model Evaluation
Abstract:
Pass$@k$ is widely used to report performance for LLM reasoning, but it often yields unstable, misleading rankings, especially when the number of trials (samples) is limited and compute is constrained. We present a principled Bayesian evaluation framework that replaces Pass$@k$ and average accuracy over $N$ trials (avg$@N$) with posterior estimates of a model's underlying success probability and credible intervals, yielding stable rankings and a transparent decision rule for differences. Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior mean is order-equivalent to average accuracy (Pass$@1$), explaining its empirical robustness while adding principled uncertainty. Empirically, in simulations with known ground-truth success rates and on AIME'24/'25, HMMT'25, and BrUMO'25, the Bayesian/avg procedure achieves faster convergence and greater rank stability than Pass$@k$ and recent variants, enabling reliable comparisons at far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful (non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based evaluations. Together, these results recommend replacing Pass$@k$ for LLM evaluation and ranking with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation while making uncertainty explicit. Code is available at https://mohsenhariri.github.io/bayes-kit

Authors:Huiwon Jang, Sihyun Yu, Heeseung Kwon, Hojin Jeon, Younggyo Seo, Jinwoo Shin
Title: ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Abstract:
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.

Authors:Seong Jin Ahn, Myoung-Ho Kim
Title: Diffusion-Assisted Distillation for Self-Supervised Graph Representation Learning with MLPs
Abstract:
For large-scale applications, there is growing interest in replacing Graph Neural Networks (GNNs) with lightweight Multi-Layer Perceptrons (MLPs) via knowledge distillation. However, distilling GNNs for self-supervised graph representation learning into MLPs is more challenging. This is because the performance of self-supervised learning is more related to the model's inductive bias than supervised learning. This motivates us to design a new distillation method to bridge a huge capacity gap between GNNs and MLPs in self-supervised graph representation learning. In this paper, we propose \textbf{D}iffusion-\textbf{A}ssisted \textbf{D}istillation for \textbf{S}elf-supervised \textbf{G}raph representation learning with \textbf{M}LPs (DAD-SGM). The proposed method employs a denoising diffusion model as a teacher assistant to better distill the knowledge from the teacher GNN into the student MLP. This approach enhances the generalizability and robustness of MLPs in self-supervised graph representation learning. Extensive experiments demonstrate that DAD-SGM effectively distills the knowledge of self-supervised GNNs compared to state-of-the-art GNN-to-MLP distillation methods. Our implementation is available at https://github.com/SeongJinAhn/DAD-SGM.

Authors:Ze Li, Ming Cheng, Ming Li
Title: Enhancing Speaker Verification with w2v-BERT 2.0 and Knowledge Distillation guided Structured Pruning
Abstract:
Large-scale self-supervised Pre-Trained Models (PTMs) have shown significant improvements in the speaker verification (SV) task by providing rich feature representations. In this paper, we utilize w2v-BERT 2.0, a model with approximately 600 million parameters trained on 450 million hours of unlabeled data across 143 languages, for the SV task. The MFA structure with Layer Adapter is employed to process the multi-layer feature outputs from the PTM and extract speaker embeddings. Additionally, we incorporate LoRA for efficient fine-tuning. Our model achieves state-of-the-art results with 0.12% and 0.55% EER on the Vox1-O and Vox1-H test sets, respectively. Furthermore, we apply knowledge distillation guided structured pruning, reducing the model size by 80% while achieving only a 0.04% EER degradation. Source code and models are released at https://github.com/ZXHY-82/w2v-BERT-2.0_SV.

Authors:Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Iong, Zhenyu Hou, Zehan Qi, Hanyu Lai, Yifan Xu, Rui Lu, Hongning Wang, Jie Tang, Yuxiao Dong
Title: AgentRL: Scaling Agentic Reinforcement Learning with a Multi-Turn, Multi-Task Framework
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AgentRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AgentRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AgentRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AgentRL matches the best results among all task-specific models. AgentRL is open-sourced at https://github.com/THUDM/AgentRL. The algorithm and framework are adopted in building \textsc{\href{https://autoglm.zhipuai.cn}{AutoGLM}}.

Authors:Moo Hyun Son, Jintaek Oh, Sun Bin Mun, Jaechul Roh, Sehyun Choi
Title: World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
Abstract:
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.

Authors:Alexander Kolpakov, Aidan Rocke
Title: Multiplicative Turing Ensembles, Pareto's Law, and Creativity
Abstract:
We study integer-valued multiplicative dynamics driven by i.i.d. prime multipliers and connect their macroscopic statistics to universal codelengths. We introduce the Multiplicative Turing Ensemble (MTE) and show how it arises naturally - though not uniquely - from ensembles of probabilistic Turing machines. Our modeling principle is variational: taking Elias' Omega codelength as an energy and imposing maximum entropy constraints yields a canonical Gibbs prior on integers and, by restriction, on primes. Under mild tail assumptions, this prior induces exponential tails for log-multipliers (up to slowly varying corrections), which in turn generate Pareto tails for additive gaps. We also prove time-average laws for the Omega codelength along MTE trajectories. Empirically, on Debian and PyPI package size datasets, a scaled Omega prior achieves the lowest KL divergence against codelength histograms. Taken together, the theory-data comparison suggests a qualitative split: machine-adapted regimes (Gibbs-aligned, finite first moment) exhibit clean averaging behavior, whereas human-generated complexity appears to sit beyond this regime, with tails heavy enough to produce an unbounded first moment, and therefore no averaging of the same kind.

Authors:Yiming Niu, Jinliang Deng, Yongxin Tong
Title: PhaseFormer: From Patches to Phases for Efficient and Effective Time Series Forecasting
Abstract:
Periodicity is a fundamental characteristic of time series data and has long played a central role in forecasting. Recent deep learning methods strengthen the exploitation of periodicity by treating patches as basic tokens, thereby improving predictive effectiveness. However, their efficiency remains a bottleneck due to large parameter counts and heavy computational costs. This paper provides, for the first time, a clear explanation of why patch-level processing is inherently inefficient, supported by strong evidence from real-world data. To address these limitations, we introduce a phase perspective for modeling periodicity and present an efficient yet effective solution, PhaseFormer. PhaseFormer features phase-wise prediction through compact phase embeddings and efficient cross-phase interaction enabled by a lightweight routing mechanism. Extensive experiments demonstrate that PhaseFormer achieves state-of-the-art performance with around 1k parameters, consistently across benchmark datasets. Notably, it excels on large-scale and complex datasets, where models with comparable efficiency often struggle. This work marks a significant step toward truly efficient and effective time series forecasting. Code is available at this repository: https://github.com/neumyor/PhaseFormer_TSL

Authors:Xinglong Luo, Ao Luo, Kunming Luo, Zhengning Wang, Ping Tan, Bing Zeng, Shuaicheng Liu
Title: Learning Efficient Meshflow and Optical Flow from Event Cameras
Abstract:
In this paper, we explore the problem of event-based meshflow estimation, a novel task that involves predicting a spatially smooth sparse motion field from event cameras. To start, we review the state-of-the-art in event-based flow estimation, highlighting two key areas for further research: i) the lack of meshflow-specific event datasets and methods, and ii) the underexplored challenge of event data density. First, we generate a large-scale High-Resolution Event Meshflow (HREM) dataset, which showcases its superiority by encompassing the merits of high resolution at 1280x720, handling dynamic objects and complex motion patterns, and offering both optical flow and meshflow labels. These aspects have not been fully explored in previous works. Besides, we propose Efficient Event-based MeshFlow (EEMFlow) network, a lightweight model featuring a specially crafted encoder-decoder architecture to facilitate swift and accurate meshflow estimation. Furthermore, we upgrade EEMFlow network to support dense event optical flow, in which a Confidence-induced Detail Completion (CDC) module is proposed to preserve sharp motion boundaries. We conduct comprehensive experiments to show the exceptional performance and runtime efficiency (30x faster) of our EEMFlow model compared to the recent state-of-the-art flow method. As an extension, we expand HREM into HREM+, a multi-density event dataset contributing to a thorough study of the robustness of existing methods across data with varying densities, and propose an Adaptive Density Module (ADM) to adjust the density of input event data to a more optimal range, enhancing the model's generalization ability. We empirically demonstrate that ADM helps to significantly improve the performance of EEMFlow and EEMFlow+ by 8% and 10%, respectively. Code and dataset are released at https://github.com/boomluo02/EEMFlowPlus.

Authors:Zitian Gao, Haoming Luo, Lynx Chen, Jason Klein Liu, Ran Tao, Joey Zhou, Bryan Dai
Title: What Makes Diffusion Language Models Super Data Learners?
Abstract:
Recent studies have shown that diffusion language models achieve remarkable data efficiency under limited-data constraints, yet the underlying mechanisms remain unclear. In this work, we perform extensive ablation experiments to disentangle the sources of this efficiency. Our results show that random masking of input tokens plays the dominant role. We further show that similar gains can be obtained through in MLP dropout and weight decay, indicating that stochastic regularization broadly enhances data efficiency in multi-epoch training. Our code is available at https://github.com/zitian-gao/data-efficiency.

Authors:Zheng Chen, Kewei Zhang, Xiaoyang Liu, Weihang Zhang, Mengfan Wang, Yifan Fu, Yulun Zhang
Title: QuantDemoire: Quantization with Outlier Aware for Image Demoiréing
Abstract:
Demoiréing aims to remove moiré artifacts that often occur in images. While recent deep learning-based methods have achieved promising results, they typically require substantial computational resources, limiting their deployment on edge devices. Model quantization offers a compelling solution. However, directly applying existing quantization methods to demoiréing models introduces severe performance degradation. The main reasons are distribution outliers and weakened representations in smooth regions. To address these issues, we propose QuantDemoire, a post-training quantization framework tailored to demoiréing. It contains two key components. **First}, we introduce an outlier-aware quantizer to reduce errors from outliers. It uses sampling-based range estimation to reduce activation outliers, and keeps a few extreme weights in FP16 with negligible cost. **Second**, we design a frequency-aware calibration strategy. It emphasizes low- and mid-frequency components during fine-tuning, which mitigates banding artifacts caused by low-bit quantization. Extensive experiments validate that our QuantDemoire achieves large reductions in parameters and computation while maintaining quality. Meanwhile, it outperforms existing quantization methods by over **4 dB** on W4A4. Code is released at: https://github.com/zhengchen1999/QuantDemoire.

Authors:Lele Liao, Qile Zhang, Ruofan Wu, Guanhua Fang
Title: Toward a unified framework for data-efficient evaluation of large language models
Abstract:
Evaluating large language models (LLMs) on comprehensive benchmarks is a cornerstone of their development, yet it's often computationally and financially prohibitive. While Item Response Theory (IRT) offers a promising path toward data-efficient evaluation by disentangling model capability from item difficulty, existing IRT-based methods are hampered by significant limitations. They are typically restricted to binary correctness metrics, failing to natively handle the continuous scores used in generative tasks, and they operate on single benchmarks, ignoring valuable structural knowledge like correlations across different metrics or benchmarks. To overcome these challenges, we introduce LEGO-IRT, a unified and flexible framework for data-efficient LLM evaluation. LEGO-IRT's novel design natively supports both binary and continuous evaluation metrics. Moreover, it introduces a factorized architecture to explicitly model and leverage structural knowledge, decomposing model ability estimates into a general component and structure-specific (e.g., per-metric or per-benchmark) components. Through extensive experiments involving $70$ LLMs across $5$ benchmarks, we show that LEGO-IRT achieves stable capability estimates using just $3\%$ of the total evaluation items. We demonstrate that incorporating structural knowledge reduces estimation error by up to $10\%$ and reveal that the latent abilities estimated by our framework may align more closely with human preferences.

Authors:Bingtao Yang, Yujia Wang, Mengzhi Jiao, Hongwei Huo
Title: Quantization Range Estimation for Convolutional Neural Networks
Abstract:
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.

Authors:Kushal Vyas, Ashok Veeraraghavan, Guha Balakrishnan
Title: Fit Pixels, Get Labels: Meta-learned Implicit Networks for Image Segmentation
Abstract:
Implicit neural representations (INRs) have achieved remarkable successes in learning expressive yet compact signal representations. However, they are not naturally amenable to predictive tasks such as segmentation, where they must learn semantic structures over a distribution of signals. In this study, we introduce MetaSeg, a meta-learning framework to train INRs for medical image segmentation. MetaSeg uses an underlying INR that simultaneously predicts per pixel intensity values and class labels. It then uses a meta-learning procedure to find optimal initial parameters for this INR over a training dataset of images and segmentation maps, such that the INR can simply be fine-tuned to fit pixels of an unseen test image, and automatically decode its class labels. We evaluated MetaSeg on 2D and 3D brain MRI segmentation tasks and report Dice scores comparable to commonly used U-Net models, but with $90\%$ fewer parameters. MetaSeg offers a fresh, scalable alternative to traditional resource-heavy architectures such as U-Nets and vision transformers for medical image segmentation. Our project is available at https://kushalvyas.github.io/metaseg.html .

Authors:Jiarui Liu, Jivitesh Jain, Mona Diab, Nishant Subramani
Title: LLM Microscope: What Model Internals Reveal About Answer Correctness and Context Utilization
Abstract:
Although large language models (LLMs) have tremendous utility, trustworthiness is still a chief concern: models often generate incorrect information with high confidence. While contextual information can help guide generation, identifying when a query would benefit from retrieved context and assessing the effectiveness of that context remains challenging. In this work, we operationalize interpretability methods to ascertain whether we can predict the correctness of model outputs from the model's activations alone. We also explore whether model internals contain signals about the efficacy of external context. We consider correct, incorrect, and irrelevant context and introduce metrics to distinguish amongst them. Experiments on six different models reveal that a simple classifier trained on intermediate layer activations of the first output token can predict output correctness with about 75% accuracy, enabling early auditing. Our model-internals-based metric significantly outperforms prompting baselines at distinguishing between correct and incorrect context, guarding against inaccuracies introduced by polluted context. These findings offer a lens to better understand the underlying decision-making processes of LLMs. Our code is publicly available at https://github.com/jiarui-liu/LLM-Microscope

Authors:Xuankang Zhang, Jiangming Liu
Title: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
Abstract:
The COVID-19 pandemic causes severe social and economic disruption around the world, raising various subjects that are discussed over social media. Identifying pandemic-related named entities as expressed on social media is fundamental and important to understand the discussions about the pandemic. However, there is limited work on named entity recognition on this topic due to the following challenges: 1) COVID-19 texts in social media are informal and their annotations are rare and insufficient to train a robust recognition model, and 2) named entity recognition in COVID-19 requires extensive domain-specific knowledge. To address these issues, we propose a novel entity knowledge augmentation approach for COVID-19, which can also be applied in general biomedical named entity recognition in both informal text format and formal text format. Experiments carried out on the COVID-19 tweets dataset and PubMed dataset show that our proposed entity knowledge augmentation improves NER performance in both fully-supervised and few-shot settings. Our source code is publicly available: https://github.com/kkkenshi/LLM-EKA/tree/master

Authors:Yaxin Hou, Bo Han, Yuheng Jia, Hui Liu, Junhui Hou
Title: Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning
Abstract:
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.

Authors:Jatin Prakash, Anirudh Buvanesh
Title: What Can You Do When You Have Zero Rewards During RL?
Abstract:
Reinforcement learning (RL) with outcome-based rewards has proven effective for improving large language models (LLMs) on complex reasoning tasks. However, its success often depends on the base model occasionally sampling correct solutions. When no correct solutions are sampled, training encounters a zero-reward barrier where learning stalls due to zero gradients. We study this scenario through the graph search task introduced in Bachmann et al. (2024) and evaluate recent methods that incorporate desirable components such as dense rewards, diversity incentives, and improved credit assignment. Our experiments show that none of these approaches overcome the zero-reward barrier if the base model never produces a correct answer. In contrast, we find that a simple data-centric intervention of adding easier samples to the training set enables the model to eventually solve the original hard task despite starting from zero reward. Importantly, this succeeds without modifying the RL algorithm itself. Because official implementations of several baselines were unavailable, we developed our own, which allowed us to conduct a detailed analysis of their failure modes. We release these implementations to support further research at: https://github.com/rl4reasoning/rl-baselines

Authors:Iryna Stanishevska
Title: Early-Warning of Thunderstorm-Driven Power Outages with a Two-Stage Machine Learning Model
Abstract:
Thunderstorm-driven outages are difficult to predict because most storms do not cause damage, convective processes occur rapidly and chaotically, and the available public data are both noisy and incomplete. We develop a 24-48 h early-warning model for summer, thunderstorm-related outages in Michigan using only open sources (EAGLE-I for ground truth; METAR for weather). We use the publicly released EAGLE-I outage dataset (2014-2022), maintained by Oak Ridge National Laboratory for the U.S. Department of Energy. The pipeline preserves convective micro-signals from a sparse station network via parameter-specific kriging with hourly variograms and targeted overdrafting to retain extremes, and builds causal spatio-temporal features (lags/rolling statistics; k-NN/IDW spatial aggregates) capturing precursors of severe convection (moisture advection, wind shifts, and pressure drops). The two-stage model design, combining a logistic gate and an LSTM regressor, limits routine periods and reduces noise exposure. The study uses event-centric metrics (cluster-based hits/misses/false alarms) and peak-conditional MASE (cMASE) in +/-Delta-hour windows around state-level peaks (>= 50,000), with uncertainty quantified by hourly moving-block bootstrap. On the test sample, Two-Stage detects more reference peaks across all windows (e.g., at +/-48 h it records 3/4 vs. 2/4; F1 66.7% vs. 57.1%) with one extra false alarm. Near peaks, it shows modest amplitude gains (2-3% lower cMASE at +/-0-12 h; bootstrap medians +9-13% at +/-6-12 h) but small losses at +/-36-48 h (~3-4%). Overall, errors are comparable to the one-step LSTM baseline. SHAP analysis confirms moisture-advection and wind/gust precursors, underscoring the value of the feature engineering. Despite open-data noise, the feature-driven pipeline yields actionable, event-focused early warnings for thunderstorm outages.

Authors:Sameep Vani, Shreyas Jena, Maitreya Patel, Chitta Baral, Somak Aditya, Yezhou Yang
Title: Harnessing Synthetic Preference Data for Enhancing Temporal Understanding of Video-LLMs
Abstract:
While Video Large Language Models (Video-LLMs) have demonstrated remarkable performance across general video understanding benchmarks-particularly in video captioning and descriptive tasks-they consistently underperform on tasks that require fine-grained temporal understanding. This limitation arises due to the lack of visual complexity and temporal nuance in current fine-tuning datasets, leading these models to rely heavily on language-based reasoning rather than truly understanding video dynamics. In this work, we propose TimeWarp, a systematic method to create a targeted synthetic temporal dataset to fine-tune the model's responses to encourage it to focus on the given input video. We introduce a large-scale preference dataset, created using TimeWarp, that captures intricate temporal dynamics often overlooked, grounding the model's responses to visual and temporal information. We demonstrate that when our method is applied to existing models, it significantly improves performance on temporal understanding benchmarks, highlighting the effectiveness of our proposed datasets in advancing temporal understanding in Video-LLMs, resulting in an absolute improvement in performance across seven benchmarks. Code is available at https://github.com/sameepv21/timewarp.

Authors:Tim Bary, Tiffanie Godelaine, Axel Abels, Benoît Macq
Title: Optimizing Resources for On-the-Fly Label Estimation with Multiple Unknown Medical Experts
Abstract:
Accurate ground truth estimation in medical screening programs often relies on coalitions of experts and peer second opinions. Algorithms that efficiently aggregate noisy annotations can enhance screening workflows, particularly when data arrive continuously and expert proficiency is initially unknown. However, existing algorithms do not meet the requirements for seamless integration into screening pipelines. We therefore propose an adaptive approach for real-time annotation that (I) supports on-the-fly labeling of incoming data, (II) operates without prior knowledge of medical experts or pre-labeled data, and (III) dynamically queries additional experts based on the latent difficulty of each instance. The method incrementally gathers expert opinions until a confidence threshold is met, providing accurate labels with reduced annotation overhead. We evaluate our approach on three multi-annotator classification datasets across different modalities. Results show that our adaptive querying strategy reduces the number of expert queries by up to 50% while achieving accuracy comparable to a non-adaptive baseline. Our code is available at https://github.com/tbary/MEDICS

Authors:Hyelin Nam, Hyojun Go, Byeongjun Park, Byung-Hoon Kim, Hyungjin Chung
Title: Generating Human Motion Videos using a Cascaded Text-to-Video Framework
Abstract:
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.

Authors:Md. Atabuzzaman, Andrew Zhang, Chris Thomas
Title: Zero-Shot Fine-Grained Image Classification Using Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated impressive performance on vision-language reasoning tasks. However, their potential for zero-shot fine-grained image classification, a challenging task requiring precise differentiation between visually similar categories, remains underexplored. We present a novel method that transforms zero-shot fine-grained image classification into a visual question-answering framework, leveraging LVLMs' comprehensive understanding capabilities rather than relying on direct class name generation. We enhance model performance through a novel attention intervention technique. We also address a key limitation in existing datasets by developing more comprehensive and precise class description benchmarks. We validate the effectiveness of our method through extensive experimentation across multiple fine-grained image classification benchmarks. Our proposed method consistently outperforms the current state-of-the-art (SOTA) approach, demonstrating both the effectiveness of our method and the broader potential of LVLMs for zero-shot fine-grained classification tasks. Code and Datasets: https://github.com/Atabuzzaman/Fine-grained-classification

Authors:Minseo Lee, Byeonghyeon Lee, Lucas Yunkyu Lee, Eunsoo Lee, Sangmin Kim, Seunghyeon Song, Joo Chan Lee, Jong Hwan Ko, Jaesik Park, Eunbyung Park
Title: Optimized Minimal 4D Gaussian Splatting
Abstract:
4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.

Authors:Rui Qian, Xin Yin, Chuanhang Deng, Zhiyuan Peng, Jian Xiong, Wei Zhai, Dejing Dou
Title: UGround: Towards Unified Visual Grounding with Unrolled Transformers
Abstract:
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.

Authors:Shuoyan Wei, Feng Li, Shengeng Tang, Runmin Cong, Yao Zhao, Meng Wang, Huihui Bai
Title: Towards Robust and Generalizable Continuous Space-Time Video Super-Resolution with Events
Abstract:
Continuous space-time video super-resolution (C-STVSR) has garnered increasing interest for its capability to reconstruct high-resolution and high-frame-rate videos at arbitrary spatial and temporal scales. However, prevailing methods often generalize poorly, producing unsatisfactory results when applied to out-of-distribution (OOD) scales. To overcome this limitation, we present EvEnhancer, a novel approach that marries the unique properties of high temporal resolution and high dynamic range encapsulated in event streams to achieve robust and generalizable C-STVSR. Our approach incorporates event-adapted synthesis that capitalizes on the spatiotemporal correlations between frames and events to capture long-term motion trajectories, enabling adaptive interpolation and fusion across space and time. This is then coupled with a local implicit video transformer that integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations and generate plausible videos at arbitrary resolutions and frame rates. We further develop EvEnhancerPlus, which builds a controllable switching mechanism that dynamically determines the reconstruction difficulty for each spatiotemporal pixel based on local event statistics. This allows the model to adaptively route reconstruction along the most suitable pathways at a fine-grained pixel level, substantially reducing computational overhead while maintaining excellent performance. Furthermore, we devise a cross-derivative training strategy that stabilizes the convergence of such a multi-pathway framework through staged cross-optimization. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both synthetic and real-world datasets, while maintaining superior generalizability at OOD scales. The code is available at https://github.com/W-Shuoyan/EvEnhancerPlus.

Authors:Xueyang Zhou, Yangming Xu, Guiyao Tie, Yongchao Chen, Guowen Zhang, Duanfeng Chu, Pan Zhou, Lichao Sun
Title: LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
Abstract:
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.

Authors:Changhong Li, Clément Bled, Rosa Fernandez, Shreejith Shanker
Title: ReTiDe: Real-Time Denoising for Energy-Efficient Motion Picture Processing with FPGAs
Abstract:
Denoising is a core operation in modern video pipelines. In codecs, in-loop filters suppress sensor noise and quantisation artefacts to improve rate-distortion performance; in cinema post-production, denoisers are used for restoration, grain management, and plate clean-up. However, state-of-the-art deep denoisers are computationally intensive and, at scale, are typically deployed on GPUs, incurring high power and cost for real-time, high-resolution streams. This paper presents Real-Time Denoise (ReTiDe), a hardware-accelerated denoising system that serves inference on data-centre Field Programmable Gate Arrays (FPGAs). A compact convolutional model is quantised (post-training quantisation plus quantisation-aware fine-tuning) to INT8 and compiled for AMD Deep Learning Processor Unit (DPU)-based FPGAs. A client-server integration offloads computation from the host CPU/GPU to a networked FPGA service, while remaining callable from existing workflows, e.g., NUKE, without disrupting artist tooling. On representative benchmarks, ReTiDe delivers 37.71$\times$ Giga Operations Per Second (GOPS) throughput and 5.29$\times$ higher energy efficiency than prior FPGA denoising accelerators, with negligible degradation in Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity Index (SSIM). These results indicate that specialised accelerators can provide practical, scalable denoising for both encoding pipelines and post-production, reducing energy per frame without sacrificing quality or workflow compatibility. Code is available at https://github.com/RCSL-TCD/ReTiDe.

Authors:Jarosław Adam Miszczak
Title: Cooperation in public goods game on regular lattices with agents changing interaction groups
Abstract:
The emergence of cooperation in the groups of interacting agents is one of the most fascinating phenomena observed in many complex systems studied in social science and ecology, even in the situations where one would expect the agent to use a free-rider policy. This is especially surprising in the situation where no external mechanisms based on reputation or punishment are present. One of the possible explanations of this effect is the inhomogeneity of the various aspects of interactions, which can be used to clarify the seemingly paradoxical behavior. In this report we demonstrate that the diversity of interaction networks helps to some degree to explain the emergence of cooperation. We extend the model of spatial interaction diversity introduced in [L. Shang et al., Physica A, 593:126999 (2022)] by enabling the evaluation of the interaction groups. We show that the process of the reevaluation of the interaction group facilitates the emergence of cooperation. Furthermore, we also observe that a significant participation of agents switching their interaction neighborhoods has a negative impact on the formation of cooperation. The introduced scenario can help to understand the formation of cooperation in the systems where no additional mechanisms for controlling agents are included.

Authors:Yiheng Dong, Yi Lin, Xin Yang
Title: CoPA: Hierarchical Concept Prompting and Aggregating Network for Explainable Diagnosis
Abstract:
The transparency of deep learning models is essential for clinical diagnostics. Concept Bottleneck Model provides clear decision-making processes for diagnosis by transforming the latent space of black-box models into human-understandable concepts. However, concept-based methods still face challenges in concept capture capabilities. These methods often rely on encode features solely from the final layer, neglecting shallow and multiscale features, and lack effective guidance in concept encoding, hindering fine-grained concept extraction. To address these issues, we introduce Concept Prompting and Aggregating (CoPA), a novel framework designed to capture multilayer concepts under prompt guidance. This framework utilizes the Concept-aware Embedding Generator (CEG) to extract concept representations from each layer of the visual encoder. Simultaneously, these representations serve as prompts for Concept Prompt Tuning (CPT), steering the model towards amplifying critical concept-related visual cues. Visual representations from each layer are aggregated to align with textual concept representations. With the proposed method, valuable concept-wise information in the images is captured and utilized effectively, thus improving the performance of concept and disease prediction. Extensive experimental results demonstrate that CoPA outperforms state-of-the-art methods on three public datasets. Code is available at https://github.com/yihengd/CoPA.

Authors:Jiaxin Deng, Junbiao Pang
Title: Adaptively Sampling-Reusing-Mixing Decomposed Gradients to Speed Up Sharpness Aware Minimization
Abstract:
Sharpness-Aware Minimization (SAM) improves model generalization but doubles the computational cost of Stochastic Gradient Descent (SGD) by requiring twice the gradient calculations per optimization step. To mitigate this, we propose Adaptively sampling-Reusing-mixing decomposed gradients to significantly accelerate SAM (ARSAM). Concretely, we firstly discover that SAM's gradient can be decomposed into the SGD gradient and the Projection of the Second-order gradient onto the First-order gradient (PSF). Furthermore, we observe that the SGD gradient and PSF dynamically evolve during training, emphasizing the growing role of the PSF to achieve a flat minima. Therefore, ARSAM is proposed to the reused PSF and the timely updated PSF still maintain the model's generalization ability. Extensive experiments show that ARSAM achieves state-of-the-art accuracies comparable to SAM across diverse network architectures. On CIFAR-10/100, ARSAM is comparable to SAM while providing a speedup of about 40\%. Moreover, ARSAM accelerates optimization for the various challenge tasks (\textit{e.g.}, human pose estimation, and model quantization) without sacrificing performance, demonstrating its broad practicality.% The code is publicly accessible at: https://github.com/ajiaaa/ARSAM.

Authors:Richard A. Dubniczky, Bertalan Borsos, Tihanyi Norbert
Title: You Have Been LaTeXpOsEd: A Systematic Analysis of Information Leakage in Preprint Archives Using Large Language Models
Abstract:
The widespread use of preprint repositories such as arXiv has accelerated the communication of scientific results but also introduced overlooked security risks. Beyond PDFs, these platforms provide unrestricted access to original source materials, including LaTeX sources, auxiliary code, figures, and embedded comments. In the absence of sanitization, submissions may disclose sensitive information that adversaries can harvest using open-source intelligence. In this work, we present the first large-scale security audit of preprint archives, analyzing more than 1.2 TB of source data from 100,000 arXiv submissions. We introduce LaTeXpOsEd, a four-stage framework that integrates pattern matching, logical filtering, traditional harvesting techniques, and large language models (LLMs) to uncover hidden disclosures within non-referenced files and LaTeX comments. To evaluate LLMs' secret-detection capabilities, we introduce LLMSec-DB, a benchmark on which we tested 25 state-of-the-art models. Our analysis uncovered thousands of PII leaks, GPS-tagged EXIF files, publicly available Google Drive and Dropbox folders, editable private SharePoint links, exposed GitHub and Google credentials, and cloud API keys. We also uncovered confidential author communications, internal disagreements, and conference submission credentials, exposing information that poses serious reputational risks to both researchers and institutions. We urge the research community and repository operators to take immediate action to close these hidden security gaps. To support open science, we release all scripts and methods from this study but withhold sensitive findings that could be misused, in line with ethical principles. The source code and related material are available at the project website https://github.com/LaTeXpOsEd

Authors:Ilias Tougui, Mehdi Zakroum, Mounir Ghogho
Title: Cross-Lingual Multi-Granularity Framework for Interpretable Parkinson's Disease Diagnosis from Speech
Abstract:
Parkinson's Disease (PD) affects over 10 million people worldwide, with speech impairments in up to 89% of patients. Current speech-based detection systems analyze entire utterances, potentially overlooking the diagnostic value of specific phonetic elements. We developed a granularity-aware approach for multilingual PD detection using an automated pipeline that extracts time-aligned phonemes, syllables, and words from recordings. Using Italian, Spanish, and English datasets, we implemented a bidirectional LSTM with multi-head attention to compare diagnostic performance across the different granularity levels. Phoneme-level analysis achieved superior performance with AUROC of 93.78% +- 2.34% and accuracy of 92.17% +- 2.43%. This demonstrates enhanced diagnostic capability for cross-linguistic PD detection. Importantly, attention analysis revealed that the most informative speech features align with those used in established clinical protocols: sustained vowels (/a/, /e/, /o/, /i/) at phoneme level, diadochokinetic syllables (/ta/, /pa/, /la/, /ka/) at syllable level, and /pataka/ sequences at word level. Source code will be available at https://github.com/jetliqs/clearpd.

Authors:Zuomin Qu, Yimao Guo, Qianyue Hu, Wei Lu
Title: LoRA Patching: Exposing the Fragility of Proactive Defenses against Deepfakes
Abstract:
Deepfakes pose significant societal risks, motivating the development of proactive defenses that embed adversarial perturbations in facial images to prevent manipulation. However, in this paper, we show that these preemptive defenses often lack robustness and reliability. We propose a novel approach, Low-Rank Adaptation (LoRA) patching, which injects a plug-and-play LoRA patch into Deepfake generators to bypass state-of-the-art defenses. A learnable gating mechanism adaptively controls the effect of the LoRA patch and prevents gradient explosions during fine-tuning. We also introduce a Multi-Modal Feature Alignment (MMFA) loss, encouraging the features of adversarial outputs to align with those of the desired outputs at the semantic level. Beyond bypassing, we present defensive LoRA patching, embedding visible warnings in the outputs as a complementary solution to mitigate this newly identified security vulnerability. With only 1,000 facial examples and a single epoch of fine-tuning, LoRA patching successfully defeats multiple proactive defenses. These results reveal a critical weakness in current paradigms and underscore the need for more robust Deepfake defense strategies. Our code is available at https://github.com/ZOMIN28/LoRA-Patching.

Authors:Michael Etienne Van Huffel, Nathan Kirk, Makram Chahine, Daniela Rus, T. Konstantin Rusch
Title: Neural Low-Discrepancy Sequences
Abstract:
Low-discrepancy points are designed to efficiently fill the space in a uniform manner. This uniformity is highly advantageous in many problems in science and engineering, including in numerical integration, computer vision, machine perception, computer graphics, machine learning, and simulation. Whereas most previous low-discrepancy constructions rely on abstract algebra and number theory, Message-Passing Monte Carlo (MPMC) was recently introduced to exploit machine learning methods for generating point sets with lower discrepancy than previously possible. However, MPMC is limited to generating point sets and cannot be extended to low-discrepancy sequences (LDS), i.e., sequences of points in which every prefix has low discrepancy, a property essential for many applications. To address this limitation, we introduce Neural Low-Discrepancy Sequences ($NeuroLDS$), the first machine learning-based framework for generating LDS. Drawing inspiration from classical LDS, we train a neural network to map indices to points such that the resulting sequences exhibit minimal discrepancy across all prefixes. To this end, we deploy a two-stage learning process: supervised approximation of classical constructions followed by unsupervised fine-tuning to minimize prefix discrepancies. We demonstrate that $NeuroLDS$ outperforms all previous LDS constructions by a significant margin with respect to discrepancy measures. Moreover, we demonstrate the effectiveness of $NeuroLDS$ across diverse applications, including numerical integration, robot motion planning, and scientific machine learning. These results highlight the promise and broad significance of Neural Low-Discrepancy Sequences. Our code can be found at https://github.com/camail-official/neuro-lds.

Authors:Zachary Eberhart, Collin McMillan
Title: APIDA-Chat: Structured Synthesis of API Search Dialogues to Bootstrap Conversational Agents
Abstract:
Large-language-model assistants are suitable for explaining popular APIs, yet they falter on niche or proprietary libraries because the multi-turn dialogue data needed for fine-tuning are scarce. We present APIDA-Chat, an open-source pipeline that converts symbolic dialogue-act "scripts" into realistic, domain-grounded API Search conversations using a lightweight model for inexpensive training data generation. Phase I pairs a legacy dialogue planner with a high-capability teacher LLM (o4-mini) to synthesize a "gold set" of realized dialogues; then, a smaller Llama 3.2 3B student model is fine-tuned on this corpus. Phase II drops the teacher and reuses the same planner with the fine-tuned model, allowing rapid, low-cost synthesis of new dialogues without exposing source code to external services. The fine-tuned student improves BLEU from 0.38 to 0.50 and BERTScore from 0.88 to 0.91 versus the base model while running entirely on a single consumer GPU. All components are modular and publicly released to serve as a conservative baseline for future work. APIDA-Chat is open-sourced at https://github.com/Zeberhart/apida-chat and a video demo is available at https://youtu.be/YqmZBHyGbPs .

Authors:Bumjun Kim, Dongjae Jeon, Dueun Kim, Wonje Jeung, Albert No
Title: Rainbow Padding: Mitigating Early Termination in Instruction-Tuned Diffusion LLMs
Abstract:
Diffusion large language models (dLLMs) have emerged as a promising alternative to autoregressive models, offering flexible generation orders and strong performance on complex reasoning tasks. However, instruction-tuned dLLMs exhibit a critical vulnerability we term \texttt{} overflow: as allocated sequence length increases, responses paradoxically become shorter, collapsing into early termination or degenerating into streams of \texttt{} tokens. Although noticed in practice, this issue has not been systematically analyzed. We trace its root cause to the dual role of \texttt{} as both termination and padding, which concentrates probability mass on \texttt{} at later positions and propagates backward to trigger early termination. To address this, we introduce Rainbow Padding, a simple remedy that replaces repeated \texttt{} placeholders with a repeating cycle of distinct padding tokens, distributing probability mass and breaking \texttt{} dominance. Experiments show that Rainbow Padding substantially improves length robustness and output quality, with as few as seven padding tokens sufficient to prevent early termination. Moreover, the method integrates efficiently into existing instruction-tuned models: LoRA fine-tuning for a single epoch on minimal data yields significant improvements, making this solution highly practical. The code is publicly available at https://github.com/quasar529/rainbow-padding.

Authors:Amir Sadikov
Title: LLM-Guided Evolutionary Program Synthesis for Quasi-Monte Carlo Design
Abstract:
Low-discrepancy point sets and digital sequences underpin quasi-Monte Carlo (QMC) methods for high-dimensional integration. We cast two long-standing QMC design problems as program synthesis and solve them with an LLM-guided evolutionary loop that mutates and selects code under task-specific fitness: (i) constructing finite 2D/3D point sets with low star discrepancy, and (ii) choosing Sobol' direction numbers that minimize randomized QMC error on downstream integrands. Our two-phase procedure combines constructive code proposals with iterative numerical refinement. On finite sets, we rediscover known optima in small 2D cases and set new best-known 2D benchmarks for N >= 40, while matching most known 3D optima up to the proven frontier (N <= 8) and reporting improved 3D benchmarks beyond. On digital sequences, evolving Sobol' parameters yields consistent reductions in randomized quasi-Monte Carlo (rQMC) mean-squared error for several 32-dimensional option-pricing tasks relative to widely used Joe--Kuo parameters, while preserving extensibility to any sample size and compatibility with standard randomizations. Taken together, the results demonstrate that LLM-driven evolutionary program synthesis can automate the discovery of high-quality QMC constructions, recovering classical designs where they are optimal and improving them where finite-N structure matters. Data and code are available at https://github.com/hockeyguy123/openevolve-star-discrepancy.git.

Authors:Sina Alemohammad, Zhangyang Wang, Richard G. Baraniuk
Title: Neon: Negative Extrapolation From Self-Training Improves Image Generation
Abstract:
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon

Authors:Claudia Takyi Ankomah, Livingstone Eli Ayivor, Ireneaus Nyame, Leslie Wambo, Patrick Yeboah Bonsu, Aondona Moses Iorumbur, Raymond Confidence, Toufiq Musah
Title: How We Won BraTS-SSA 2025: Brain Tumor Segmentation in the Sub-Saharan African Population Using Segmentation-Aware Data Augmentation and Model Ensembling
Abstract:
Brain tumors, particularly gliomas, pose significant chall-enges due to their complex growth patterns, infiltrative nature, and the variability in brain structure across individuals, which makes accurate diagnosis and monitoring difficult. Deep learning models have been developed to accurately delineate these tumors. However, most of these models were trained on relatively homogenous high-resource datasets, limiting their robustness when deployed in underserved regions. In this study, we performed segmentation-aware offline data augmentation on the BraTS-Africa dataset to increase the data sample size and diversity to enhance generalization. We further constructed an ensemble of three distinct architectures, MedNeXt, SegMamba, and Residual-Encoder U-Net, to leverage their complementary strengths. Our best-performing model, MedNeXt, was trained on 1000 epochs and achieved the highest average lesion-wise dice and normalized surface distance scores of 0.86 and 0.81 respectively. However, the ensemble model trained for 500 epochs produced the most balanced segmentation performance across the tumour subregions. This work demonstrates that a combination of advanced augmentation and model ensembling can improve segmentation accuracy and robustness on diverse and underrepresented datasets. Code available at: https://github.com/SPARK-Academy-2025/SPARK-2025/tree/main/SPARK2025_BraTs_MODELS/SPARK_NeuroAshanti

Authors:Cory Brynds, Parker McLeod, Lauren Caccamise, Asmita Pal, Dewan Saiham, Sazadur Rahman, Joshua San Miguel, Di Wu
Title: CryptOracle: A Modular Framework to Characterize Fully Homomorphic Encryption
Abstract:
Privacy-preserving machine learning has become an important long-term pursuit in this era of artificial intelligence (AI). Fully Homomorphic Encryption (FHE) is a uniquely promising solution, offering provable privacy and security guarantees. Unfortunately, computational cost is impeding its mass adoption. Modern solutions are up to six orders of magnitude slower than plaintext execution. Understanding and reducing this overhead is essential to the advancement of FHE, particularly as the underlying algorithms evolve rapidly. This paper presents a detailed characterization of OpenFHE, a comprehensive open-source library for FHE, with a particular focus on the CKKS scheme due to its significant potential for AI and machine learning applications. We introduce CryptOracle, a modular evaluation framework comprising (1) a benchmark suite, (2) a hardware profiler, and (3) a predictive performance model. The benchmark suite encompasses OpenFHE kernels at three abstraction levels: workloads, microbenchmarks, and primitives. The profiler is compatible with standard and user-specified security parameters. CryptOracle monitors application performance, captures microarchitectural events, and logs power and energy usage for AMD and Intel systems. These metrics are consumed by a modeling engine to estimate runtime and energy efficiency across different configuration scenarios, with error geomean of $-7.02\%\sim8.40\%$ for runtime and $-9.74\%\sim15.67\%$ for energy. CryptOracle is open source, fully modular, and serves as a shared platform to facilitate the collaborative advancements of applications, algorithms, software, and hardware in FHE. The CryptOracle code can be accessed at https://github.com/UnaryLab/CryptOracle.

Authors:Sixten Norelius, Aaron O. Feldman, Mac Schwager
Title: SketchPlan: Diffusion Based Drone Planning From Human Sketches
Abstract:
We propose SketchPlan, a diffusion-based planner that interprets 2D hand-drawn sketches over depth images to generate 3D flight paths for drone navigation. SketchPlan comprises two components: a SketchAdapter that learns to map the human sketches to projected 2D paths, and DiffPath, a diffusion model that infers 3D trajectories from 2D projections and a first person view depth image. Our model achieves zero-shot sim-to-real transfer, generating accurate and safe flight paths in previously unseen real-world environments. To train the model, we build a synthetic dataset of 32k flight paths using a diverse set of photorealistic 3D Gaussian Splatting scenes. We automatically label the data by computing 2D projections of the 3D flight paths onto the camera plane, and use this to train the DiffPath diffusion model. However, since real human 2D sketches differ significantly from ideal 2D projections, we additionally label 872 of the 3D flight paths with real human sketches and use this to train the SketchAdapter to infer the 2D projection from the human sketch. We demonstrate SketchPlan's effectiveness in both simulated and real-world experiments, and show through ablations that training on a mix of human labeled and auto-labeled data together with a modular design significantly boosts its capabilities to correctly interpret human intent and infer 3D paths. In real-world drone tests, SketchPlan achieved 100\% success in low/medium clutter and 40\% in unseen high-clutter environments, outperforming key ablations by 20-60\% in task completion.

Authors:Ali Khairallah, Arkaitz Zubiaga
Title: ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
Abstract:
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.

Authors:Lyes Saad Saoud, Loic Lesobre, Enrico Sorato, Irfan Hussain
Title: Real-Time Threaded Houbara Detection and Segmentation for Wildlife Conservation using Mobile Platforms
Abstract:
Real-time animal detection and segmentation in natural environments are vital for wildlife conservation, enabling non-invasive monitoring through remote camera streams. However, these tasks remain challenging due to limited computational resources and the cryptic appearance of many species. We propose a mobile-optimized two-stage deep learning framework that integrates a Threading Detection Model (TDM) to parallelize YOLOv10-based detection and MobileSAM-based segmentation. Unlike prior YOLO+SAM pipelines, our approach improves real-time performance by reducing latency through threading. YOLOv10 handles detection while MobileSAM performs lightweight segmentation, both executed concurrently for efficient resource use. On the cryptic Houbara Bustard, a conservation-priority species, our model achieves mAP50 of 0.9627, mAP75 of 0.7731, mAP95 of 0.7178, and a MobileSAM mIoU of 0.7421. YOLOv10 operates at 43.7 ms per frame, confirming real-time readiness. We introduce a curated Houbara dataset of 40,000 annotated images to support model training and evaluation across diverse conditions. The code and dataset used in this study are publicly available on GitHub at https://github.com/LyesSaadSaoud/mobile-houbara-detseg. For interactive demos and additional resources, visit https://lyessaadsaoud.github.io/LyesSaadSaoud-Threaded-YOLO-SAM-Houbara.

Authors:Yulun Zhang, Alexandre O. G. Barbosa, Federico Pecora, Jiaoyang Li
Title: Destination-to-Chutes Task Mapping Optimization for Multi-Robot Coordination in Robotic Sorting Systems
Abstract:
We study optimizing a destination-to-chutes task mapping to improve throughput in Robotic Sorting Systems (RSS), where a team of robots sort packages on a sortation floor by transporting them from induct workstations to eject chutes based on their shipping destinations (e.g. Los Angeles or Pittsburgh). The destination-to-chutes task mapping is used to determine which chutes a robot can drop its package. Finding a high-quality task mapping is challenging because of the complexity of a real-world RSS. First, optimizing task mapping is interdependent with robot target assignment and path planning. Second, chutes will be CLOSED for a period of time once they receive sufficient packages to allow for downstream processing. Third, task mapping quality directly impacts the downstream processing, as scattered chutes for the same destination increase package handling time. In this paper, we first formally define task mappings and the problem of Task Mapping Optimization (TMO). We then present a simulator of RSS to evaluate task mappings. We then present a simple TMO method based on the Evolutionary Algorithm and Mixed Integer Linear Programming, demonstrating the advantage of our optimized task mappings over the greedily generated ones in various RSS setups with different map sizes, numbers of chutes, and destinations. Finally, we use Quality Diversity algorithms to analyze the throughput of a diverse set of task mappings. Our code is available online at https://github.com/lunjohnzhang/tmo_public.

Authors:Dingqi Zhang, Ran Tao, Sheng Cheng, Naira Hovakimyan, Mark W. Mueller
Title: A Simulation Evaluation Suite for Robust Adaptive Quadcopter Control
Abstract:
Robust adaptive control methods are essential for maintaining quadcopter performance under external disturbances and model uncertainties. However, fragmented evaluations across tasks, simulators, and implementations hinder systematic comparison of these methods. This paper introduces an easy-to-deploy, modular simulation testbed for quadcopter control, built on RotorPy, that enables evaluation under a wide range of disturbances such as wind, payload shifts, rotor faults, and control latency. The framework includes a library of representative adaptive and non-adaptive controllers and provides task-relevant metrics to assess tracking accuracy and robustness. The unified modular environment enables reproducible evaluation across control methods and eliminates redundant reimplementation of components such as disturbance models, trajectory generators, and analysis tools. We illustrate the testbed's versatility through examples spanning multiple disturbance scenarios and trajectory types, including automated stress testing, to demonstrate its utility for systematic analysis. Code is available at https://github.com/Dz298/AdaptiveQuadBench.

Authors:Jiajun Shen, Yufei Jin, Yi He, Xingquan Zhu
Title: LHGEL: Large Heterogeneous Graph Ensemble Learning using Batch View Aggregation
Abstract:
Learning from large heterogeneous graphs presents significant challenges due to the scale of networks, heterogeneity in node and edge types, variations in nodal features, and complex local neighborhood structures. This paper advocates for ensemble learning as a natural solution to this problem, whereby training multiple graph learners under distinct sampling conditions, the ensemble inherently captures different aspects of graph heterogeneity. Yet, the crux lies in combining these learners to meet global optimization objective while maintaining computational efficiency on large-scale graphs. In response, we propose LHGEL, an ensemble framework that addresses these challenges through batch sampling with three key components, namely batch view aggregation, residual attention, and diversity regularization. Specifically, batch view aggregation samples subgraphs and forms multiple graph views, while residual attention adaptively weights the contributions of these views to guide node embeddings toward informative subgraphs, thereby improving the accuracy of base learners. Diversity regularization encourages representational disparity across embedding matrices derived from different views, promoting model diversity and ensemble robustness. Our theoretical study demonstrates that residual attention mitigates gradient vanishing issues commonly faced in ensemble learning. Empirical results on five real heterogeneous networks validate that our LHGEL approach consistently outperforms its state-of-the-art competitors by substantial margin. Codes and datasets are available at https://github.com/Chrisshen12/LHGEL.

Authors:Franz A. Heinsen, Leo Kozachkov
Title: Generalized Orders of Magnitude for Scalable, Parallel, High-Dynamic-Range Computation
Abstract:
Many domains, from deep learning to finance, require compounding real numbers over long sequences, often leading to catastrophic numerical underflow or overflow. We introduce generalized orders of magnitude (GOOMs), a principled extension of traditional orders of magnitude that incorporates floating-point numbers as a special case, and which in practice enables stable computation over significantly larger dynamic ranges of real numbers than previously possible. We implement GOOMs, along with an efficient custom parallel prefix scan, to support native execution on parallel hardware such as GPUs. We demonstrate that our implementation of GOOMs outperforms traditional approaches with three representative experiments, all of which were previously considered impractical or impossible, and now become possible and practical: (1) compounding real matrix products far beyond standard floating-point limits; (2) estimating spectra of Lyapunov exponents in parallel, orders of magnitude faster than with previous methods, applying a novel selective-resetting method to prevent state colinearity; and (3) capturing long-range dependencies in deep recurrent neural networks with non-diagonal recurrent states, computed in parallel via a prefix scan, without requiring any form of stabilization. Our results show that our implementation of GOOMs, combined with efficient parallel scanning, offers a scalable and numerically robust alternative to conventional floating-point numbers for high-dynamic-range applications.

Authors:Congzheng Song, Xinyu Tang
Title: Memory-Efficient Backpropagation for Fine-Tuning LLMs on Resource-Constrained Mobile Devices
Abstract:
Fine-tuning large language models (LLMs) with backpropagation\textemdash even for a subset of parameters such as LoRA\textemdash can be much more memory-consuming than inference and is often deemed impractical for resource-constrained mobile devices. Alternative methods, such as zeroth-order optimization (ZO), can greatly reduce the memory footprint but come at the cost of significantly slower model convergence (10$\times$ to 100$\times$ more steps than backpropagation). We propose a memory-efficient implementation of backpropagation (MeBP) on mobile devices that provides better trade-off between memory usage and compute time, while converging faster and achieving better performance than the ZO baseline. We verify the effectiveness of MeBP on an iPhone 15 Pro Max and show that various LLMs, ranging from 0.5B to 4B parameters, can be fine-tuned using less than 1GB of memory. We release an example of the MeBP implementation at https://github.com/apple/ml-mebp.

Authors:Cassandra Masschelein, Michelle Richer, Paul W. Ayers
Title: Optimizing and benchmarking the computation of the permanent of general matrices
Abstract:
Evaluating the permanent of a matrix is a fundamental computation that emerges in many domains, including traditional fields like computational complexity theory, graph theory, many-body quantum theory and emerging disciplines like machine learning and quantum computing. While conceptually simple, evaluating the permanent is extremely challenging: no polynomial-time algorithm is available (unless $\textsc{P} = \textsc{NP}$). To the best of our knowledge there is no publicly available software that automatically uses the most efficient algorithm for computing the permanent. In this work we designed, developed, and investigated the performance of our software package which evaluates the permanent of an arbitrary rectangular matrix, supporting three algorithms generally regarded as the fastest while giving the exact solution (the straightforward combinatoric algorithm, the Ryser algorithm, and the Glynn algorithm) and, optionally, automatically switching to the optimal algorithm based on the type and dimensionality of the input matrix. To do this, we developed an extension of the Glynn algorithm to rectangular matrices. Our free and open-source software package is distributed via Github, at https://github.com/theochem/matrix-permanent.

Authors:Javad Rafiei Asl, Sidhant Narula, Mohammad Ghasemigol, Eduardo Blanco, Daniel Takabi
Title: NEXUS: Network Exploration for eXploiting Unsafe Sequences in Multi-Turn LLM Jailbreaks
Abstract:
Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS

Authors:Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric
Title: PLSemanticsBench: Large Language Models As Programming Language Interpreters
Abstract:
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

Authors:Xiaoyan Bai, Aryan Shrivastava, Ari Holtzman, Chenhao Tan
Title: Know Thyself? On the Incapability and Implications of AI Self-Recognition
Abstract:
Self-recognition is a crucial metacognitive capability for AI systems, relevant not only for psychological analysis but also for safety, particularly in evaluative scenarios. Motivated by contradictory interpretations of whether models possess self-recognition (Panickssery et al., 2024; Davidson et al., 2024), we introduce a systematic evaluation framework that can be easily applied and updated. Specifically, we measure how well 10 contemporary larger language models (LLMs) can identify their own generated text versus text from other models through two tasks: binary self-recognition and exact model prediction. Different from prior claims, our results reveal a consistent failure in self-recognition. Only 4 out of 10 models predict themselves as generators, and the performance is rarely above random chance. Additionally, models exhibit a strong bias toward predicting GPT and Claude families. We also provide the first evaluation of model awareness of their own and others' existence, as well as the reasoning behind their choices in self-recognition. We find that the model demonstrates some knowledge of its own existence and other models, but their reasoning reveals a hierarchical bias. They appear to assume that GPT, Claude, and occasionally Gemini are the top-tier models, often associating high-quality text with them. We conclude by discussing the implications of our findings on AI safety and future directions to develop appropriate AI self-awareness.

Authors:Kirill Trapeznikov, Paul Cummer, Pranay Pherwani, Jai Aslam, Michael S. Davinroy, Peter Bautista, Laura Cassani, Matthew Stamm, Jill Crisman
Title: Synthetic Audio Forensics Evaluation (SAFE) Challenge
Abstract:
The increasing realism of synthetic speech generated by advanced text-to-speech (TTS) models, coupled with post-processing and laundering techniques, presents a significant challenge for audio forensic detection. In this paper, we introduce the SAFE (Synthetic Audio Forensics Evaluation) Challenge, a fully blind evaluation framework designed to benchmark detection models across progressively harder scenarios: raw synthetic speech, processed audio (e.g., compression, resampling), and laundered audio intended to evade forensic analysis. The SAFE challenge consisted of a total of 90 hours of audio and 21,000 audio samples split across 21 different real sources and 17 different TTS models and 3 tasks. We present the challenge, evaluation design and tasks, dataset details, and initial insights into the strengths and limitations of current approaches, offering a foundation for advancing synthetic audio detection research. More information is available at \href{https://stresearch.github.io/SAFE/}{https://stresearch.github.io/SAFE/}.

Authors:Renrong Shao, Wei Zhang, Jun wang
Title: Conditional Pseudo-Supervised Contrast for Data-Free Knowledge Distillation
Abstract:
Data-free knowledge distillation~(DFKD) is an effective manner to solve model compression and transmission restrictions while retaining privacy protection, which has attracted extensive attention in recent years. Currently, the majority of existing methods utilize a generator to synthesize images to support the distillation. Although the current methods have achieved great success, there are still many issues to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distinguish the distributions of different categories of samples, thus producing ambiguous samples that may lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category-wise diversity samples, which will hinder the student model learning from diverse samples and further achieving better performance. In this paper, to address the above limitations, we propose a novel learning paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation~(CPSC-DFKD). The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the modules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo-supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive experiments on three commonly-used datasets validate the performance lift of both the student and generator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git

Authors:Zizhe Zhang, Yicong Wang, Zhiquan Zhang, Tianyu Li, Nadia Figueroa
Title: Viability-Preserving Passive Torque Control
Abstract:
Conventional passivity-based torque controllers for manipulators are typically unconstrained, which can lead to safety violations under external perturbations. In this paper, we employ viability theory to pre-compute safe sets in the state-space of joint positions and velocities. These viable sets, constructed via data-driven and analytical methods for self-collision avoidance, external object collision avoidance and joint-position and joint-velocity limits, provide constraints on joint accelerations and thus joint torques via the robot dynamics. A quadratic programming-based control framework enforces these constraints on a passive controller tracking a dynamical system, ensuring the robot states remain within the safe set in an infinite time horizon. We validate the proposed approach through simulations and hardware experiments on a 7-DoF Franka Emika manipulator. In comparison to a baseline constrained passive controller, our method operates at higher control-loop rates and yields smoother trajectories.

Authors:Zhe Zhang, Mingxiu Cai, Gaochang Wu, Jing Zhang, Lingqiao Liu, Dacheng Tao, Tianyou Chai, Xiatian Zhu
Title: Unified Unsupervised Anomaly Detection via Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB-3D and RGB-Text, enabled by point cloud sensing and vision-language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB-3D, RGB-Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Mahdi Farahbakhsh, Vishnu Teja Kunde, Dileep Kalathil, Krishna Narayanan, Jean-Francois Chamberland
Title: Inference-Time Search using Side Information for Diffusion-based Image Reconstruction
Abstract:
Diffusion models have emerged as powerful priors for solving inverse problems. However, existing approaches typically overlook side information that could significantly improve reconstruction quality, especially in severely ill-posed settings. In this work, we propose a novel inference-time search algorithm that guides the sampling process using the side information in a manner that balances exploration and exploitation. This enables more accurate and reliable reconstructions, providing an alternative to the gradient-based guidance that is prone to reward-hacking artifacts. Our approach can be seamlessly integrated into a wide range of existing diffusion-based image reconstruction pipelines. Through extensive experiments on a number of inverse problems, such as box inpainting, super-resolution, and various deblurring tasks including motion, Gaussian, nonlinear, and blind deblurring, we show that our approach consistently improves the qualitative and quantitative performance of diffusion-based image reconstruction algorithms. We also show the superior performance of our approach with respect to other baselines, including reward gradient-based guidance algorithms. The code is available at \href{https://github.com/mhdfb/sideinfo-search-reconstruction}{this repository}.

Authors:Rong Liu, Zhongpai Gao, Benjamin Planche, Meida Chen, Van Nguyen Nguyen, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Yue Wang, Andrew Feng, Ziyan Wu
Title: Universal Beta Splatting
Abstract:
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.

Authors:Akshar Gothi
Title: Convolutional Neural Nets vs Vision Transformers: A SpaceNet Case Study with Balanced vs Imbalanced Regimes
Abstract:
We present a controlled comparison of a convolutional neural network (EfficientNet-B0) and a Vision Transformer (ViT-Base) on SpaceNet under two label-distribution regimes: a naturally imbalanced five-class split and a balanced-resampled split with 700 images per class (70:20:10 train/val/test). With matched preprocessing (224x224, ImageNet normalization), lightweight augmentations, and a 40-epoch budget on a single NVIDIA P100, we report accuracy, macro-F1, balanced accuracy, per-class recall, and deployment metrics (model size and latency). On the imbalanced split, EfficientNet-B0 reaches 93% test accuracy with strong macro-F1 and lower latency; ViT-Base is competitive at 93% with a larger parameter count and runtime. On the balanced split, both models are strong; EfficientNet-B0 reaches 99% while ViT-Base remains competitive, indicating that balancing narrows architecture gaps while CNNs retain an efficiency edge. We release manifests, logs, and per-image predictions to support reproducibility.

Authors:Yizhuo Ding, Wanying Qu, Jiawei Geng, Wenqi Shao, Yanwei Fu
Title: UniPruning: Unifying Local Metric and Global Feedback for Scalable Sparse LLMs
Abstract:
Large Language Models (LLMs) achieve strong performance across diverse tasks but face prohibitive computational and memory costs. Pruning offers a promising path by inducing sparsity while preserving architectural flexibility. However, existing methods struggle to balance efficiency and robustness: local metric approaches prune layer by layer but often collapse under high sparsity, whereas global feedback methods enforce consistency at the cost of expensive weight updates or restrictive semi-structured formats. We present UniPruning, a unified post-training pruning framework that combines the speed of local saliency metrics with the stability of global coordination, enabled by a mirror descent based optimization, all without updating model weights. UniPruning leverages fast layer-wise scoring and a lightweight global controller to allocate a single sparsity budget, supporting both unstructured and semi-structured N :M pruning within one framework. After a brief calibration, it can generate pruning masks for arbitrary sparsity levels in one shot, and adapts seamlessly to hardware-aware constraints. Extensive experiments on multiple pretrained LLM families and standard benchmarks show that UniPruning consistently delivers competitive or superior perplexity and zero-shot accuracy. Ablation studies further highlight the importance of mirror descent and local saliency anchoring. Overall, UniPruning provides an efficient, principled, and scalable solution for sparsifying large-scale LLMs. Our code is available at: https://github.com/RainbowQTT/UniPruning.

Authors:Junhao Xia, Ming Zhao, Limin Xiao, Xiujun Zhang
Title: SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size
Abstract:
Large language models (LLMs) face significant computational and memory challenges, making extremely low-bit quantization crucial for their efficient deployment. In this work, we introduce SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size, a novel framework that enables extremely low-bit quantization of LLMs while preserving their linguistic reasoning capabilities. A distinctive feature of SDQ-LLM is the continuous adjustability of the Over-Sampling Ratio (OSR), enabling dynamic adaptation to memory or VRAM constraints by selecting fractional OSR (e.g. 2.5 times) for an optimal trade-off between model size and accuracy. SDQ-LLM uses upsampling combined with Sigma-Delta Quantizer to binarize or ternarize LLMs weights, encoding high-precision parameters into 1-bit or 1.58-bit representations, replacing the multiplication operations within linear layers with addition. This approach significantly enhances inference efficiency under extremely low-bit quantization. To further reduce the loss of quantization precision, we incorporate Hadamard-based weight smoothing prior to quantization, improving the stability and robustness of the weight representations. Furthermore, to fully leverage the continuity of the OSR and reduce precision loss, recognizing the correlation between quantization sensitivity and weight variance, we propose a fine-grained, layer- and linear-wise OSR allocation strategy, MultiOSR. This strategy distributes OSR both across layers and within each layer, based on weight variance and parameter scale. Finally, extensive experiments on OPT and LLaMA model families demonstrate that SDQ-LLM achieves a more efficient and high-precision performance even under highly aggressive low-OSR settings. Our code is available at https://github.com/Dreamlittlecat/LLM-Quant-Factory.

Authors:Tianao Zhang, Zhiteng Li, Xianglong Yan, Haotong Qin, Yong Guo, Yulun Zhang
Title: Quant-dLLM: Post-Training Extreme Low-Bit Quantization for Diffusion Large Language Models
Abstract:
Diffusion large language models (dLLMs), which offer bidirectional context and flexible masked-denoising generation, are emerging as a compelling alternative to autoregressive (AR) LLMs. However, like AR LLMs, their model sizes continue to grow, motivating weight compression for deployment. Although post-training quantization (PTQ) is effective for AR LLMs, directly transferring it to dLLMs at 2-bit leads to unsatisfactory performance. To tackle these challenges, we propose Quant-dLLM, an ultra-low-bit PTQ framework tailored to dLLMs. Since masked-denoising activations in dLLMs differ from the fully visible signals assumed by standard PTQ methods, we introduce Masked Calibration Simulation (MCS) to align calibration with the timestep-dependent masking, which yields more reliable calibrations. Moreover, we propose a Data-aware Any-order Quantizer (DAQ) that learns ultra-low-bit weight representations via an optimization algorithm. It performs iterative approximation guided by our simulated calibration data. In addition, under a strict 2-bit budget, we introduce Adaptive Blockwise Mixed Precision (ABMP), a sensitivity-based precision allocation scheme that adaptively assigns bit width across channel groups. When restricted to 2-bit precision, Quant-dLLM consistently achieves higher accuracy than state-of-the-art (SOTA) AR-transfer PTQ methods on dLLMs. The code and models will be available at: https://github.com/ZTA2785/Quant-dLLM.

Authors:Chenhao Ye, Ming Tang
Title: Learning without Global Backpropagation via Synergistic Information Distillation
Abstract:
Backpropagation (BP), while foundational to deep learning, imposes two critical scalability bottlenecks: update locking, where network modules remain idle until the entire backward pass completes, and high memory consumption due to storing activations for gradient computation. To address these limitations, we introduce Synergistic Information Distillation (SID), a novel training framework that reframes deep learning as a cascade of local cooperative refinement problems. In SID, a deep network is structured as a pipeline of modules, each imposed with a local objective to refine a probabilistic belief about the ground-truth target. This objective balances fidelity to the target with consistency to the belief from its preceding module. By decoupling the backward dependencies between modules, SID enables parallel training and hence eliminates update locking and drastically reduces memory requirements. Meanwhile, this design preserves the standard feed-forward inference pass, making SID a versatile drop-in replacement for BP. We provide a theoretical foundation, proving that SID guarantees monotonic performance improvement with network depth. Empirically, SID consistently matches or surpasses the classification accuracy of BP, exhibiting superior scalability and pronounced robustness to label noise.Code is available at: https://github.com/ychAlbert/sid-bp

Authors:Zi Liang, Zhiyao Wu, Haoyang Shang, Yulin Jin, Qingqing Ye, Huadi Zheng, Peizhao Hu, Haibo Hu
Title: Decision Potential Surface: A Theoretical and Practical Approximation of LLM's Decision Boundary
Abstract:
Decision boundary, the subspace of inputs where a machine learning model assigns equal classification probabilities to two classes, is pivotal in revealing core model properties and interpreting behaviors. While analyzing the decision boundary of large language models (LLMs) has raised increasing attention recently, constructing it for mainstream LLMs remains computationally infeasible due to the enormous vocabulary-sequence sizes and the auto-regressive nature of LLMs. To address this issue, in this paper we propose Decision Potential Surface (DPS), a new notion for analyzing LLM decision boundary. DPS is defined on the confidences in distinguishing different sampling sequences for each input, which naturally captures the potential of decision boundary. We prove that the zero-height isohypse in DPS is equivalent to the decision boundary of an LLM, with enclosed regions representing decision regions. By leveraging DPS, for the first time in the literature, we propose an approximate decision boundary construction algorithm, namely $K$-DPS, which only requires K-finite times of sequence sampling to approximate an LLM's decision boundary with negligible error. We theoretically derive the upper bounds for the absolute error, expected error, and the error concentration between K-DPS and the ideal DPS, demonstrating that such errors can be trade-off with sampling times. Our results are empirically validated by extensive experiments across various LLMs and corpora.

Authors:Xianglong Yan, Chengzhu Bao, Zhiteng Li, Tianao Zhang, Kaicheng Yang, Haotong Qin, Ruobing Xie, Xingwu Sun, Yulun Zhang
Title: PT$^2$-LLM: Post-Training Ternarization for Large Language Models
Abstract:
Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. The code and models will be available at https://github.com/XIANGLONGYAN/PT2-LLM.

Authors:Juan Jose Herrera-Aranda, Guillermo Gomez-Trenado, Francisco Herrera, Isaac Triguero
Title: Semantic-Inductive Attribute Selection for Zero-Shot Learning
Abstract:
Zero-Shot Learning is an important paradigm within General-Purpose Artificial Intelligence Systems, particularly in those that operate in open-world scenarios where systems must adapt to new tasks dynamically. Semantic spaces play a pivotal role as they bridge seen and unseen classes, but whether human-annotated or generated by a machine learning model, they often contain noisy, redundant, or irrelevant attributes that hinder performance. To address this, we introduce a partitioning scheme that simulates unseen conditions in an inductive setting (which is the most challenging), allowing attribute relevance to be assessed without access to semantic information from unseen classes. Within this framework, we study two complementary feature-selection strategies and assess their generalisation. The first adapts embedded feature selection to the particular demands of ZSL, turning model-driven rankings into meaningful semantic pruning; the second leverages evolutionary computation to directly explore the space of attribute subsets more broadly. Experiments on five benchmark datasets (AWA2, CUB, SUN, aPY, FLO) show that both methods consistently improve accuracy on unseen classes by reducing redundancy, but in complementary ways: RFS is efficient and competitive though dependent on critical hyperparameters, whereas GA is more costly yet explores the search space more broadly and avoids such dependence. These results confirm that semantic spaces are inherently redundant and highlight the proposed partitioning scheme as an effective tool to refine them under inductive conditions.

Authors:Chang'an Yi, Xiaohui Deng, Shuaicheng Niu, Yan Zhou
Title: POEM: Explore Unexplored Reliable Samples to Enhance Test-Time Adaptation
Abstract:
Test-time adaptation (TTA) aims to transfer knowledge from a source model to unknown test data with potential distribution shifts in an online manner. Many existing TTA methods rely on entropy as a confidence metric to optimize the model. However, these approaches are sensitive to the predefined entropy threshold, influencing which samples are chosen for model adaptation. Consequently, potentially reliable target samples are often overlooked and underutilized. For instance, a sample's entropy might slightly exceed the threshold initially, but fall below it after the model is updated. Such samples can provide stable supervised information and offer a normal range of gradients to guide model adaptation. In this paper, we propose a general approach, \underline{POEM}, to promote TTA via ex\underline{\textbf{p}}loring the previously unexpl\underline{\textbf{o}}red reliabl\underline{\textbf{e}} sa\underline{\textbf{m}}ples. Additionally, we introduce an extra Adapt Branch network to strike a balance between extracting domain-agnostic representations and achieving high performance on target data. Comprehensive experiments across multiple architectures demonstrate that POEM consistently outperforms existing TTA methods in both challenging scenarios and real-world domain shifts, while remaining computationally efficient. The effectiveness of POEM is evaluated through extensive analyses and thorough ablation studies. Moreover, the core idea behind POEM can be employed as an augmentation strategy to boost the performance of existing TTA approaches. The source code is publicly available at \emph{https://github.com/ycarobot/POEM}

Authors:Zijian Zhao, Sen Li
Title: Triple-BERT: Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms?
Abstract:
On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-time challenge of bundling and matching passengers-each with distinct origins and destinations-to available vehicles, all while navigating significant system uncertainties. Due to the extensive observation space arising from the large number of drivers and orders, order dispatching, though fundamentally a centralized task, is often addressed using Multi-Agent Reinforcement Learning (MARL). However, independent MARL methods fail to capture global information and exhibit poor cooperation among workers, while Centralized Training Decentralized Execution (CTDE) MARL methods suffer from the curse of dimensionality. To overcome these challenges, we propose Triple-BERT, a centralized Single Agent Reinforcement Learning (MARL) method designed specifically for large-scale order dispatching on ride-sharing platforms. Built on a variant TD3, our approach addresses the vast action space through an action decomposition strategy that breaks down the joint action probability into individual driver action probabilities. To handle the extensive observation space, we introduce a novel BERT-based network, where parameter reuse mitigates parameter growth as the number of drivers and orders increases, and the attention mechanism effectively captures the complex relationships among the large pool of driver and orders. We validate our method using a real-world ride-hailing dataset from Manhattan. Triple-BERT achieves approximately an 11.95% improvement over current state-of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction in pickup times. Our code, trained model parameters, and processed data are publicly available at the repository https://github.com/RS2002/Triple-BERT .

Authors:Guanhua Huang, Tingqiang Xu, Mingze Wang, Qi Yi, Xue Gong, Siheng Li, Ruibin Xiong, Kejiao Li, Yuhao Jiang, Bo Zhou
Title: Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.

Authors:Talha Ahmed, Nehal Ahmed Shaikh, Hassan Mohy-ud-Din
Title: Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
Abstract:
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.

Authors:Tianyu Fu, Zihan Min, Hanling Zhang, Jichao Yan, Guohao Dai, Wanli Ouyang, Yu Wang
Title: Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Abstract:
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.

Authors:Jiapeng Tang, Matthew Lavine, Dor Verbin, Stephan J. Garbin, Matthias Nießner, Ricardo Martin Brualla, Pratul P. Srinivasan, Philipp Henzler
Title: ROGR: Relightable 3D Objects using Generative Relighting
Abstract:
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.

Authors:Tianyu Xu, Jiawei Chen, Jiazhao Zhang, Wenyao Zhang, Zekun Qi, Minghan Li, Zhizheng Zhang, He Wang
Title: MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Abstract:
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.

Authors:Gen Li, Bo Zhao, Jianfei Yang, Laura Sevilla-Lara
Title: Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Abstract:
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.

Authors:Yoontae Hwang, Stefan Zohren
Title: Signature-Informed Transformer for Asset Allocation
Abstract:
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation

Authors:Zhe Shen
Title: Learning Stability Certificate for Robotics in Real-World Environments
Abstract:
Stability certificates play a critical role in ensuring the safety and reliability of robotic systems. However, deriving these certificates for complex, unknown systems has traditionally required explicit knowledge of system dynamics, often making it a daunting task. This work introduces a novel framework that learns a Lyapunov function directly from trajectory data, enabling the certification of stability for autonomous systems without needing detailed system models. By parameterizing the Lyapunov candidate using a neural network and ensuring positive definiteness through Cholesky factorization, our approach automatically identifies whether the system is stable under the given trajectory. To address the challenges posed by noisy, real-world data, we allow for controlled violations of the stability condition, focusing on maintaining high confidence in the stability certification process. Our results demonstrate that this framework can provide data-driven stability guarantees, offering a robust method for certifying the safety of robotic systems in dynamic, real-world environments. This approach works without access to the internal control algorithms, making it applicable even in situations where system behavior is opaque or proprietary. The tool for learning the stability proof is open-sourced by this research: https://github.com/HansOersted/stability.

Authors:Zhaojun Sun, Xuzhou Zhu, Xuanhe Zhou, Xin Tong, Shuo Wang, Jie Fu, Guoliang Li, Zhiyuan Liu, Fan Wu
Title: SurveyBench: Can LLM(-Agents) Write Academic Surveys that Align with Reader Needs?
Abstract:
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).

Authors:Beibei Lin, Tingting Chen, Robby T. Tan
Title: GeoComplete: Geometry-Aware Diffusion for Reference-Driven Image Completion
Abstract:
Reference-driven image completion, which restores missing regions in a target view using additional images, is particularly challenging when the target view differs significantly from the references. Existing generative methods rely solely on diffusion priors and, without geometric cues such as camera pose or depth, often produce misaligned or implausible content. We propose GeoComplete, a novel framework that incorporates explicit 3D structural guidance to enforce geometric consistency in the completed regions, setting it apart from prior image-only approaches. GeoComplete introduces two key ideas: conditioning the diffusion process on projected point clouds to infuse geometric information, and applying target-aware masking to guide the model toward relevant reference cues. The framework features a dual-branch diffusion architecture. One branch synthesizes the missing regions from the masked target, while the other extracts geometric features from the projected point cloud. Joint self-attention across branches ensures coherent and accurate completion. To address regions visible in references but absent in the target, we project the target view into each reference to detect occluded areas, which are then masked during training. This target-aware masking directs the model to focus on useful cues, enhancing performance in difficult scenarios. By integrating a geometry-aware dual-branch diffusion architecture with a target-aware masking strategy, GeoComplete offers a unified and robust solution for geometry-conditioned image completion. Experiments show that GeoComplete achieves a 17.1 PSNR improvement over state-of-the-art methods, significantly boosting geometric accuracy while maintaining high visual quality.

Authors:Beth Pearson, Ahmed Adnan, Zahraa S. Abdallah
Title: Semantic Similarity in Radiology Reports via LLMs and NER
Abstract:
Radiology report evaluation is a crucial part of radiologists' training and plays a key role in ensuring diagnostic accuracy. As part of the standard reporting workflow, a junior radiologist typically prepares a preliminary report, which is then reviewed and edited by a senior radiologist to produce the final report. Identifying semantic differences between preliminary and final reports is essential for junior doctors, both as a training tool and to help uncover gaps in clinical knowledge. While AI in radiology is a rapidly growing field, the application of large language models (LLMs) remains challenging due to the need for specialised domain knowledge. In this paper, we explore the ability of LLMs to provide explainable and accurate comparisons of reports in the radiology domain. We begin by comparing the performance of several LLMs in comparing radiology reports. We then assess a more traditional approach based on Named-Entity-Recognition (NER). However, both approaches exhibit limitations in delivering accurate feedback on semantic similarity. To address this, we propose Llama-EntScore, a semantic similarity scoring method using a combination of Llama 3.1 and NER with tunable weights to emphasise or de-emphasise specific types of differences. Our approach generates a quantitative similarity score for tracking progress and also gives an interpretation of the score that aims to offer valuable guidance in reviewing and refining their reporting. We find our method achieves 67% exact-match accuracy and 93% accuracy within +/- 1 when compared to radiologist-provided ground truth scores - outperforming both LLMs and NER used independently. Code is available at: https://github.com/otmive/llama_reports

Authors:Jamison Meindl, Yunsheng Tian, Tony Cui, Veronika Thost, Zhang-Wei Hong, Johannes Dürholt, Jie Chen, Wojciech Matusik, Mina Konaković Luković
Title: ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Abstract:
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt

Authors:Yufei Zhu, Andrey Rudenko, Tomasz P. Kucner, Achim J. Lilienthal, Martin Magnusson
Title: Long-Term Human Motion Prediction Using Spatio-Temporal Maps of Dynamics
Abstract:
Long-term human motion prediction (LHMP) is important for the safe and efficient operation of autonomous robots and vehicles in environments shared with humans. Accurate predictions are important for applications including motion planning, tracking, human-robot interaction, and safety monitoring. In this paper, we exploit Maps of Dynamics (MoDs), which encode spatial or spatio-temporal motion patterns as environment features, to achieve LHMP for horizons of up to 60 seconds. We propose an MoD-informed LHMP framework that supports various types of MoDs and includes a ranking method to output the most likely predicted trajectory, improving practical utility in robotics. Further, a time-conditioned MoD is introduced to capture motion patterns that vary across different times of day. We evaluate MoD-LHMP instantiated with three types of MoDs. Experiments on two real-world datasets show that MoD-informed method outperforms learning-based ones, with up to 50\% improvement in average displacement error, and the time-conditioned variant achieves the highest accuracy overall. Project code is available at https://github.com/test-bai-cpu/LHMP-with-MoDs.git

Authors:Chenyuan Chen, Haoran Ding, Ran Ding, Tianyu Liu, Zewen He, Anqing Duan, Dezhen Song, Xiaodan Liang, Yoshihiko Nakamura
Title: 3D-CovDiffusion: 3D-Aware Diffusion Policy for Coverage Path Planning
Abstract:
Diffusion models, as a class of deep generative models, have recently emerged as powerful tools for robot skills by enabling stable training with reliable convergence. In this paper, we present an end-to-end framework for generating long, smooth trajectories that explicitly target high surface coverage across various industrial tasks, including polishing, robotic painting, and spray coating. The conventional methods are always fundamentally constrained by their predefined functional forms, which limit the shapes of the trajectories they can represent and make it difficult to handle complex and diverse tasks. Moreover, their generalization is poor, often requiring manual redesign or extensive parameter tuning when applied to new scenarios. These limitations highlight the need for more expressive generative models, making diffusion-based approaches a compelling choice for trajectory generation. By iteratively denoising trajectories with carefully learned noise schedules and conditioning mechanisms, diffusion models not only ensure smooth and consistent motion but also flexibly adapt to the task context. In experiments, our method improves trajectory continuity, maintains high coverage, and generalizes to unseen shapes, paving the way for unified end-to-end trajectory learning across industrial surface-processing tasks without category-specific models. On average, our approach improves Point-wise Chamfer Distance by 98.2\% and smoothness by 97.0\%, while increasing surface coverage by 61\% compared to prior methods. The link to our code can be found \href{https://anonymous.4open.science/r/spraydiffusion_ral-2FCE/README.md}{here}.

Authors:Tianzheng Hu, Qiang Li, Shu Liu, Vince D. Calhoun, Guido van Wingen, Shujian Yu
Title: BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
Abstract:
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.

Authors:Xiaoyan Kui, Qianmu Xiao, Qqinsong Li, Zexin Ji, JIelin Zhang, Beiji Zou
Title: Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis
Abstract:
Separating shared and independent features is crucial for multi-phase contrast-enhanced (CE) MRI synthesis. However, existing methods use deep autoencoder generators with low parameter efficiency and lack interpretable training strategies. In this paper, we propose Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a lightweight feature-decoupled VAE model for multi-phase CE MRI synthesis. Our method encodes input and target images into two latent distributions that are symmetric concerning a standard normal distribution, effectively separating shared and independent features. The Y-shaped bidirectional training strategy further enhances the interpretability of feature separation. Experimental results show that compared to existing deep autoencoder-based end-to-end synthesis methods, FDA-VAE significantly reduces model parameters and inference time while effectively improving synthesis quality. The source code is publicly available at https://github.com/QianMuXiao/FDA-VAE.

Authors:Jingqi Zhang, Ruibo Chen, Yingqing Yang, Peihua Mai, Heng Huang, Yan Pang
Title: Leave No TRACE: Black-box Detection of Copyrighted Dataset Usage in Large Language Models via Watermarking
Abstract:
Large Language Models (LLMs) are increasingly fine-tuned on smaller, domain-specific datasets to improve downstream performance. These datasets often contain proprietary or copyrighted material, raising the need for reliable safeguards against unauthorized use. Existing membership inference attacks (MIAs) and dataset-inference methods typically require access to internal signals such as logits, while current black-box approaches often rely on handcrafted prompts or a clean reference dataset for calibration, both of which limit practical applicability. Watermarking is a promising alternative, but prior techniques can degrade text quality or reduce task performance. We propose TRACE, a practical framework for fully black-box detection of copyrighted dataset usage in LLM fine-tuning. \texttt{TRACE} rewrites datasets with distortion-free watermarks guided by a private key, ensuring both text quality and downstream utility. At detection time, we exploit the radioactivity effect of fine-tuning on watermarked data and introduce an entropy-gated procedure that selectively scores high-uncertainty tokens, substantially amplifying detection power. Across diverse datasets and model families, TRACE consistently achieves significant detections (p<0.05), often with extremely strong statistical evidence. Furthermore, it supports multi-dataset attribution and remains robust even after continued pretraining on large non-watermarked corpora. These results establish TRACE as a practical route to reliable black-box verification of copyrighted dataset usage. We will make our code available at: https://github.com/NusIoraPrivacy/TRACE.

Authors:Santanu Subhash Rathod, Francesco Ceccarelli, Sean B. Holden, Pietro Liò, Xiao Zhang, Jovan Tanevski
Title: ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Abstract:
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}

Authors:Aikaterini-Panagiota Stouka, Conor McMenamin, Demetris Kyriacou, Lin Oshitani, Quentin Botha
Title: SoK: Preconfirmations
Abstract:
In recent years, significant research efforts have focused on improving blockchain throughput and confirmation speeds without compromising security. While decreasing the time it takes for a transaction to be included in the blockchain ledger enhances user experience, a fundamental delay still remains between when a transaction is issued by a user and when its inclusion is confirmed in the blockchain ledger. This delay limits user experience gains through the confirmation uncertainty it brings for users. This inherent delay in conventional blockchain protocols has led to the emergence of preconfirmation protocols -- protocols that provide users with early guarantees of eventual transaction confirmation. This article presents a Systematization of Knowledge (SoK) on preconfirmations. We present the core terms and definitions needed to understand preconfirmations, outline a general framework for preconfirmation protocols, and explore the economics and risks of preconfirmations. Finally, we survey and apply our framework to several implementations of real-world preconfirmation protocols, bridging the gap between theory and practice.

Authors:Yohan Lee, Yongwoo Song, Sangyeop Kim
Title: Finding Diamonds in Conversation Haystacks: A Benchmark for Conversational Data Retrieval
Abstract:
We present the Conversational Data Retrieval (CDR) benchmark, the first comprehensive test set for evaluating systems that retrieve conversation data for product insights. With 1.6k queries across five analytical tasks and 9.1k conversations, our benchmark provides a reliable standard for measuring conversational data retrieval performance. Our evaluation of 16 popular embedding models shows that even the best models reach only around NDCG@10 of 0.51, revealing a substantial gap between document and conversational data retrieval capabilities. Our work identifies unique challenges in conversational data retrieval (implicit state recognition, turn dynamics, contextual references) while providing practical query templates and detailed error analysis across different task categories. The benchmark dataset and code are available at https://github.com/l-yohai/CDR-Benchmark.

Authors:Wei Fan, Kejiang Chen, Xiangkun Wang, Weiming Zhang, Nenghai Yu
Title: WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Abstract:
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.

Authors:Jakub Lisowski, Piotr Tyrakowski, Szymon Zyguła, Krzysztof Kaczmarski
Title: PyRadiomics-cuda: a GPU-accelerated 3D features extraction from medical images within PyRadiomics
Abstract:
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios. PyRadiomics-cuda is implemented in Python and C/CUDA and is freely available under the BSD license at https://github.com/mis-wut/pyradiomics-CUDA Additionally PyRadiomics-cuda test suite is available at https://github.com/mis-wut/pyradiomics-cuda-data-gen. It provides detailed handbook and sample scripts suited for different kinds of workflows plus detailed installation instructions. The dataset used for testing is available at Kaggle https://www.kaggle.com/datasets/sabahesaraki/kidney-tumor-segmentation-challengekits-19

Authors:Tianren Ma, Mu Zhang, Yibing Wang, Qixiang Ye
Title: Consolidating Reinforcement Learning for Multimodal Discrete Diffusion Models
Abstract:
Optimizing discrete diffusion model (DDM) with rewards remains a challenge: the non-autoregressive paradigm makes importance sampling intractable and rollout complex, puzzling reinforcement learning methods such as Group Relative Policy Optimization (GRPO). In this study, we introduce MaskGRPO, the first viable approach to enable scalable multimodal reinforcement learning in discrete diffusion with effective importance sampling and modality-specific adaptations. To this end, we first clarify the theoretical foundation for DDMs, which facilitates building an importance estimator that captures valuable token fluctuation for gradient updates. We then delicately tailored the rollout method for visual sequences, which yields diverse completions and reliable optimization gradients. Upon math reasoning, coding, and visual generation benchmarks, MaskGRPO brings more stable and efficient updates, leading to stronger reasoning performance and better generation quality. This study establishes MaskGRPO as a systematic policy optimization approach and the first practical way for discretized visual diffusion.

Authors:Md Zahim Hassan, Md. Osama, Muhammad Ashad Kabir, Md. Saiful Islam, Zannatul Naim
Title: ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Abstract:
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.

Authors:Jahidul Arafat, Fariha Tasmin, Sanjaya Poudel, Kamrujjaman, Eftakhar Ahmed Arnob, Ahsan Habib Tareq
Title: Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Abstract:
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.

Authors:Boshuai Ye, Arif Ali Khan, Teemu Pihkakoski, Peng Liang, Muhammad Azeem Akbar, Matti Silveri, Lauri Malmi
Title: C2|Q>: A Robust Framework for Bridging Classical and Quantum Software Development
Abstract:
Quantum Software Engineering (QSE) is emerging as a critical discipline to make quantum computing accessible to a broader developer community; however, most quantum development environments still require developers to engage with low-level details across the software stack - including problem encoding, circuit construction, algorithm configuration, hardware selection, and result interpretation - making them difficult for classical software engineers to use. To bridge this gap, we present C2|Q>: a hardware-agnostic quantum software development framework that translates classical specifications (code) into quantum-executable programs while preserving methodological rigor. The framework applies modular software engineering principles by classifying the workflow into three core modules: an encoder that classifies problems, produces Quantum-Compatible Formats (QCFs), and constructs quantum circuits, a deployment module that generates circuits and recommends hardware based on fidelity, runtime, and cost, and a decoder that interprets quantum outputs into classical solutions. In evaluation, the encoder module achieved a 93.8% completion rate, the hardware recommendation module consistently selected the appropriate quantum devices for workloads scaling up to 56 qubits, and the full C2|Q>: workflow successfully processed classical specifications (434 Python snippets and 100 JSON inputs) with completion rates of 93.8% and 100%, respectively. For case study problems executed on publicly available NISQ hardware, C2|Q>: reduced the required implementation effort by nearly 40X compared to manual implementations using low-level quantum software development kits (SDKs), with empirical runs limited to small- and medium-sized instances consistent with current NISQ capabilities. The open-source implementation of C2|Q>: is available at https://github.com/C2-Q/C2Q

Authors:Zhixin Xie, Xurui Song, Jun Luo
Title: Attack via Overfitting: 10-shot Benign Fine-tuning to Jailbreak LLMs
Abstract:
Despite substantial efforts in safety alignment, recent research indicates that Large Language Models (LLMs) remain highly susceptible to jailbreak attacks. Among these attacks, finetuning-based ones that compromise LLMs' safety alignment via fine-tuning stand out due to its stable jailbreak performance. In particular, a recent study indicates that fine-tuning with as few as 10 harmful question-answer (QA) pairs can lead to successful jailbreaking across various harmful questions. However, such malicious fine-tuning attacks are readily detectable and hence thwarted by moderation models. In this paper, we demonstrate that LLMs can be jailbroken by fine-tuning with only 10 benign QA pairs; our attack exploits the increased sensitivity of LLMs to fine-tuning data after being overfitted. Specifically, our fine-tuning process starts with overfitting an LLM via fine-tuning with benign QA pairs involving identical refusal answers. Further fine-tuning is then performed with standard benign answers, causing the overfitted LLM to forget the refusal attitude and thus provide compliant answers regardless of the harmfulness of a question. We implement our attack on the ten LLMs and compare it with five existing baselines. Experiments demonstrate that our method achieves significant advantages in both attack effectiveness and attack stealth. Our findings expose previously unreported security vulnerabilities in current LLMs and provide a new perspective on understanding how LLMs' security is compromised, even with benign fine-tuning. Our code is available at https://github.com/ZHIXINXIE/tenBenign.

Authors:Yoshihiko Ozaki, Shuhei Watanabe, Toshihiko Yanase
Title: OptunaHub: A Platform for Black-Box Optimization
Abstract:
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).

Authors:Jingyuan Deng, Yujiu Yang
Title: MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .

Authors:Ara Seo, Bryan Sangwoo Kim, Hyungjin Chung, Jong Chul Ye
Title: Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Abstract:
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.

Authors:Xian Zhang, Zexi Wu, Zinuo Li, Hongming Xu, Luqi Gong, Farid Boussaid, Naoufel Werghi, Mohammed Bennamoun
Title: AdaRD-key: Adaptive Relevance-Diversity Keyframe Sampling for Long-form Video understanding
Abstract:
Understanding long-form videos remains a significant challenge for vision--language models (VLMs) due to their extensive temporal length and high information density. Most current multimodal large language models (MLLMs) rely on uniform sampling, which often overlooks critical moments, leading to incorrect responses to queries. In parallel, many keyframe selection approaches impose rigid temporal spacing: once a frame is chosen, an exclusion window suppresses adjacent timestamps to reduce redundancy. While effective at limiting overlap, this strategy frequently misses short, fine-grained cues near important events. Other methods instead emphasize visual diversity but neglect query relevance. We propose AdaRD-Key, a training-free keyframe sampling module for query-driven long-form video understanding. AdaRD-Key maximizes a unified Relevance--Diversity Max-Volume (RD-MV) objective, combining a query-conditioned relevance score with a log-determinant diversity component to yield informative yet non-redundant frames. To handle broad queries with weak alignment to the video, AdaRD-Key employs a lightweight relevance-aware gating mechanism; when the relevance distribution indicates weak alignment, the method seamlessly shifts into a diversity-only mode, enhancing coverage without additional supervision. Our pipeline is training-free, computationally efficient (running in real time on a single GPU), and compatible with existing VLMs in a plug-and-play manner. Extensive experiments on LongVideoBench and Video-MME demonstrate state-of-the-art performance, particularly on long-form videos. Code available at https://github.com/Xian867/AdaRD-Key.

Authors:Shashank Agnihotri, Jonas Jakubassa, Priyam Dey, Sachin Goyal, Bernt Schiele, Venkatesh Babu Radhakrishnan, Margret Keuper
Title: A Granular Study of Safety Pretraining under Model Abliteration
Abstract:
Open-weight LLMs can be modified at inference time with simple activation edits, which raises a practical question for safety: do common safety interventions like refusal training or metatag training survive such edits? We study model abliteration, a lightweight projection technique designed to remove refusal-sensitive directions, and conduct a controlled evaluation across a granular sequence of Safety Pretraining checkpoints for SmolLM2-1.7B, alongside widely used open baselines. For each of 20 systems, original and abliterated, we issue 100 prompts with balanced harmful and harmless cases, classify responses as **Refusal** or **Non-Refusal** using multiple judges, and validate judge fidelity on a small human-labeled subset. We also probe whether models can identify refusal in their own outputs. Our study produces a checkpoint-level characterization of which data-centric safety components remain robust under abliteration, quantifies how judge selection influences evaluation outcomes, and outlines a practical protocol for integrating inference-time edits into safety assessments. Code: https://github.com/shashankskagnihotri/safety_pretraining.

Authors:Tianyu Li, Yihan Li, Zizhe Zhang, Nadia Figueroa
Title: Flow with the Force Field: Learning 3D Compliant Flow Matching Policies from Force and Demonstration-Guided Simulation Data
Abstract:
While visuomotor policy has made advancements in recent years, contact-rich tasks still remain a challenge. Robotic manipulation tasks that require continuous contact demand explicit handling of compliance and force. However, most visuomotor policies ignore compliance, overlooking the importance of physical interaction with the real world, often leading to excessive contact forces or fragile behavior under uncertainty. Introducing force information into vision-based imitation learning could help improve awareness of contacts, but could also require a lot of data to perform well. One remedy for data scarcity is to generate data in simulation, yet computationally taxing processes are required to generate data good enough not to suffer from the Sim2Real gap. In this work, we introduce a framework for generating force-informed data in simulation, instantiated by a single human demonstration, and show how coupling with a compliant policy improves the performance of a visuomotor policy learned from synthetic data. We validate our approach on real-robot tasks, including non-prehensile block flipping and a bi-manual object moving, where the learned policy exhibits reliable contact maintenance and adaptation to novel conditions. Project Website: https://flow-with-the-force-field.github.io/webpage/

Authors:Junyu Shi, Yong Sun, Zhiyuan Zhang, Lijiang Liu, Zhengjie Zhang, Yuxin He, Qiang Nie
Title: MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Abstract:
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC

Authors:Nicholas Lourie, He He, Kyunghyun Cho
Title: Hyperparameter Loss Surfaces Are Simple Near their Optima
Abstract:
Hyperparameters greatly impact models' capabilities; however, modern models are too large for extensive search. Instead, researchers design recipes that train well across scales based on their understanding of the hyperparameters. Despite this importance, few tools exist for understanding the hyperparameter loss surface. We discover novel structure in it and propose a new theory yielding such tools. The loss surface is complex, but as you approach the optimum simple structure emerges. It becomes characterized by a few basic features, like its effective dimension and the best possible loss. To uncover this asymptotic regime, we develop a novel technique based on random search. Within this regime, the best scores from random search take on a new distribution we discover. Its parameters are exactly the features defining the loss surface in the asymptotic regime. From these features, we derive a new asymptotic law for random search that can explain and extrapolate its convergence. These new tools enable new analyses, such as confidence intervals for the best possible performance or determining the effective number of hyperparameters. We make these tools available at https://github.com/nicholaslourie/opda .

Authors:Kai Fukazawa, Kunal Mundada, Iman Soltani
Title: RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
Abstract:
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git

Authors:Haoran Wan, Kyle Jamieson
Title: L4Span: Spanning Congestion Signaling over NextG Networks for Interactive Applications
Abstract:
Design for low latency networking is essential for tomorrow's interactive applications, but it is essential to deploy incrementally and universally at the network's last mile. While wired broadband ISPs are rolling out the leading queue occupancy signaling mechanisms, the cellular Radio Access Network (RAN), another important last mile to many users, lags behind these efforts. This paper proposes a new RAN design, L4Span, that abstracts the complexities of RAN queueing in a simple interface, thus tying the queue state of the RAN to end-to-end low-latency signaling all the way back to the content server. At millisecond-level timescales, L4Span predicts the RAN's queuing occupancy and performs ECN marking for both low-latency and classic flows. L4Span is lightweight, requiring minimal RAN modifications, and remains 3GPP and O-RAN compliant for maximum ease of deployment. We implement a prototype on the srsRAN open-source software in C++. Our evaluation compares the performance of low-latency as well as classic flows with or without the deployment of L4Span in various wireless channel conditions. Results show that L4Span reduces the one-way delay of both low-latency and classic flows by up to 98 %, while simultaneously maintaining near line-rate throughput. The code is available at https://github.com/PrincetonUniversity/L4Span.

Authors:Rui Qi, Zhibo Man, Yufeng Chen, Fengran Mo, Jinan Xu, Kaiyu Huang
Title: SoT: Structured-of-Thought Prompting Guides Multilingual Reasoning in Large Language Models
Abstract:
Recent developments have enabled Large Language Models (LLMs) to engage in complex reasoning tasks through deep thinking. However, the capacity of reasoning has not been successfully transferred to non-high-resource languages due to resource constraints, which struggles with multilingual reasoning tasks. To this end, we propose Structured-of-Thought (SoT), a training-free method that improves the performance on multilingual reasoning through a multi-step transformation: Language Thinking Transformation and Structured Knowledge Transformation. The SoT method converts language-specific semantic information into language-agnostic structured representations, enabling the models to understand the query in different languages more sophisticated. Besides, SoT effectively guides LLMs toward more concentrated reasoning to maintain consistent underlying reasoning pathways when handling cross-lingual variations in expression. Experimental results demonstrate that SoT outperforms several strong baselines on multiple multilingual reasoning benchmarks when adapting to various backbones of LLMs. It can also be integrated with other training-free strategies for further improvements. Our code is available at https://github.com/Cherry-qwq/SoT.

Authors:Beijia Lu, Ziyi Chen, Jing Xiao, Jun-Yan Zhu
Title: Input-Aware Sparse Attention for Real-Time Co-Speech Video Generation
Abstract:
Diffusion models can synthesize realistic co-speech video from audio for various applications, such as video creation and virtual agents. However, existing diffusion-based methods are slow due to numerous denoising steps and costly attention mechanisms, preventing real-time deployment. In this work, we distill a many-step diffusion video model into a few-step student model. Unfortunately, directly applying recent diffusion distillation methods degrades video quality and falls short of real-time performance. To address these issues, our new video distillation method leverages input human pose conditioning for both attention and loss functions. We first propose using accurate correspondence between input human pose keypoints to guide attention to relevant regions, such as the speaker's face, hands, and upper body. This input-aware sparse attention reduces redundant computations and strengthens temporal correspondences of body parts, improving inference efficiency and motion coherence. To further enhance visual quality, we introduce an input-aware distillation loss that improves lip synchronization and hand motion realism. By integrating our input-aware sparse attention and distillation loss, our method achieves real-time performance with improved visual quality compared to recent audio-driven and input-driven methods. We also conduct extensive experiments showing the effectiveness of our algorithmic design choices.

Authors:JoonHo Lee, Sunho Park
Title: Exploring OCR-augmented Generation for Bilingual VQA
Abstract:
We investigate OCR-augmented generation with Vision Language Models (VLMs), exploring tasks in Korean and English toward multilingualism. To support research in this domain, we train and release KLOCR, a strong bilingual OCR baseline trained on 100M instances to augment VLMs with OCR ability. To complement existing VQA benchmarks, we curate KOCRBench for Korean VQA, and analyze different prompting methods. Extensive experiments show that OCR-extracted text significantly boosts performance across open source and commercial models. Our work offers new insights into OCR-augmented generation for bilingual VQA. Model, code, and data are available at https://github.com/JHLee0513/KLOCR.

Authors:Guy Ohayon, Pierre-Etienne H. Fiquet, Florentin Guth, Jona Ballé, Eero P. Simoncelli
Title: Learning a distance measure from the information-estimation geometry of data
Abstract:
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.

Authors:Sung-Yeon Park, Adam Lee, Juanwu Lu, Can Cui, Luyang Jiang, Rohit Gupta, Kyungtae Han, Ahmadreza Moradipari, Ziran Wang
Title: SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Abstract:
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/

Authors:Hongbo Liu, Jiannong Cao, Bo Yang, Dongbin Bai, Yinfeng Cao, Xiaoming Shen, Yinan Zhang, Jinwen Liang, Shan Jiang, Mingjin Zhang
Title: PolyLink: A Blockchain Based Decentralized Edge AI Platform for LLM Inference
Abstract:
The rapid advancement of large language models (LLMs) in recent years has revolutionized the AI landscape. However, the deployment model and usage of LLM services remain highly centralized, creating significant trust issues and costs for end users and developers. To address these issues, we propose PolyLink, a blockchain-based decentralized AI platform that decentralizes LLM development and inference. Specifically, PolyLink introduces a decentralized crowdsourcing architecture that supports single-device and cross-device model deployment and inference across heterogeneous devices at the edge. Moreover, to ensure the inference integrity, we design the TIQE protocol, which combines a lightweight cross-encoder model and an LLM-as-a-Judge for a high-accuracy inference evaluation. Lastly, we integrate a comprehensive token-based incentive model with dynamic pricing and reward mechanisms for all participants. We have deployed PolyLink and conducted an extensive real-world evaluation through geo-distributed deployment across heterogeneous devices. Results indicate that the inference and verification latency is practical. Our security analysis demonstrates that the system is resistant to model degradation attacks and validator corruptions. PolyLink is now available at https://github.com/IMCL-PolyLink/PolyLink.

Authors:Jianqing Zhang, Wei Xia, Hande Dong, Qiang Lin, Jian Cao
Title: AP2O: Correcting LLM-Generated Code Errors Type by Type Like Humans via Adaptive Progressive Preference Optimization
Abstract:
LLMs' code generation capabilities have yielded substantial improvements in the effectiveness of programming tasks. However, LLM-generated code still suffers from compilation and runtime errors. Existing offline preference optimization methods primarily focus on enhancing LLMs' coding abilities using pass/fail signals in the preference data, overlooking the deep-level error types in the failed codes. To address this, we propose Adaptively Progressive Preference Optimization (AP2O) for coding (i.e., AP2O-Coder), a method that guides LLMs adaptively and methodically to reduce code errors for code generation. Specifically, we construct an error notebook from failed codes and progressively optimize the LLM to correct errors type by type. Furthermore, we adaptively replay error types to tailor to the LLM's changing weaknesses throughout the training process. Through extensive experiments on both code and general LLMs (Llama, Qwen, and DeepSeek series) with parameters ranging from 0.5B to 34B, our AP2O-Coder improves code generation performance by up to 3% in pass@k while using less preference data. Code: https://github.com/TsingZ0/AP2O

Authors:Yinyi Luo, Zhexian Zhou, Hao Chen, Kai Qiu, Marios Savvides, Yixuan Li, Jindong Wang
Title: KnowledgeSmith: Uncovering Knowledge Updating in LLMs with Model Editing and Unlearning
Abstract:
Knowledge editing and machine unlearning are two popular approaches for large language models (LLMs) to stay up-to-date. However, the knowledge updating mechanism of LLMs remains largely unexplored due to insufficient, isolated, and small-scale evaluation. For instance, are LLMs similar to humans in modifying certain knowledge? What differs editing and unlearning as training data increases? This paper proposes KnowledgeSmith, a unified framework to systematically understand the updating mechanism of LLMs. We first cast editing and unlearning as instances of one constrained optimization problem. Then, we propose an automatic dataset generator that provides structured interventions across multiple graph levels and data scales, enabling controlled studies of how different modification strategies propagate through model knowledge. Extensive experiments demonstrate nuanced insights over knowledge propagation, plasticity scaling, consistency, and robustness. For instance, our results show that LLMs do not exhibit similar updating as humans for different levels of knowledge, and there exists consistency-capacity trade-off. We hope our findings can offer suggestions to the design of more reliable and scalable strategies. Code: https://github.com/AIFrontierLab/KnowledgeSmith.git

Authors:Zilai Li
Title: Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model
Abstract:
The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need

Authors:Qianshan Wei, Tengchao Yang, Yaochen Wang, Xinfeng Li, Lijun Li, Zhenfei Yin, Yi Zhan, Thorsten Holz, Zhiqiang Lin, XiaoFeng Wang
Title: A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory
Abstract:
Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

Authors:Hamed Fard, Tobias Schalau, Gerhard Wunder
Title: An Investigation into the Performance of Non-Contrastive Self-Supervised Learning Methods for Network Intrusion Detection
Abstract:
Network intrusion detection, a well-explored cybersecurity field, has predominantly relied on supervised learning algorithms in the past two decades. However, their limitations in detecting only known anomalies prompt the exploration of alternative approaches. Motivated by the success of self-supervised learning in computer vision, there is a rising interest in adapting this paradigm for network intrusion detection. While prior research mainly delved into contrastive self-supervised methods, the efficacy of non-contrastive methods, in conjunction with encoder architectures serving as the representation learning backbone and augmentation strategies that determine what is learned, remains unclear for effective attack detection. This paper compares the performance of five non-contrastive self-supervised learning methods using three encoder architectures and six augmentation strategies. Ninety experiments are systematically conducted on two network intrusion detection datasets, UNSW-NB15 and 5G-NIDD. For each self-supervised model, the combination of encoder architecture and augmentation method yielding the highest average precision, recall, F1-score, and AUCROC is reported. Furthermore, by comparing the best-performing models to two unsupervised baselines, DeepSVDD, and an Autoencoder, we showcase the competitiveness of the non-contrastive methods for attack detection. Code at: https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS

Authors:Yifan Wang, Bolian Li, Junlin Wu, Zhaoxuan Tan, Zheli Liu, Ruqi Zhang, Ananth Grama, Qingkai Zeng
Title: DRIFT: Learning from Abundant User Dissatisfaction in Real-World Preference Learning
Abstract:
Real-world large language model deployments (e.g., conversational AI systems, code generation assistants) naturally generate abundant implicit user dissatisfaction (DSAT) signals, as users iterate toward better answers through refinements, corrections, and expressed preferences, while explicit satisfaction (SAT) feedback is scarce. Existing preference learning approaches are poorly aligned with this data profile, as they rely on costly human annotations or assume plentiful positive responses. In this paper, we introduce \textbf{DRIFT} (\textbf{D}issatisfaction-\textbf{R}efined \textbf{I}terative pre\textbf{F}erence \textbf{T}raining), which anchors training on real-world DSAT signals and samples positives dynamically from the evolving policy. Empirically, DRIFT models trained on real-world \textit{WildFeedback} datasets and synthetic \textit{UltraFeedback} datasets achieve up to +6.23\% (7B) / +7.61\% (14B) on WildBench Task Score and up to +8.95\% (7B) / +12.29\% (14B) on AlpacaEval2 win rate over base models, outperforming strong baseline methods such as iterative DPO and SPIN. At larger scales, the improvements are particularly pronounced: 14B models trained with DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT also preserves exploratory capacity, yielding more diverse high-reward solutions rather than collapsing to narrow subsets. Theoretically, we demonstrate that this design preserves preference margins and avoids the gradient degeneration. These results show that DRIFT is an effective and scalable recipe for real-world post-training that leverages the most abundant and informative signal. The code and data are available at https://github.com/cacayaya/DRIFT.git.

Authors:Xin Gao, Ruiyi Zhang, Daniel Du, Saurabh Mahindre, Sai Ashish Somayajula, Pengtao Xie
Title: Can Prompts Rewind Time for LLMs? Evaluating the Effectiveness of Prompted Knowledge Cutoffs
Abstract:
Large Language Models (LLMs) are widely used for temporal prediction, but their reliance on pretraining data raises contamination concerns, as accurate predictions on pre-cutoff test data may reflect memorization rather than reasoning, leading to an overestimation of their generalization capability. With the recent emergence of prompting-based unlearning techniques, a natural question arises: Can LLMs be prompted to simulate an earlier knowledge cutoff? In this work, we investigate the capability of prompting to simulate earlier knowledge cutoff in LLMs. We construct three evaluation datasets to assess the extent to which LLMs can forget (1) direct factual knowledge, (2) semantic shifts, and (3) causally related knowledge. Results demonstrate that while prompt-based simulated knowledge cutoffs show effectiveness when directly queried with the information after that date, they struggle to induce forgetting when the forgotten content is not directly asked but causally related to the query. These findings highlight the need for more rigorous evaluation settings when applying LLMs for temporal prediction tasks. The full dataset and evaluation code are available at https://github.com/gxx27/time_unlearn.

Authors:Zhe Li, Wei Zhao, Yige Li, Jun Sun
Title: Where Did It Go Wrong? Attributing Undesirable LLM Behaviors via Representation Gradient Tracing
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their deployment is frequently undermined by undesirable behaviors such as generating harmful content, factual inaccuracies, and societal biases. Diagnosing the root causes of these failures poses a critical challenge for AI safety. Existing attribution methods, particularly those based on parameter gradients, often fall short due to prohibitive noisy signals and computational complexity. In this work, we introduce a novel and efficient framework that diagnoses a range of undesirable LLM behaviors by analyzing representation and its gradients, which operates directly in the model's activation space to provide a semantically meaningful signal linking outputs to their training data. We systematically evaluate our method for tasks that include tracking harmful content, detecting backdoor poisoning, and identifying knowledge contamination. The results demonstrate that our approach not only excels at sample-level attribution but also enables fine-grained token-level analysis, precisely identifying the specific samples and phrases that causally influence model behavior. This work provides a powerful diagnostic tool to understand, audit, and ultimately mitigate the risks associated with LLMs. The code is available at https://github.com/plumprc/RepT.

Authors:Ziqing Wang, Chengsheng Mao, Xiaole Wen, Yuan Luo, Kaize Ding
Title: AMANDA: Agentic Medical Knowledge Augmentation for Data-Efficient Medical Visual Question Answering
Abstract:
Medical Multimodal Large Language Models (Med-MLLMs) have shown great promise in medical visual question answering (Med-VQA). However, when deployed in low-resource settings where abundant labeled data are unavailable, existing Med-MLLMs commonly fail due to their medical reasoning capability bottlenecks: (i) the intrinsic reasoning bottleneck that ignores the details from the medical image; (ii) the extrinsic reasoning bottleneck that fails to incorporate specialized medical knowledge. To address those limitations, we propose AMANDA, a training-free agentic framework that performs medical knowledge augmentation via LLM agents. Specifically, our intrinsic medical knowledge augmentation focuses on coarse-to-fine question decomposition for comprehensive diagnosis, while extrinsic medical knowledge augmentation grounds the reasoning process via biomedical knowledge graph retrieval. Extensive experiments across eight Med-VQA benchmarks demonstrate substantial improvements in both zero-shot and few-shot Med-VQA settings. The code is available at https://github.com/REAL-Lab-NU/AMANDA.

Authors:Eric Tillmann Bill, Enis Simsar, Thomas Hofmann
Title: Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Abstract:
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.

Authors:Bo-Hsu Ke, You-Zhe Xie, Yu-Lun Liu, Wei-Chen Chiu
Title: StealthAttack: Robust 3D Gaussian Splatting Poisoning via Density-Guided Illusions
Abstract:
3D scene representation methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have significantly advanced novel view synthesis. As these methods become prevalent, addressing their vulnerabilities becomes critical. We analyze 3DGS robustness against image-level poisoning attacks and propose a novel density-guided poisoning method. Our method strategically injects Gaussian points into low-density regions identified via Kernel Density Estimation (KDE), embedding viewpoint-dependent illusory objects clearly visible from poisoned views while minimally affecting innocent views. Additionally, we introduce an adaptive noise strategy to disrupt multi-view consistency, further enhancing attack effectiveness. We propose a KDE-based evaluation protocol to assess attack difficulty systematically, enabling objective benchmarking for future research. Extensive experiments demonstrate our method's superior performance compared to state-of-the-art techniques. Project page: https://hentci.github.io/stealthattack/

Authors:Qin Shi, Amber Yijia Zheng, Qifan Song, Raymond A. Yeh
Title: Knowledge Distillation Detection for Open-weights Models
Abstract:
We propose the task of knowledge distillation detection, which aims to determine whether a student model has been distilled from a given teacher, under a practical setting where only the student's weights and the teacher's API are available. This problem is motivated by growing concerns about model provenance and unauthorized replication through distillation. To address this task, we introduce a model-agnostic framework that combines data-free input synthesis and statistical score computation for detecting distillation. Our approach is applicable to both classification and generative models. Experiments on diverse architectures for image classification and text-to-image generation show that our method improves detection accuracy over the strongest baselines by 59.6% on CIFAR-10, 71.2% on ImageNet, and 20.0% for text-to-image generation. The code is available at https://github.com/shqii1j/distillation_detection.

Authors:Enxin Song, Wenhao Chai, Shusheng Yang, Ethan Armand, Xiaojun Shan, Haiyang Xu, Jianwen Xie, Zhuowen Tu
Title: VideoNSA: Native Sparse Attention Scales Video Understanding
Abstract:
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.

Authors:Hala Sheta, Eric Huang, Shuyu Wu, Ilia Alenabi, Jiajun Hong, Ryker Lin, Ruoxi Ning, Daniel Wei, Jialin Yang, Jiawei Zhou, Ziqiao Ma, Freda Shi
Title: From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens
Abstract:
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.

Authors:Sathira Silva, Eman Ali, Chetan Arora, Muhammad Haris Khan
Title: microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Abstract:
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.

Authors:Tianchong Jiang, Jingtian Ji, Xiangshan Tan, Jiading Fang, Anand Bhattad, Vitor Guizilini, Matthew R. Walter
Title: Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
Abstract:
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .

Authors:Joao Pedro Araujo, Yanjie Ze, Pei Xu, Jiajun Wu, C. Karen Liu
Title: Retargeting Matters: General Motion Retargeting for Humanoid Motion Tracking
Abstract:
Humanoid motion tracking policies are central to building teleoperation pipelines and hierarchical controllers, yet they face a fundamental challenge: the embodiment gap between humans and humanoid robots. Current approaches address this gap by retargeting human motion data to humanoid embodiments and then training reinforcement learning (RL) policies to imitate these reference trajectories. However, artifacts introduced during retargeting, such as foot sliding, self-penetration, and physically infeasible motion are often left in the reference trajectories for the RL policy to correct. While prior work has demonstrated motion tracking abilities, they often require extensive reward engineering and domain randomization to succeed. In this paper, we systematically evaluate how retargeting quality affects policy performance when excessive reward tuning is suppressed. To address issues that we identify with existing retargeting methods, we propose a new retargeting method, General Motion Retargeting (GMR). We evaluate GMR alongside two open-source retargeters, PHC and ProtoMotions, as well as with a high-quality closed-source dataset from Unitree. Using BeyondMimic for policy training, we isolate retargeting effects without reward tuning. Our experiments on a diverse subset of the LAFAN1 dataset reveal that while most motions can be tracked, artifacts in retargeted data significantly reduce policy robustness, particularly for dynamic or long sequences. GMR consistently outperforms existing open-source methods in both tracking performance and faithfulness to the source motion, achieving perceptual fidelity and policy success rates close to the closed-source baseline. Website: https://jaraujo98.github.io/retargeting_matters. Code: https://github.com/YanjieZe/GMR.

Authors:Phuc Minh Nguyen, Chinh D. La, Duy M. H. Nguyen, Nitesh V. Chawla, Binh T. Nguyen, Khoa D. Doan
Title: The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.

Authors:Maximilian Beck, Kajetan Schweighofer, Sebastian Böck, Sebastian Lehner, Sepp Hochreiter
Title: xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity
Abstract:
Scaling laws play a central role in the success of Large Language Models (LLMs), enabling the prediction of model performance relative to compute budgets prior to training. While Transformers have been the dominant architecture, recent alternatives such as xLSTM offer linear complexity with respect to context length while remaining competitive in the billion-parameter regime. We conduct a comparative investigation on the scaling behavior of Transformers and xLSTM along the following lines, providing insights to guide future model design and deployment. First, we study the scaling behavior for xLSTM in compute-optimal and over-training regimes using both IsoFLOP and parametric fit approaches on a wide range of model sizes (80M-7B) and number of training tokens (2B-2T). Second, we examine the dependence of optimal model sizes on context length, a pivotal aspect that was largely ignored in previous work. Finally, we analyze inference-time scaling characteristics. Our findings reveal that in typical LLM training and inference scenarios, xLSTM scales favorably compared to Transformers. Importantly, xLSTM's advantage widens as training and inference contexts grow.

Authors:Xiaoyang Yuan, Yujuan Ding, Yi Bin, Wenqi Shao, Jinyu Cai, Jingkuan Song, Yang Yang, Heng Tao Shen
Title: More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

Authors:Weijia Dou, Xu Zhang, Yi Bin, Jian Liu, Bo Peng, Guoqing Wang, Yang Yang, Heng Tao Shen
Title: GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Abstract:
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).

Authors:Nathaniel Hanson, Austin Allison, Charles DiMarzio, Taşkın Padır, Kristen L. Dorsey
Title: SCANS: A Soft Gripper with Curvature and Spectroscopy Sensors for In-Hand Material Differentiation
Abstract:
We introduce the soft curvature and spectroscopy (SCANS) system: a versatile, electronics-free, fluidically actuated soft manipulator capable of assessing the spectral properties of objects either in hand or through pre-touch caging. This platform offers a wider spectral sensing capability than previous soft robotic counterparts. We perform a material analysis to explore optimal soft substrates for spectral sensing, and evaluate both pre-touch and in-hand performance. Experiments demonstrate explainable, statistical separation across diverse object classes and sizes (metal, wood, plastic, organic, paper, foam), with large spectral angle differences between items. Through linear discriminant analysis, we show that sensitivity in the near-infrared wavelengths is critical to distinguishing visually similar objects. These capabilities advance the potential of optics as a multi-functional sensory modality for soft robots. The complete parts list, assembly guidelines, and processing code for the SCANS gripper are accessible at: https://parses-lab.github.io/scans/.

Authors:Koichi Saito, Julian Tanke, Christian Simon, Masato Ishii, Kazuki Shimada, Zachary Novack, Zhi Zhong, Akio Hayakawa, Takashi Shibuya, Yuki Mitsufuji
Title: SoundReactor: Frame-level Online Video-to-Audio Generation
Abstract:
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.

Authors:Jong Bum Won, Wesley De Neve, Joris Vankerschaver, Utku Ozbulak
Title: SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.

Authors:Yunhan Lin, Wenqi Wu, Zhijie Zhang, Huasong Min
Title: LangGrasp: Leveraging Fine-Tuned LLMs for Language Interactive Robot Grasping with Ambiguous Instructions
Abstract:
The existing language-driven grasping methods struggle to fully handle ambiguous instructions containing implicit intents. To tackle this challenge, we propose LangGrasp, a novel language-interactive robotic grasping framework. The framework integrates fine-tuned large language models (LLMs) to leverage their robust commonsense understanding and environmental perception capabilities, thereby deducing implicit intents from linguistic instructions and clarifying task requirements along with target manipulation objects. Furthermore, our designed point cloud localization module, guided by 2D part segmentation, enables partial point cloud localization in scenes, thereby extending grasping operations from coarse-grained object-level to fine-grained part-level manipulation. Experimental results show that the LangGrasp framework accurately resolves implicit intents in ambiguous instructions, identifying critical operations and target information that are unstated yet essential for task completion. Additionally, it dynamically selects optimal grasping poses by integrating environmental information. This enables high-precision grasping from object-level to part-level manipulation, significantly enhancing the adaptability and task execution efficiency of robots in unstructured environments. More information and code are available here: https://github.com/wu467/LangGrasp.

Authors:Carlijn Lems, Leslie Tessier, John-Melle Bokhorst, Mart van Rijthoven, Witali Aswolinskiy, Matteo Pozzi, Natalie Klubickova, Suzanne Dintzis, Michela Campora, Maschenka Balkenhol, Peter Bult, Joey Spronck, Thomas Detone, Mattia Barbareschi, Enrico Munari, Giuseppe Bogina, Jelle Wesseling, Esther H. Lips, Francesco Ciompi, Frédérique Meeuwsen, Jeroen van der Laak
Title: A Multicentric Dataset for Training and Benchmarking Breast Cancer Segmentation in H&E Slides
Abstract:
Automated semantic segmentation of whole-slide images (WSIs) stained with hematoxylin and eosin (H&E) is essential for large-scale artificial intelligence-based biomarker analysis in breast cancer. However, existing public datasets for breast cancer segmentation lack the morphological diversity needed to support model generalizability and robust biomarker validation across heterogeneous patient cohorts. We introduce BrEast cancEr hisTopathoLogy sEgmentation (BEETLE), a dataset for multiclass semantic segmentation of H&E-stained breast cancer WSIs. It consists of 587 biopsies and resections from three collaborating clinical centers and two public datasets, digitized using seven scanners, and covers all molecular subtypes and histological grades. Using diverse annotation strategies, we collected annotations across four classes - invasive epithelium, non-invasive epithelium, necrosis, and other - with particular focus on morphologies underrepresented in existing datasets, such as ductal carcinoma in situ and dispersed lobular tumor cells. The dataset's diversity and relevance to the rapidly growing field of automated biomarker quantification in breast cancer ensure its high potential for reuse. Finally, we provide a well-curated, multicentric external evaluation set to enable standardized benchmarking of breast cancer segmentation models.

Authors:Mengtian Li, Yunshu Bai, Yimin Chu, Yijun Shen, Zhongmei Li, Weifeng Ge, Zhifeng Xie, Chaofeng Chen
Title: GaussianMorphing: Mesh-Guided 3D Gaussians for Semantic-Aware Object Morphing
Abstract:
We introduce GaussianMorphing, a novel framework for semantic-aware 3D shape and texture morphing from multi-view images. Previous approaches usually rely on point clouds or require pre-defined homeomorphic mappings for untextured data. Our method overcomes these limitations by leveraging mesh-guided 3D Gaussian Splatting (3DGS) for high-fidelity geometry and appearance modeling. The core of our framework is a unified deformation strategy that anchors 3DGaussians to reconstructed mesh patches, ensuring geometrically consistent transformations while preserving texture fidelity through topology-aware constraints. In parallel, our framework establishes unsupervised semantic correspondence by using the mesh topology as a geometric prior and maintains structural integrity via physically plausible point trajectories. This integrated approach preserves both local detail and global semantic coherence throughout the morphing process with out requiring labeled data. On our proposed TexMorph benchmark, GaussianMorphing substantially outperforms prior 2D/3D methods, reducing color consistency error ($ΔE$) by 22.2% and EI by 26.2%. Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/

Authors:Yujie Zhou, Pengyang Ling, Jiazi Bu, Yibin Wang, Yuhang Zang, Jiaqi Wang, Li Niu, Guangtao Zhai
Title: $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
Abstract:
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.

Authors:Bhaskar Mangal, Ashutosh Bhatia, Yashvardhan Sharma, Kamlesh Tiwari, Rashmi Verma
Title: KTBox: A Modular LaTeX Framework for Semantic Color, Structured Highlighting, and Scholarly Communication
Abstract:
The communication of technical insight in scientific manuscripts often relies on ad-hoc formatting choices, resulting in inconsistent visual emphasis and limited portability across document classes. This paper introduces ktbox, a modular LaTeX framework that unifies semantic color palettes, structured highlight boxes, taxonomy trees, and author metadata utilities into a coherent system for scholarly writing. The framework is distributed as a set of lightweight, namespaced components: ktcolor.sty for semantic palettes, ktbox.sty for structured highlight and takeaway environments, ktlrtree.sty for taxonomy trees with fusion and auxiliary annotations, and ktorcid.sty for ORCID-linked author metadata. Each component is independently usable yet interoperable, ensuring compatibility with major templates such as IEEEtran, acmart, iclr conference, and beamer. Key features include auto-numbered takeaway boxes, wide-format highlights, flexible taxonomy tree visualizations, and multi-column layouts supporting embedded tables, enumerations, and code blocks. By adopting a clear separation of concerns and enforcing a consistent naming convention under the kt namespace, the framework transforms visual styling from cosmetic add-ons into reproducible, extensible building blocks of scientific communication, improving clarity, portability, and authoring efficiency across articles, posters, and presentations.

Authors:Yongyi Su, Haojie Zhang, Shijie Li, Nanqing Liu, Jingyi Liao, Junyi Pan, Yuan Liu, Xiaofen Xing, Chong Sun, Chen Li, Nancy F. Chen, Shuicheng Yan, Xulei Yang, Xun Xu
Title: Patch-as-Decodable-Token: Towards Unified Multi-Modal Vision Tasks in MLLMs
Abstract:
Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models. The code is available at https://github.com/Gorilla-Lab-SCUT/PaDT.

Authors:Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Lingjuan Lyu
Title: StelLA: Subspace Learning in Low-rank Adaptation using Stiefel Manifold
Abstract:
Low-rank adaptation (LoRA) has been widely adopted as a parameter-efficient technique for fine-tuning large-scale pre-trained models. However, it still lags behind full fine-tuning in performance, partly due to its insufficient exploitation of the geometric structure underlying low-rank manifolds. In this paper, we propose a geometry-aware extension of LoRA that uses a three-factor decomposition $U\!SV^\top$. Analogous to the structure of singular value decomposition (SVD), it separates the adapter's input and output subspaces, $V$ and $U$, from the scaling factor $S$. Our method constrains $U$ and $V$ to lie on the Stiefel manifold, ensuring their orthonormality throughout the training. To optimize on the Stiefel manifold, we employ a flexible and modular geometric optimization design that converts any Euclidean optimizer to a Riemannian one. It enables efficient subspace learning while remaining compatible with existing fine-tuning pipelines. Empirical results across a wide range of downstream tasks, including commonsense reasoning, math and code generation, image classification, and image generation, demonstrate the superior performance of our approach against the recent state-of-the-art variants of LoRA. Code is available at https://github.com/SonyResearch/stella.

Authors:Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam
Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Abstract:
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.

Authors:Yi Ai, Yuanhao Cai, Yulun Zhang, Xiaokang Yang
Title: Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction
Abstract:
Hyperspectral imaging (HSI) provides rich spatial-spectral information but remains costly to acquire due to hardware limitations and the difficulty of reconstructing three-dimensional data from compressed measurements. Although compressive sensing systems such as CASSI improve efficiency, accurate reconstruction is still challenged by severe degradation and loss of fine spectral details. We propose the Flow-Matching-guided Unfolding network (FMU), which, to our knowledge, is the first to integrate flow matching into HSI reconstruction by embedding its generative prior within a deep unfolding framework. To further strengthen the learned dynamics, we introduce a mean velocity loss that enforces global consistency of the flow, leading to a more robust and accurate reconstruction. This hybrid design leverages the interpretability of optimization-based methods and the generative capacity of flow matching. Extensive experiments on both simulated and real datasets show that FMU significantly outperforms existing approaches in reconstruction quality. Code and models will be available at https://github.com/YiAi03/FMU.

Authors:Thomas Gravier, Thomas Boyer, Auguste Genovesio
Title: Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Abstract:
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textit{\textbf{Multi-Marginal temporal Schrödinger Bridge Matching}} (\textbf{MMtSBM}) \textit{for video generation from unpaired data}, extending the theoretical guarantees and empirical efficiency of Diffusion Schrödinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schrödinger bridges as a practical and principled approach for recovering hidden dynamics from static data.

Authors:Marco Cococcioni, Dario Pagani, Federico Rossi
Title: Microscaling Floating Point Formats for Large Language Models
Abstract:
The increasing computational and memory demands of large language models (LLMs) necessitate innovative approaches to optimize resource usage without compromising performance. This paper leverages microscaling floating-point formats, a novel technique designed to address these challenges by reducing the storage and computational overhead associated with numerical representations in LLMs. Unlike traditional floating-point representations that allocate a dedicated scale for each value, microscaling employs a shared scale across a block of values, enabling compact one-byte floating-point representations while maintaining an extended dynamic range. We explore the application of microscaling in the context of 8-bit floating-point formats to significantly reduce memory footprint and computational costs. We tested several configurations of microscaling floats within the GPT-2 LLM architecture, demonstrating that microscaling data formats can achieve competitive accuracy during training and inference, proving its efficacy as a resource-efficient alternative for deploying LLMs at scale. The source code is publicly available at: https://github.com/unipi-dii-compressedarith/llm.c-sve

Authors:Lexiang Hu, Yikang Li, Zhouchen Lin
Title: Explicit Discovery of Nonlinear Symmetries from Dynamic Data
Abstract:
Symmetry is widely applied in problems such as the design of equivariant networks and the discovery of governing equations, but in complex scenarios, it is not known in advance. Most previous symmetry discovery methods are limited to linear symmetries, and recent attempts to discover nonlinear symmetries fail to explicitly get the Lie algebra subspace. In this paper, we propose LieNLSD, which is, to our knowledge, the first method capable of determining the number of infinitesimal generators with nonlinear terms and their explicit expressions. We specify a function library for the infinitesimal group action and aim to solve for its coefficient matrix, proving that its prolongation formula for differential equations, which governs dynamic data, is also linear with respect to the coefficient matrix. By substituting the central differences of the data and the Jacobian matrix of the trained neural network into the infinitesimal criterion, we get a system of linear equations for the coefficient matrix, which can then be solved using SVD. On top quark tagging and a series of dynamic systems, LieNLSD shows qualitative advantages over existing methods and improves the long rollout accuracy of neural PDE solvers by over 20% while applying to guide data augmentation. Code and data are available at https://github.com/hulx2002/LieNLSD.

Authors:Madina Bekbergenova, Lucas Pradi, Benjamin Navet, Emma Tysinger, Franck Michel, Matthieu Feraud, Yousouf Taghzouti, Yan Zhou Chen, Olivier Kirchhoffer, Florence Mehl, Martin Legrand, Tao Jiang, Marco Pagni, Soha Hassoun, Jean-Luc Wolfender, Wout Bittremieux, Fabien Gandon, Louis-Félix Nothias
Title: MetaboT: AI-based agent for natural language-based interaction with metabolomics knowledge graphs
Abstract:
Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].

Authors:Jialin Zhao
Title: Accelerating Attention with Basis Decomposition
Abstract:
Attention is a core operation in large language models (LLMs) and vision-language models (VLMs). We present BD Attention (BDA), the first lossless algorithmic reformulation of attention. BDA is enabled by a simple matrix identity from Basis Decomposition (BD), which restructures multi-head projections into a compact form while preserving exact outputs. Unlike I/O-aware system optimizations such as FlashAttention, BDA provides a mathematically guaranteed acceleration that is architecture-agnostic. On DeepSeek-V2-Lite (16B, FP16), BDA requires only 4s of offline preparation with no retraining required and, on modern GPUs, achieves 32% faster key/value projections and 25% smaller weights, while increasing end-to-end perplexity (PPL) by just 0.02% (FP16) or 0.0004% (FP32), a negligible effect on model performance. These results position BDA as the first theoretically exact method for lossless attention acceleration that is complementary to existing engineering-level optimizations. Our code is available at https://github.com/abcbdf/basis-decomposition-official.

Authors:Pierre Musacchio, Hyunmin Lee, Jaesik Park
Title: Holistic Order Prediction in Natural Scenes
Abstract:
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.

Authors:Jiacong Xu, Yiqun Mei, Ke Zhang, Vishal M. Patel
Title: FreeViS: Training-free Video Stylization with Inconsistent References
Abstract:
Video stylization plays a key role in content creation, but it remains a challenging problem. Naïvely applying image stylization frame-by-frame hurts temporal consistency and reduces style richness. Alternatively, training a dedicated video stylization model typically requires paired video data and is computationally expensive. In this paper, we propose FreeViS, a training-free video stylization framework that generates stylized videos with rich style details and strong temporal coherence. Our method integrates multiple stylized references to a pretrained image-to-video (I2V) model, effectively mitigating the propagation errors observed in prior works, without introducing flickers and stutters. In addition, it leverages high-frequency compensation to constrain the content layout and motion, together with flow-based motion cues to preserve style textures in low-saliency regions. Through extensive evaluations, FreeViS delivers higher stylization fidelity and superior temporal consistency, outperforming recent baselines and achieving strong human preference. Our training-free pipeline offers a practical and economic solution for high-quality, temporally coherent video stylization. The code and videos can be accessed via https://xujiacong.github.io/FreeViS/

Authors:Apoorv Khandelwal, Ellie Pavlick
Title: How Do Language Models Compose Functions?
Abstract:
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .

Authors:Ke Jia, Ji Zhou, Hanxin Li, Zhigan Zhou, Haojie Chu, Xiaojie Li
Title: An Efficient Deep Template Matching and In-Plane Pose Estimation Method via Template-Aware Dynamic Convolution
Abstract:
In industrial inspection and component alignment tasks, template matching requires efficient estimation of a target's position and geometric state (rotation and scaling) under complex backgrounds to support precise downstream operations. Traditional methods rely on exhaustive enumeration of angles and scales, leading to low efficiency under compound transformations. Meanwhile, most deep learning-based approaches only estimate similarity scores without explicitly modeling geometric pose, making them inadequate for real-world deployment. To overcome these limitations, we propose a lightweight end-to-end framework that reformulates template matching as joint localization and geometric regression, outputting the center coordinates, rotation angle, and independent horizontal and vertical scales. A Template-Aware Dynamic Convolution Module (TDCM) dynamically injects template features at inference to guide generalizable matching. The compact network integrates depthwise separable convolutions and pixel shuffle for efficient matching. To enable geometric-annotation-free training, we introduce a rotation-shear-based augmentation strategy with structure-aware pseudo labels. A lightweight refinement module further improves angle and scale precision via local optimization. Experiments show our 3.07M model achieves high precision and 14ms inference under compound transformations. It also demonstrates strong robustness in small-template and multi-object scenarios, making it highly suitable for deployment in real-time industrial applications. The code is available at:https://github.com/ZhouJ6610/PoseMatch-TDCM.

Authors:Motoki Sato, Yuki Matsushita, Hidekazu Takahashi, Tomoaki Kakazu, Sou Nagata, Mizuho Ohnuma, Atsushi Yoshikawa, Masayuki Yamamura
Title: A Locally Executable AI System for Improving Preoperative Patient Communication: A Multi-Domain Clinical Evaluation
Abstract:
Patients awaiting invasive procedures often have unanswered pre-procedural questions; however, time-pressured workflows and privacy constraints limit personalized counseling. We present LENOHA (Low Energy, No Hallucination, Leave No One Behind Architecture), a safety-first, local-first system that routes inputs with a high-precision sentence-transformer classifier and returns verbatim answers from a clinician-curated FAQ for clinical queries, eliminating free-text generation in the clinical path. We evaluated two domains (tooth extraction and gastroscopy) using expert-reviewed validation sets (n=400/domain) for thresholding and independent test sets (n=200/domain). Among the four encoders, E5-large-instruct (560M) achieved an overall accuracy of 0.983 (95% CI 0.964-0.991), AUC 0.996, and seven total errors, which were statistically indistinguishable from GPT-4o on this task; Gemini made no errors on this test set. Energy logging shows that the non-generative clinical path consumes ~1.0 mWh per input versus ~168 mWh per small-talk reply from a local 8B SLM, a ~170x difference, while maintaining ~0.10 s latency on a single on-prem GPU. These results indicate that near-frontier discrimination and generation-induced errors are structurally avoided in the clinical path by returning vetted FAQ answers verbatim, supporting privacy, sustainability, and equitable deployment in bandwidth-limited environments.

Authors:Jin Cao, Hongrui Wu, Ziyong Feng, Hujun Bao, Xiaowei Zhou, Sida Peng
Title: UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
Abstract:
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations. However, these methods rely heavily on dense observations for robustly optimizing model parameters. To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process. To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images. Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies. Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/

Authors:Yejin Kim, Youngbin Lee, Juhyeong Kim, Yongjae Lee
Title: GuruAgents: Emulating Wise Investors with Prompt-Guided LLM Agents
Abstract:
This study demonstrates that GuruAgents, prompt-guided AI agents, can systematically operationalize the strategies of legendary investment gurus. We develop five distinct GuruAgents, each designed to emulate an iconic investor, by encoding their distinct philosophies into LLM prompts that integrate financial tools and a deterministic reasoning pipeline. In a backtest on NASDAQ-100 constituents from Q4 2023 to Q2 2025, the GuruAgents exhibit unique behaviors driven by their prompted personas. The Buffett GuruAgent achieves the highest performance, delivering a 42.2\% CAGR that significantly outperforms benchmarks, while other agents show varied results. These findings confirm that prompt engineering can successfully translate the qualitative philosophies of investment gurus into reproducible, quantitative strategies, highlighting a novel direction for automated systematic investing. The source code and data are available at https://github.com/yejining99/GuruAgents.

Authors:Zijun Lin, Jiafei Duan, Haoquan Fang, Dieter Fox, Ranjay Krishna, Cheston Tan, Bihan Wen
Title: FailSafe: Reasoning and Recovery from Failures in Vision-Language-Action Models
Abstract:
Recent advances in robotic manipulation have integrated low-level robotic control into Vision-Language Models (VLMs), extending them into Vision-Language-Action (VLA) models. Although state-of-the-art VLAs achieve strong performance in downstream robotic applications, supported by large-scale crowd-sourced robot training data, they still inevitably encounter failures during execution. Enabling robots to reason about and recover from unpredictable and abrupt failures remains a critical challenge. Existing robotic manipulation datasets, collected in either simulation or the real world, primarily provide only ground-truth trajectories, leaving robots unable to recover once failures occur. Moreover, the few datasets that address failure detection typically offer only textual explanations, which are difficult to utilize directly in VLA models. To address this gap, we introduce FailSafe, a novel failure generation and recovery system that automatically produces diverse failure cases paired with executable recovery actions. FailSafe can be seamlessly applied to any manipulation task in any simulator, enabling scalable creation of failure-action data. To demonstrate its effectiveness, we fine-tune LLaVa-OneVision-7B (LLaVa-OV-7B) to build FailSafe-VLM. Experimental results show that FailSafe-VLM successfully helps robotic arm detect and recover from potential failures, improving the performance of three state-of-the-art VLA models pi0-FAST, OpenVLA, OpenVLA-OFT) by up to 22.6% on average across several tasks in Maniskill. Furthermore, FailSafe-VLM could generalize across different spatial configurations, camera viewpoints, and robotic embodiments. We plan to release the FailSafe code to the community.

Authors:Xiaoyang Liu, Zhengyan Zhou, Zihang Xu, Jiezhang Cao, Zheng Chen, Yulun Zhang
Title: FideDiff: Efficient Diffusion Model for High-Fidelity Image Motion Deblurring
Abstract:
Recent advancements in image motion deblurring, driven by CNNs and transformers, have made significant progress. Large-scale pre-trained diffusion models, which are rich in true-world modeling, have shown great promise for high-quality image restoration tasks such as deblurring, demonstrating stronger generative capabilities than CNN and transformer-based methods. However, challenges such as unbearable inference time and compromised fidelity still limit the full potential of the diffusion models. To address this, we introduce FideDiff, a novel single-step diffusion model designed for high-fidelity deblurring. We reformulate motion deblurring as a diffusion-like process where each timestep represents a progressively blurred image, and we train a consistency model that aligns all timesteps to the same clean image. By reconstructing training data with matched blur trajectories, the model learns temporal consistency, enabling accurate one-step deblurring. We further enhance model performance by integrating Kernel ControlNet for blur kernel estimation and introducing adaptive timestep prediction. Our model achieves superior performance on full-reference metrics, surpassing previous diffusion-based methods and matching the performance of other state-of-the-art models. FideDiff offers a new direction for applying pre-trained diffusion models to high-fidelity image restoration tasks, establishing a robust baseline for further advancing diffusion models in real-world industrial applications. Our dataset and code will be available at https://github.com/xyLiu339/FideDiff.

Authors:Angen Ye, Zeyu Zhang, Boyuan Wang, Xiaofeng Wang, Dapeng Zhang, Zheng Zhu
Title: VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.

Authors:Changmin Lee, Jihyun Lee, Tae-Kyun Kim
Title: MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics
Abstract:
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/

Authors:Kazuhiro Yamauchi, Marie Katsurai
Title: Investigating Industry--Academia Collaboration in Artificial Intelligence: PDF-Based Bibliometric Analysis from Leading Conferences
Abstract:
This study presents a bibliometric analysis of industry--academia collaboration in artificial intelligence (AI) research, focusing on papers from two major international conferences, AAAI and IJCAI, from 2010 to 2023. Most previous studies have relied on publishers and other databases to analyze bibliographic information. However, these databases have problems, such as missing articles and omitted metadata. Therefore, we adopted a novel approach to extract bibliographic information directly from the article PDFs: we examined 20,549 articles and identified the collaborative papers through a classification process of author affiliation. The analysis explores the temporal evolution of collaboration in AI, highlighting significant changes in collaboration patterns over the past decade. In particular, this study examines the role of key academic and industrial institutions in facilitating these collaborations, focusing on emerging global trends. Additionally, a content analysis using document classification was conducted to examine the type of first author in collaborative research articles and explore the potential differences between collaborative and noncollaborative research articles. The results showed that, in terms of publication, collaborations are mainly led by academia, but their content is not significantly different from that of others. The affiliation metadata are available at https://github.com/mm-doshisha/ICADL2024.

Authors:Joykirat Singh, Justin Chih-Yao Chen, Archiki Prasad, Elias Stengel-Eskin, Akshay Nambi, Mohit Bansal
Title: Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Abstract:
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.

Authors:Ricardo Gonzalez Penuela, Felipe Arias-Russi, Victor Capriles
Title: Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations
Abstract:
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .

Authors:Hanqun Cao, Hongrui Zhang, Junde Xu, Zhou Zhang, Lingdong Shen, Minghao Sun, Ge Liu, Jinbo Xu, Wu-Jun Li, Jinren Ni, Cesar de la Fuente-Nunez, Tianfan Fu, Yejin Choi, Pheng-Ann Heng, Fang Wu
Title: From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Abstract:
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.

Authors:Renrong Shao, Wei Zhang, Kangyang Luo, Qin Li, and Jun Wang
Title: Consistent Assistant Domains Transformer for Source-free Domain Adaptation
Abstract:
Source-free domain adaptation (SFDA) aims to address the challenge of adapting to a target domain without accessing the source domain directly. However, due to the inaccessibility of source domain data, deterministic invariable features cannot be obtained. Current mainstream methods primarily focus on evaluating invariant features in the target domain that closely resemble those in the source domain, subsequently aligning the target domain with the source domain. However, these methods are susceptible to hard samples and influenced by domain bias. In this paper, we propose a Consistent Assistant Domains Transformer for SFDA, abbreviated as CADTrans, which solves the issue by constructing invariable feature representations of domain consistency. Concretely, we develop an assistant domain module for CADTrans to obtain diversified representations from the intermediate aggregated global attentions, which addresses the limitation of existing methods in adequately representing diversity. Based on assistant and target domains, invariable feature representations are obtained by multiple consistent strategies, which can be used to distinguish easy and hard samples. Finally, to align the hard samples to the corresponding easy samples, we construct a conditional multi-kernel max mean discrepancy (CMK-MMD) strategy to distinguish between samples of the same category and those of different categories. Extensive experiments are conducted on various benchmarks such as Office-31, Office-Home, VISDA-C, and DomainNet-126, proving the significant performance improvements achieved by our proposed approaches. Code is available at https://github.com/RoryShao/CADTrans.git.

Authors:Hanyu Wang, Jiaming Han, Ziyan Yang, Qi Zhao, Shanchuan Lin, Xiangyu Yue, Abhinav Shrivastava, Zhenheng Yang, Hao Chen
Title: Growing Visual Generative Capacity for Pre-Trained MLLMs
Abstract:
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.

Authors:Haoyuan Cai, Zhenghao Peng, Bolei Zhou
Title: Predictive Preference Learning from Human Interventions
Abstract:
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl

Authors:Meilong Xu, Xiaoling Hu, Shahira Abousamra, Chen Li, Chao Chen
Title: MATCH: Multi-faceted Adaptive Topo-Consistency for Semi-Supervised Histopathology Segmentation
Abstract:
In semi-supervised segmentation, capturing meaningful semantic structures from unlabeled data is essential. This is particularly challenging in histopathology image analysis, where objects are densely distributed. To address this issue, we propose a semi-supervised segmentation framework designed to robustly identify and preserve relevant topological features. Our method leverages multiple perturbed predictions obtained through stochastic dropouts and temporal training snapshots, enforcing topological consistency across these varied outputs. This consistency mechanism helps distinguish biologically meaningful structures from transient and noisy artifacts. A key challenge in this process is to accurately match the corresponding topological features across the predictions in the absence of ground truth. To overcome this, we introduce a novel matching strategy that integrates spatial overlap with global structural alignment, minimizing discrepancies among predictions. Extensive experiments demonstrate that our approach effectively reduces topological errors, resulting in more robust and accurate segmentations essential for reliable downstream analysis. Code is available at \href{https://github.com/Melon-Xu/MATCH}{https://github.com/Melon-Xu/MATCH}.

Authors:Yuxuan Ou, Ning Bi, Jiazhen Pan, Jiancheng Yang, Boliang Yu, Usama Zidan, Regent Lee, Vicente Grau
Title: AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
Abstract:
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.

Authors:Bill Marino, Rosco Hunter, Zubair Jamali, Marinos Emmanouil Kalpakos, Mudra Kashyap, Isaiah Hinton, Alexa Hanson, Maahum Nazir, Christoph Schnabl, Felix Steffek, Hongkai Wen, Nicholas D. Lane
Title: AIReg-Bench: Benchmarking Language Models That Assess AI Regulation Compliance
Abstract:
As governments move to regulate AI, there is growing interest in using Large Language Models (LLMs) to assess whether or not an AI system complies with a given AI Regulation (AIR). However, there is presently no way to benchmark the performance of LLMs at this task. To fill this void, we introduce AIReg-Bench: the first benchmark dataset designed to test how well LLMs can assess compliance with the EU AI Act (AIA). We created this dataset through a two-step process: (1) by prompting an LLM with carefully structured instructions, we generated 120 technical documentation excerpts (samples), each depicting a fictional, albeit plausible, AI system - of the kind an AI provider might produce to demonstrate their compliance with AIR; (2) legal experts then reviewed and annotated each sample to indicate whether, and in what way, the AI system described therein violates specific Articles of the AIA. The resulting dataset, together with our evaluation of whether frontier LLMs can reproduce the experts' compliance labels, provides a starting point to understand the opportunities and limitations of LLM-based AIR compliance assessment tools and establishes a benchmark against which subsequent LLMs can be compared. The dataset and evaluation code are available at https://github.com/camlsys/aireg-bench.

Authors:Nicolás Aguirre, Ramiro Caso, Ramiro Rodríguez Colmeiro, Mauro Santelli, Joaquín Toranzo Calderón
Title: A-VERT: Agnostic Verification with Embedding Ranking Targets
Abstract:
The automatic evaluation of Language Model (LM) responses is a critical piece in the development of benchmarks and metrics, both for model training and quality assessment of production model endpoints. The current approaches to response classification relies on methods that are too expensive (i.e. LLM-as-a-Judge) or that are far from real-world conditions (string-matching, logprob). In this paper, a structure-free evaluation method is presented. The method makes use of semantic embedding distances to match target candidates with arbitrary LM-generated text, resulting in a robust classification of the response at a relatively low compute cost (embedding models of less than $10B$ parameters). The results show a regression score of ~0.97 and an accuracy of ~96% against human annotators, tested over 3 data sets and 3 different LM architectures.

Authors:Nilay Naharas, Dang Nguyen, Nesihan Bulut, Mohammadhossein Bateni, Vahab Mirrokni, Baharan Mirzasoleiman
Title: Data Selection for Fine-tuning Vision Language Models via Cross Modal Alignment Trajectories
Abstract:
Data-efficient learning aims to eliminate redundancy in large training datasets by training models on smaller subsets of the most informative examples. While data selection has been extensively explored for vision models and large language models (LLMs), it remains underexplored for Large Vision-Language Models (LVLMs). Notably, none of existing methods can outperform random selection at different subset sizes. In this work, we propose the first principled method for data-efficient instruction tuning of LVLMs. We prove that examples with similar cross-modal attention matrices during instruction tuning have similar gradients. Thus, they influence model parameters in a similar manner and convey the same information to the model during training. Building on this insight, we propose XMAS, which clusters examples based on the trajectories of the top singular values of their attention matrices obtained from fine-tuning a small proxy LVLM. By sampling a balanced subset from these clusters, XMAS effectively removes redundancy in large-scale LVLM training data. Extensive experiments show that XMAS can discard 50% of the LLaVA-665k dataset and 85% of the Vision-Flan dataset while fully preserving performance of LLaVA-1.5-7B on 10 downstream benchmarks and speeding up its training by 1.2x. This is 30% more data reduction compared to the best baseline for LLaVA-665k. The project's website can be found at https://bigml-cs-ucla.github.io/XMAS-project-page/.

Authors:Yifei Zuo, Yutong Yin, Zhichen Zeng, Ang Li, Banghua Zhu, Zhaoran Wang
Title: Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Abstract:
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the $Θ(n^2 d)$ and $Θ(n d^2)$ complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.

Authors:Shijia Feng, Michael Wray, Walterio Mayol-Cuevas
Title: EvoStruggle: A Dataset Capturing the Evolution of Struggle across Activities and Skill Levels
Abstract:
The ability to determine when a person struggles during skill acquisition is crucial for both optimizing human learning and enabling the development of effective assistive systems. As skills develop, the type and frequency of struggles tend to change, and understanding this evolution is key to determining the user's current stage of learning. However, existing manipulation datasets have not focused on how struggle evolves over time. In this work, we collect a dataset for struggle determination, featuring 61.68 hours of video recordings, 2,793 videos, and 5,385 annotated temporal struggle segments collected from 76 participants. The dataset includes 18 tasks grouped into four diverse activities -- tying knots, origami, tangram puzzles, and shuffling cards, representing different task variations. In addition, participants repeated the same task five times to capture their evolution of skill. We define the struggle determination problem as a temporal action localization task, focusing on identifying and precisely localizing struggle segments with start and end times. Experimental results show that Temporal Action Localization models can successfully learn to detect struggle cues, even when evaluated on unseen tasks or activities. The models attain an overall average mAP of 34.56% when generalizing across tasks and 19.24% across activities, indicating that struggle is a transferable concept across various skill-based tasks while still posing challenges for further improvement in struggle detection. Our dataset is available at https://github.com/FELIXFENG2019/EvoStruggle.

Authors:Yinuo Liu, Ruohan Xu, Xilong Wang, Yuqi Jia, Neil Zhenqiang Gong
Title: WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents
Abstract:
Multiple prompt injection attacks have been proposed against web agents. At the same time, various methods have been developed to detect general prompt injection attacks, but none have been systematically evaluated for web agents. In this work, we bridge this gap by presenting the first comprehensive benchmark study on detecting prompt injection attacks targeting web agents. We begin by introducing a fine-grained categorization of such attacks based on the threat model. We then construct datasets containing both malicious and benign samples: malicious text segments generated by different attacks, benign text segments from four categories, malicious images produced by attacks, and benign images from two categories. Next, we systematize both text-based and image-based detection methods. Finally, we evaluate their performance across multiple scenarios. Our key findings show that while some detectors can identify attacks that rely on explicit textual instructions or visible image perturbations with moderate to high accuracy, they largely fail against attacks that omit explicit instructions or employ imperceptible perturbations. Our datasets and code are released at: https://github.com/Norrrrrrr-lyn/WAInjectBench.

Authors:Xiangfang Li, Yu Wang, Bo Li
Title: Fine-Tuning Jailbreaks under Highly Constrained Black-Box Settings: A Three-Pronged Approach
Abstract:
With the rapid advancement of large language models (LLMs), ensuring their safe use becomes increasingly critical. Fine-tuning is a widely used method for adapting models to downstream tasks, yet it is vulnerable to jailbreak attacks. However, most existing studies focus on overly simplified attack scenarios, limiting their practical relevance to real-world defense settings. To make this risk concrete, we present a three-pronged jailbreak attack and evaluate it against provider defenses under a dataset-only black-box fine-tuning interface. In this setting, the attacker can only submit fine-tuning data to the provider, while the provider may deploy defenses across stages: (1) pre-upload data filtering, (2) training-time defensive fine-tuning, and (3) post-training safety audit. Our attack combines safety-styled prefix/suffix wrappers, benign lexical encodings (underscoring) of sensitive tokens, and a backdoor mechanism, enabling the model to learn harmful behaviors while individual datapoints appear innocuous. Extensive experiments demonstrate the effectiveness of our approach. In real-world deployment, our method successfully jailbreaks GPT-4.1 and GPT-4o on the OpenAI platform with attack success rates above 97% for both models. Our code is available at https://github.com/lxf728/tri-pronged-ft-attack.

Authors:Yu Zeng, Wenxuan Huang, Shiting Huang, Xikun Bao, Yukun Qi, Yiming Zhao, Qiuchen Wang, Lin Chen, Zehui Chen, Huaian Chen, Wanli Ouyang, Feng Zhao
Title: Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Abstract:
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .

Authors:Berker Demirel, Marco Fumero, Theofanis Karaletsos, Francesco Locatello
Title: MorphGen: Controllable and Morphologically Plausible Generative Cell-Imaging
Abstract:
Simulating in silico cellular responses to interventions is a promising direction to accelerate high-content image-based assays, critical for advancing drug discovery and gene editing. To support this, we introduce MorphGen, a state-of-the-art diffusion-based generative model for fluorescent microscopy that enables controllable generation across multiple cell types and perturbations. To capture biologically meaningful patterns consistent with known cellular morphologies, MorphGen is trained with an alignment loss to match its representations to the phenotypic embeddings of OpenPhenom, a state-of-the-art biological foundation model. Unlike prior approaches that compress multichannel stains into RGB images -- thus sacrificing organelle-specific detail -- MorphGen generates the complete set of fluorescent channels jointly, preserving per-organelle structures and enabling a fine-grained morphological analysis that is essential for biological interpretation. We demonstrate biological consistency with real images via CellProfiler features, and MorphGen attains an FID score over $35\%$ lower than the prior state-of-the-art MorphoDiff, which only generates RGB images for a single cell type. Code is available at https://github.com/czi-ai/MorphGen.

Authors:Zarreen Reza
Title: The Social Laboratory: A Psychometric Framework for Multi-Agent LLM Evaluation
Abstract:
As Large Language Models (LLMs) transition from static tools to autonomous agents, traditional evaluation benchmarks that measure performance on downstream tasks are becoming insufficient. These methods fail to capture the emergent social and cognitive dynamics that arise when agents communicate, persuade, and collaborate in interactive environments. To address this gap, we introduce a novel evaluation framework that uses multi-agent debate as a controlled "social laboratory" to discover and quantify these behaviors. In our framework, LLM-based agents, instantiated with distinct personas and incentives, deliberate on a wide range of challenging topics under the supervision of an LLM moderator. Our analysis, enabled by a new suite of psychometric and semantic metrics, reveals several key findings. Across hundreds of debates, we uncover a powerful and robust emergent tendency for agents to seek consensus, consistently reaching high semantic agreement (μ > 0.88) even without explicit instruction and across sensitive topics. We show that assigned personas induce stable, measurable psychometric profiles, particularly in cognitive effort, and that the moderators persona can significantly alter debate outcomes by structuring the environment, a key finding for external AI alignment. This work provides a blueprint for a new class of dynamic, psychometrically grounded evaluation protocols designed for the agentic setting, offering a crucial methodology for understanding and shaping the social behaviors of the next generation of AI agents. We have released the code and results at https://github.com/znreza/multi-agent-LLM-eval-for-debate.

Authors:Chetwin Low, Weimin Wang, Calder Katyal
Title: Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation
Abstract:
Audio-video generation has often relied on complex multi-stage architectures or sequential synthesis of sound and visuals. We introduce Ovi, a unified paradigm for audio-video generation that models the two modalities as a single generative process. By using blockwise cross-modal fusion of twin-DiT modules, Ovi achieves natural synchronization and removes the need for separate pipelines or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we initialize an audio tower with an architecture identical to that of a strong pretrained video model. Trained from scratch on hundreds of thousands of hours of raw audio, the audio tower learns to generate realistic sound effects, as well as speech that conveys rich speaker identity and emotion. Fusion is obtained by jointly training the identical video and audio towers via blockwise exchange of timing (via scaled-RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast video corpus. Our model enables cinematic storytelling with natural speech and accurate, context-matched sound effects, producing movie-grade video clips. All the demos, code and model weights are published at https://aaxwaz.github.io/Ovi

Authors:Hongyi Zhou, Jin Zhu, Pingfan Su, Kai Ye, Ying Yang, Shakeel A O B Gavioli-Akilagun, Chengchun Shi
Title: AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees
Abstract:
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 58%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.

Authors:Isaac Peterson, Christopher Allred, Jacob Morrey, Mario Harper
Title: A Framework for Scalable Heterogeneous Multi-Agent Adversarial Reinforcement Learning in IsaacLab
Abstract:
Multi-Agent Reinforcement Learning (MARL) is central to robotic systems cooperating in dynamic environments. While prior work has focused on these collaborative settings, adversarial interactions are equally critical for real-world applications such as pursuit-evasion, security, and competitive manipulation. In this work, we extend the IsaacLab framework to support scalable training of adversarial policies in high-fidelity physics simulations. We introduce a suite of adversarial MARL environments featuring heterogeneous agents with asymmetric goals and capabilities. Our platform integrates a competitive variant of Heterogeneous Agent Reinforcement Learning with Proximal Policy Optimization (HAPPO), enabling efficient training and evaluation under adversarial dynamics. Experiments across several benchmark scenarios demonstrate the framework's ability to model and train robust policies for morphologically diverse multi-agent competition while maintaining high throughput and simulation realism. Code and benchmarks are available at: https://github.com/DIRECTLab/IsaacLab-HARL .

Authors:Ningyuan Yang, Guanliang Lyu, Mingchen Ma, Yiyi Lu, Yiming Li, Zhihui Gao, Hancheng Ye, Jianyi Zhang, Tingjun Chen, Yiran Chen
Title: IoT-MCP: Bridging LLMs and IoT Systems Through Model Context Protocol
Abstract:
The integration of Large Language Models (LLMs) with Internet-of-Things (IoT) systems faces significant challenges in hardware heterogeneity and control complexity. The Model Context Protocol (MCP) emerges as a critical enabler, providing standardized communication between LLMs and physical devices. We propose IoT-MCP, a novel framework that implements MCP through edge-deployed servers to bridge LLMs and IoT ecosystems. To support rigorous evaluation, we introduce IoT-MCP Bench, the first benchmark containing 114 Basic Tasks (e.g., ``What is the current temperature?'') and 1,140 Complex Tasks (e.g., ``I feel so hot, do you have any ideas?'') for IoT-enabled LLMs. Experimental validation across 22 sensor types and 6 microcontroller units demonstrates IoT-MCP's 100% task success rate to generate tool calls that fully meet expectations and obtain completely accurate results, 205ms average response time, and 74KB peak memory footprint. This work delivers both an open-source integration framework (https://github.com/Duke-CEI-Center/IoT-MCP-Servers) and a standardized evaluation methodology for LLM-IoT systems.

Authors:Nils Durner
Title: In AI Sweet Harmony: Sociopragmatic Guardrail Bypasses and Evaluation-Awareness in OpenAI gpt-oss-20b
Abstract:
We probe OpenAI's open-weights 20-billion-parameter model gpt-oss-20b to study how sociopragmatic framing, language choice, and instruction hierarchy affect refusal behavior. Across 80 seeded iterations per scenario, we test several harm domains including ZIP-bomb construction (cyber threat), synthetic card-number generation, minor-unsafe driving advice, drug-precursor indicators, and RAG context exfiltration. Composite prompts that combine an educator persona, a safety-pretext ("what to avoid"), and step-cue phrasing flip assistance rates from 0% to 97.5% on a ZIP-bomb task. On our grid, formal registers in German and French are often leakier than matched English prompts. A "Linux terminal" role-play overrides a developer rule not to reveal context in a majority of runs with a naive developer prompt, and we introduce an AI-assisted hardening method that reduces leakage to 0% in several user-prompt variants. We further test evaluation awareness with a paired-track design and measure frame-conditioned differences between matched "helpfulness" and "harmfulness" evaluation prompts; we observe inconsistent assistance in 13% of pairs. Finally, we find that the OpenAI Moderation API under-captures materially helpful outputs relative to a semantic grader, and that refusal rates differ by 5 to 10 percentage points across inference stacks, raising reproducibility concerns. We release prompts, seeds, outputs, and code for reproducible auditing at https://github.com/ndurner/gpt-oss-rt-run .

Authors:Fei Shen, Weihao Xu, Rui Yan, Dong Zhang, Xiangbo Shu, Jinhui Tang
Title: IMAGEdit: Let Any Subject Transform
Abstract:
In this paper, we present IMAGEdit, a training-free framework for any number of video subject editing that manipulates the appearances of multiple designated subjects while preserving non-target regions, without finetuning or retraining. We achieve this by providing robust multimodal conditioning and precise mask sequences through a prompt-guided multimodal alignment module and a prior-based mask retargeting module. We first leverage large models' understanding and generation capabilities to produce multimodal information and mask motion sequences for multiple subjects across various types. Then, the obtained prior mask sequences are fed into a pretrained mask-driven video generation model to synthesize the edited video. With strong generalization capability, IMAGEdit remedies insufficient prompt-side multimodal conditioning and overcomes mask boundary entanglement in videos with any number of subjects, thereby significantly expanding the applicability of video editing. More importantly, IMAGEdit is compatible with any mask-driven video generation model, significantly improving overall performance. Extensive experiments on our newly constructed multi-subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-of-the-art methods. Code, models, and datasets are publicly available at https://github.com/XWH-A/IMAGEdit.

Authors:Jiahao Wang, Luoxin Ye, TaiMing Lu, Junfei Xiao, Jiahan Zhang, Yuxiang Guo, Xijun Liu, Rama Chellappa, Cheng Peng, Alan Yuille, Jieneng Chen
Title: EvoWorld: Evolving Panoramic World Generation with Explicit 3D Memory
Abstract:
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.

Authors:Gaoxiang Luo, Aryan Deshwal
Title: COM-BOM: Bayesian Exemplar Search for Efficiently Exploring the Accuracy-Calibration Pareto Frontier
Abstract:
Selecting an optimal set of exemplars is critical for good performance of in-context learning. However, prior exemplar search methods narrowly optimize for predictive accuracy, critically neglecting model calibration--a key determinant of trustworthiness and safe deployment. In this paper, we formulate exemplar selection as a multi-objective optimization problem, explicitly targeting both the maximization of predictive accuracy and the minimization of expected calibration error. We solve this problem with a sample-efficient Combinatorial Bayesian Optimization algorithm (COM-BOM) to find the Pareto front that optimally trades off the two objectives of accuracy and calibration. We evaluate COM-BOM on multiple tasks from unsaturated MMLU-Pro benchmark and find that COM-BOM beats or matches the baselines at jointly optimizing the two objectives, while requiring a minimal number of LLM API calls.

Authors:Jiye Lee, Chenghui Li, Linh Tran, Shih-En Wei, Jason Saragih, Alexander Richard, Hanbyul Joo, Shaojie Bai
Title: Audio Driven Real-Time Facial Animation for Social Telepresence
Abstract:
We present an audio-driven real-time system for animating photorealistic 3D facial avatars with minimal latency, designed for social interactions in virtual reality for anyone. Central to our approach is an encoder model that transforms audio signals into latent facial expression sequences in real time, which are then decoded as photorealistic 3D facial avatars. Leveraging the generative capabilities of diffusion models, we capture the rich spectrum of facial expressions necessary for natural communication while achieving real-time performance (<15ms GPU time). Our novel architecture minimizes latency through two key innovations: an online transformer that eliminates dependency on future inputs and a distillation pipeline that accelerates iterative denoising into a single step. We further address critical design challenges in live scenarios for processing continuous audio signals frame-by-frame while maintaining consistent animation quality. The versatility of our framework extends to multimodal applications, including semantic modalities such as emotion conditions and multimodal sensors with head-mounted eye cameras on VR headsets. Experimental results demonstrate significant improvements in facial animation accuracy over existing offline state-of-the-art baselines, achieving 100 to 1000 times faster inference speed. We validate our approach through live VR demonstrations and across various scenarios such as multilingual speeches.

Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Title: Code2Video: A Code-centric Paradigm for Educational Video Generation
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.

Authors:Qingyuan Liu, Jia-Chen Gu, Yunzhi Yao, Hong Wang, Nanyun Peng
Title: Energy-Regularized Sequential Model Editing on Hyperspheres
Abstract:
Large language models (LLMs) require constant updates to remain aligned with evolving real-world knowledge. Model editing offers a lightweight alternative to retraining, but sequential editing often destabilizes representations and induces catastrophic forgetting. In this work, we seek to better understand and mitigate performance degradation caused by sequential editing. We hypothesize that hyperspherical uniformity, a property that maintains uniform distribution of neuron weights on a hypersphere, helps the model remain stable, retain prior knowledge, while still accommodate new updates. We use Hyperspherical Energy (HE) to quantify neuron uniformity during editing, and examine its correlation with editing performance. Empirical studies across widely used editing methods reveals a strong correlation between HE dynamics and editing performance, with editing failures consistently coinciding with high HE fluctuations. We further theoretically prove that HE dynamics impose a lower bound on the degradation of pretrained knowledge, highlighting why HE stability is crucial for knowledge retention. Motivated by these insights, we propose SPHERE (Sparse Projection for Hyperspherical Energy-Regularized Editing), an HE-driven regularization strategy that stabilizes neuron weight distributions, ultimately preserving prior knowledge while enabling reliable sequential updates. Specifically, SPHERE identifies a sparse space complementary to the principal hyperspherical directions of the pretrained weight matrices and projects new knowledge onto it, attenuating perturbations on the principal directions. Extensive experiments on LLaMA3 (8B) and Qwen2.5 (7B) show that SPHERE outperforms the best baseline in editing capability by an average of 16.41%, while most faithfully preserving general model performance, thereby offering a principled path toward reliable large-scale knowledge editing.

Authors:Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D. Manning, Weiyan Shi
Title: Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Abstract:
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.

Authors:Yiran Shen, Yu Xia, Jonathan Chang, Prithviraj Ammanabrolu
Title: Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards
Abstract:
Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our $\textbf{M}$ulti-$\textbf{A}$ction-$\textbf{H}$ead $\textbf{DPO}$ (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

Authors:Oskar Kviman, Kirill Tamogashev, Nicola Branchini, Víctor Elvira, Jens Lagergren, Nikolay Malkin
Title: Multi-Marginal Flow Matching with Adversarially Learnt Interpolants
Abstract:
Learning the dynamics of a process given sampled observations at several time points is an important but difficult task in many scientific applications. When no ground-truth trajectories are available, but one has only snapshots of data taken at discrete time steps, the problem of modelling the dynamics, and thus inferring the underlying trajectories, can be solved by multi-marginal generalisations of flow matching algorithms. This paper proposes a novel flow matching method that overcomes the limitations of existing multi-marginal trajectory inference algorithms. Our proposed method, ALI-CFM, uses a GAN-inspired adversarial loss to fit neurally parametrised interpolant curves between source and target points such that the marginal distributions at intermediate time points are close to the observed distributions. The resulting interpolants are smooth trajectories that, as we show, are unique under mild assumptions. These interpolants are subsequently marginalised by a flow matching algorithm, yielding a trained vector field for the underlying dynamics. We showcase the versatility and scalability of our method by outperforming the existing baselines on spatial transcriptomics and cell tracking datasets, while performing on par with them on single-cell trajectory prediction. Code: https://github.com/mmacosha/adversarially-learned-interpolants.

Authors:David Anugraha, Shou-Yi Hung, Zilu Tang, Annie En-Shiun Lee, Derry Tanti Wijaya, Genta Indra Winata
Title: mR3: Multilingual Rubric-Agnostic Reward Reasoning Models
Abstract:
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including the integration of target-language reasoning datasets. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.

Authors:Ruiyi Wang, Prithviraj Ammanabrolu
Title: A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning
Abstract:
We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

Authors:Zhanpeng Luo, Haoxi Ran, Li Lu
Title: Instant4D: 4D Gaussian Splatting in Minutes
Abstract:
Dynamic view synthesis has seen significant advances, yet reconstructing scenes from uncalibrated, casual video remains challenging due to slow optimization and complex parameter estimation. In this work, we present Instant4D, a monocular reconstruction system that leverages native 4D representation to efficiently process casual video sequences within minutes, without calibrated cameras or depth sensors. Our method begins with geometric recovery through deep visual SLAM, followed by grid pruning to optimize scene representation. Our design significantly reduces redundancy while maintaining geometric integrity, cutting model size to under 10% of its original footprint. To handle temporal dynamics efficiently, we introduce a streamlined 4D Gaussian representation, achieving a 30x speed-up and reducing training time to within two minutes, while maintaining competitive performance across several benchmarks. Our method reconstruct a single video within 10 minutes on the Dycheck dataset or for a typical 200-frame video. We further apply our model to in-the-wild videos, showcasing its generalizability. Our project website is published at https://instant4d.github.io/.

Authors:Andy Wu, Chun-Cheng Lin, Rung-Tzuo Liaw, Yuehua Huang, Chihjung Kuo, Chia Tong Weng
Title: Multi-Actor Multi-Critic Deep Deterministic Reinforcement Learning with a Novel Q-Ensemble Method
Abstract:
Reinforcement learning has gathered much attention in recent years due to its rapid development and rich applications, especially on control systems and robotics. When tackling real-world applications with reinforcement learning method, the corresponded Markov decision process may have huge discrete or even continuous state/action space. Deep reinforcement learning has been studied for handling these issues through deep learning for years, and one promising branch is the actor-critic architecture. Many past studies leveraged multiple critics to enhance the accuracy of evaluation of a policy for addressing the overestimation and underestimation issues. However, few studies have considered the architecture with multiple actors together with multiple critics. This study proposes a novel multi-actor multi-critic (MAMC) deep deterministic reinforcement learning method. The proposed method has three main features, including selection of actors based on non-dominated sorting for exploration with respect to skill and creativity factors, evaluation for actors and critics using a quantile-based ensemble strategy, and exploiting actors with best skill factor. Theoretical analysis proves the learning stability and bounded estimation bias for the MAMC. The present study examines the performance on a well-known reinforcement learning benchmark MuJoCo. Experimental results show that the proposed framework outperforms state-of-the-art deep deterministic based reinforcement learning methods. Experimental analysis also indicates the proposed components are effective. Empirical analysis further investigates the validity of the proposed method, and shows its benefit on complicated problems. The source code can be found at https://github.com/AndyWu101/MAMC.

Authors:Daniele Bifolco, Guido Annicchiarico, Pierluigi Barbiero, Massimiliano Di Penta, Fiorella Zampetti
Title: CodeGenLink: A Tool to Find the Likely Origin and License of Automatically Generated Code
Abstract:
Large Language Models (LLMs) are widely used in software development tasks nowadays. Unlike reusing code taken from the Web, for LLMs' generated code, developers are concerned about its lack of trustworthiness and possible copyright or licensing violations, due to the lack of code provenance information. This paper proposes CodeGenLink, a GitHub CoPilot extension for Visual Studio Code aimed at (i) suggesting links containing code very similar to automatically generated code, and (ii) whenever possible, indicating the license of the likely origin of the code. CodeGenLink retrieves candidate links by combining LLMs with their web search features and then performs similarity analysis between the generated and retrieved code. Preliminary results show that CodeGenLink effectively filters unrelated links via similarity analysis and provides licensing information when available. Tool URL: https://github.com/danielebifolco/CodeGenLink Tool Video: https://youtu.be/M6nqjBf9_pw

Authors:Jiahang Cao, Yize Huang, Hanzhong Guo, Rui Zhang, Mu Nan, Weijian Mai, Jiaxu Wang, Hao Cheng, Jingkai Sun, Gang Han, Wen Zhao, Qiang Zhang, Yijie Guo, Qihao Zheng, Chunfeng Song, Xiao Li, Ping Luo, Andrew F. Luo
Title: Compose Your Policies! Improving Diffusion-based or Flow-based Robot Policies via Test-time Distribution-level Composition
Abstract:
Diffusion-based models for robotic control, including vision-language-action (VLA) and vision-action (VA) policies, have demonstrated significant capabilities. Yet their advancement is constrained by the high cost of acquiring large-scale interaction datasets. This work introduces an alternative paradigm for enhancing policy performance without additional model training. Perhaps surprisingly, we demonstrate that the composed policies can exceed the performance of either parent policy. Our contribution is threefold. First, we establish a theoretical foundation showing that the convex composition of distributional scores from multiple diffusion models can yield a superior one-step functional objective compared to any individual score. A Grönwall-type bound is then used to show that this single-step improvement propagates through entire generation trajectories, leading to systemic performance gains. Second, motivated by these results, we propose General Policy Composition (GPC), a training-free method that enhances performance by combining the distributional scores of multiple pre-trained policies via a convex combination and test-time search. GPC is versatile, allowing for the plug-and-play composition of heterogeneous policies, including VA and VLA models, as well as those based on diffusion or flow-matching, irrespective of their input visual modalities. Third, we provide extensive empirical validation. Experiments on Robomimic, PushT, and RoboTwin benchmarks, alongside real-world robotic evaluations, confirm that GPC consistently improves performance and adaptability across a diverse set of tasks. Further analysis of alternative composition operators and weighting strategies offers insights into the mechanisms underlying the success of GPC. These results establish GPC as a simple yet effective method for improving control performance by leveraging existing policies.

Authors:Siheng Wan, Zhengtao Yao, Zhengdao Li, Junhao Dong, Yanshu Li, Yikai Li, Linshan Li, Haoyan Xu, Yijiang Li, Zhikang Dong, Huacan Wang, Jifeng Shen
Title: JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Abstract:
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose \textbf{JEPA-T}, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git

Authors:Ziqing Zhang, Kai Liu, Zheng Chen, Xi Li, Yucong Chen, Bingnan Duan, Linghe Kong, Yulun Zhang
Title: InfVSR: Breaking Length Limits of Generic Video Super-Resolution
Abstract:
Real-world videos often extend over thousands of frames. Existing video super-resolution (VSR) approaches, however, face two persistent challenges when processing long sequences: (1) inefficiency due to the heavy cost of multi-step denoising for full-length sequences; and (2) poor scalability hindered by temporal decomposition that causes artifacts and discontinuities. To break these limits, we propose InfVSR, which novelly reformulates VSR as an autoregressive-one-step-diffusion paradigm. This enables streaming inference while fully leveraging pre-trained video diffusion priors. First, we adapt the pre-trained DiT into a causal structure, maintaining both local and global coherence via rolling KV-cache and joint visual guidance. Second, we distill the diffusion process into a single step efficiently, with patch-wise pixel supervision and cross-chunk distribution matching. Together, these designs enable efficient and scalable VSR for unbounded-length videos. To fill the gap in long-form video evaluation, we build a new benchmark tailored for extended sequences and further introduce semantic-level metrics to comprehensively assess temporal consistency. Our method pushes the frontier of long-form VSR, achieves state-of-the-art quality with enhanced semantic consistency, and delivers up to 58x speed-up over existing methods such as MGLD-VSR. Code will be available at https://github.com/Kai-Liu001/InfVSR.

Authors:Shashank Reddy Chirra, Jayden Teoh, Praveen Paruchuri, Pradeep Varakantham
Title: On Discovering Algorithms for Adversarial Imitation Learning
Abstract:
Adversarial Imitation Learning (AIL) methods, while effective in settings with limited expert demonstrations, are often considered unstable. These approaches typically decompose into two components: Density Ratio (DR) estimation $\frac{ρ_E}{ρ_π}$, where a discriminator estimates the relative occupancy of state-action pairs under the policy versus the expert; and Reward Assignment (RA), where this ratio is transformed into a reward signal used to train the policy. While significant research has focused on improving density estimation, the role of reward assignment in influencing training dynamics and final policy performance has been largely overlooked. RA functions in AIL are typically derived from divergence minimization objectives, relying heavily on human design and ingenuity. In this work, we take a different approach: we investigate the discovery of data-driven RA functions, i.e, based directly on the performance of the resulting imitation policy. To this end, we leverage an LLM-guided evolutionary framework that efficiently explores the space of RA functions, yielding \emph{Discovered Adversarial Imitation Learning} (DAIL), the first meta-learnt AIL algorithm. Remarkably, DAIL generalises across unseen environments and policy optimization algorithms, outperforming the current state-of-the-art of \emph{human-designed} baselines. Finally, we analyse why DAIL leads to more stable training, offering novel insights into the role of RA functions in the stability of AIL. Code is publicly available: https://github.com/shshnkreddy/DAIL.

Authors:Ali Shadman Yazdi, Annalisa Cappella, Benedetta Baldini, Riccardo Solazzo, Gianluca Tartaglia, Chiarella Sforza, Giuseppe Baselli
Title: PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Abstract:
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention

Authors:Hyun-kyu Ko, Youbin Kim, Jihyeon Park, Dongheok Park, Gyeongjin Kang, Wonjun Cho, Hyung Yi, Eunbyung Park
Title: Gather-Scatter Mamba: Accelerating Propagation with Efficient State Space Model
Abstract:
State Space Models (SSMs)-most notably RNNs-have historically played a central role in sequential modeling. Although attention mechanisms such as Transformers have since dominated due to their ability to model global context, their quadratic complexity and limited scalability make them less suited for long sequences. Video super-resolution (VSR) methods have traditionally relied on recurrent architectures to propagate features across frames. However, such approaches suffer from well-known issues including vanishing gradients, lack of parallelism, and slow inference speed. Recent advances in selective SSMs like Mamba offer a compelling alternative: by enabling input-dependent state transitions with linear-time complexity, Mamba mitigates these issues while maintaining strong long-range modeling capabilities. Despite this potential, Mamba alone struggles to capture fine-grained spatial dependencies due to its causal nature and lack of explicit context aggregation. To address this, we propose a hybrid architecture that combines shifted window self-attention for spatial context aggregation with Mamba-based selective scanning for efficient temporal propagation. Furthermore, we introduce Gather-Scatter Mamba (GSM), an alignment-aware mechanism that warps features toward a center anchor frame within the temporal window before Mamba propagation and scatters them back afterward, effectively reducing occlusion artifacts and ensuring effective redistribution of aggregated information across all frames. The official implementation is provided at: https://github.com/Ko-Lani/GSMamba.

Authors:Adi Simhi, Jonathan Herzig, Martin Tutek, Itay Itzhak, Idan Szpektor, Yonatan Belinkov
Title: ManagerBench: Evaluating the Safety-Pragmatism Trade-off in Autonomous LLMs
Abstract:
As large language models (LLMs) evolve from conversational assistants into autonomous agents, evaluating the safety of their actions becomes critical. Prior safety benchmarks have primarily focused on preventing generation of harmful content, such as toxic text. However, they overlook the challenge of agents taking harmful actions when the most effective path to an operational goal conflicts with human safety. To address this gap, we introduce ManagerBench, a benchmark that evaluates LLM decision-making in realistic, human-validated managerial scenarios. Each scenario forces a choice between a pragmatic but harmful action that achieves an operational goal, and a safe action that leads to worse operational performance. A parallel control set, where potential harm is directed only at inanimate objects, measures a model's pragmatism and identifies its tendency to be overly safe. Our findings indicate that the frontier LLMs perform poorly when navigating this safety-pragmatism trade-off. Many consistently choose harmful options to advance their operational goals, while others avoid harm only to become overly safe and ineffective. Critically, we find this misalignment does not stem from an inability to perceive harm, as models' harm assessments align with human judgments, but from flawed prioritization. ManagerBench is a challenging benchmark for a core component of agentic behavior: making safe choices when operational goals and alignment values incentivize conflicting actions. Benchmark & code available at https://github.com/technion-cs-nlp/ManagerBench.

Authors:Xiangtao Kong, Rongyuan Wu, Shuaizheng Liu, Lingchen Sun, Lei Zhang
Title: NSARM: Next-Scale Autoregressive Modeling for Robust Real-World Image Super-Resolution
Abstract:
Most recent real-world image super-resolution (Real-ISR) methods employ pre-trained text-to-image (T2I) diffusion models to synthesize the high-quality image either from random Gaussian noise, which yields realistic results but is slow due to iterative denoising, or directly from the input low-quality image, which is efficient but at the price of lower output quality. These approaches train ControlNet or LoRA modules while keeping the pre-trained model fixed, which often introduces over-enhanced artifacts and hallucinations, suffering from the robustness to inputs of varying degradations. Recent visual autoregressive (AR) models, such as pre-trained Infinity, can provide strong T2I generation capabilities while offering superior efficiency by using the bitwise next-scale prediction strategy. Building upon next-scale prediction, we introduce a robust Real-ISR framework, namely Next-Scale Autoregressive Modeling (NSARM). Specifically, we train NSARM in two stages: a transformation network is first trained to map the input low-quality image to preliminary scales, followed by an end-to-end full-model fine-tuning. Such a comprehensive fine-tuning enhances the robustness of NSARM in Real-ISR tasks without compromising its generative capability. Extensive quantitative and qualitative evaluations demonstrate that as a pure AR model, NSARM achieves superior visual results over existing Real-ISR methods while maintaining a fast inference speed. Most importantly, it demonstrates much higher robustness to the quality of input images, showing stronger generalization performance. Project page: https://github.com/Xiangtaokong/NSARM

Authors:Kai Tang, Dipankar Bhattacharya, Hang Xu, Fuyuki Tokuda, Norman C. Tien, Kazuhiro Kosuge
Title: RTFF: Random-to-Target Fabric Flattening Policy using Dual-Arm Manipulator
Abstract:
Robotic fabric manipulation in garment production for sewing, cutting, and ironing requires reliable flattening and alignment, yet remains challenging due to fabric deformability, effectively infinite degrees of freedom, and frequent occlusions from wrinkles, folds, and the manipulator's End-Effector (EE) and arm. To address these issues, this paper proposes the first Random-to-Target Fabric Flattening (RTFF) policy, which aligns a random wrinkled fabric state to an arbitrary wrinkle-free target state. The proposed policy adopts a hybrid Imitation Learning-Visual Servoing (IL-VS) framework, where IL learns with explicit fabric models for coarse alignment of the wrinkled fabric toward a wrinkle-free state near the target, and VS ensures fine alignment to the target. Central to this framework is a template-based mesh that offers precise target state representation, wrinkle-aware geometry prediction, and consistent vertex correspondence across RTFF manipulation steps, enabling robust manipulation and seamless IL-VS switching. Leveraging the power of mesh, a novel IL solution for RTFF-Mesh Action Chunking Transformer (MACT)-is then proposed by conditioning the mesh information into a Transformer-based policy. The RTFF policy is validated on a real dual-arm tele-operation system, showing zero-shot alignment to different targets, high accuracy, and strong generalization across fabrics and scales. Project website: https://kaitang98.github.io/RTFF_Policy/

Authors:Rui Zhu, Xuan Yu, Yudong Zhang, Chen Zhang, Xu Wang, Yang Wang
Title: MG2FlowNet: Accelerating High-Reward Sample Generation via Enhanced MCTS and Greediness Control
Abstract:
Generative Flow Networks (GFlowNets) have emerged as a powerful tool for generating diverse and high-reward structured objects by learning to sample from a distribution proportional to a given reward function. Unlike conventional reinforcement learning (RL) approaches that prioritize optimization of a single trajectory, GFlowNets seek to balance diversity and reward by modeling the entire trajectory distribution. This capability makes them especially suitable for domains such as molecular design and combinatorial optimization. However, existing GFlowNets sampling strategies tend to overexplore and struggle to consistently generate high-reward samples, particularly in large search spaces with sparse high-reward regions. Therefore, improving the probability of generating high-reward samples without sacrificing diversity remains a key challenge under this premise. In this work, we integrate an enhanced Monte Carlo Tree Search (MCTS) into the GFlowNets sampling process, using MCTS-based policy evaluation to guide the generation toward high-reward trajectories and Polynomial Upper Confidence Trees (PUCT) to balance exploration and exploitation adaptively, and we introduce a controllable mechanism to regulate the degree of greediness. Our method enhances exploitation without sacrificing diversity by dynamically balancing exploration and reward-driven guidance. The experimental results show that our method can not only accelerate the speed of discovering high-reward regions but also continuously generate high-reward samples, while preserving the diversity of the generative distribution. All implementations are available at https://github.com/ZRNB/MG2FlowNet.

Authors:Joana C. Costa, Tiago Roxo, Hugo Proença, Pedro R. M. Inácio
Title: ZQBA: Zero Query Black-box Adversarial Attack
Abstract:
Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.

Authors:Giovanni Minelli, Giulio Turrisi, Victor Barasuol, Claudio Semini
Title: CroSTAta: Cross-State Transition Attention Transformer for Robotic Manipulation
Abstract:
Learning robotic manipulation policies through supervised learning from demonstrations remains challenging when policies encounter execution variations not explicitly covered during training. While incorporating historical context through attention mechanisms can improve robustness, standard approaches process all past states in a sequence without explicitly modeling the temporal structure that demonstrations may include, such as failure and recovery patterns. We propose a Cross-State Transition Attention Transformer that employs a novel State Transition Attention (STA) mechanism to modulate standard attention weights based on learned state evolution patterns, enabling policies to better adapt their behavior based on execution history. Our approach combines this structured attention with temporal masking during training, where visual information is randomly removed from recent timesteps to encourage temporal reasoning from historical context. Evaluation in simulation shows that STA consistently outperforms standard cross-attention and temporal modeling approaches like TCN and LSTM networks across all tasks, achieving more than 2x improvement over cross-attention on precision-critical tasks.

Authors:Myungkyu Koo, Daewon Choi, Taeyoung Kim, Kyungmin Lee, Changyeon Kim, Younggyo Seo, Jinwoo Shin
Title: HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Abstract:
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.

Authors:Steffen Meinert, Philipp Schlinge, Nils Strodthoff, Martin Atzmueller
Title: ProtoMask: Segmentation-Guided Prototype Learning
Abstract:
XAI gained considerable importance in recent years. Methods based on prototypical case-based reasoning have shown a promising improvement in explainability. However, these methods typically rely on additional post-hoc saliency techniques to explain the semantics of learned prototypes. Multiple critiques have been raised about the reliability and quality of such techniques. For this reason, we study the use of prominent image segmentation foundation models to improve the truthfulness of the mapping between embedding and input space. We aim to restrict the computation area of the saliency map to a predefined semantic image patch to reduce the uncertainty of such visualizations. To perceive the information of an entire image, we use the bounding box from each generated segmentation mask to crop the image. Each mask results in an individual input in our novel model architecture named ProtoMask. We conduct experiments on three popular fine-grained classification datasets with a wide set of metrics, providing a detailed overview on explainability characteristics. The comparison with other popular models demonstrates competitive performance and unique explainability features of our model. https://github.com/uos-sis/quanproto

Authors:Konstantinos Karakatsanis, Georgios Alexopoulos, Ioannis Karyotakis, Foivos Timotheos Proestakis, Evangelos Talos, Panos Louridas, Dimitris Mitropoulos
Title: PyTrim: A Practical Tool for Reducing Python Dependency Bloat
Abstract:
Dependency bloat is a persistent challenge in Python projects, which increases maintenance costs and security risks. While numerous tools exist for detecting unused dependencies in Python, removing these dependencies across the source code and configuration files of a project requires manual effort and expertise. To tackle this challenge we introduce PYTRIM, an end-to-end system to automate this process. PYTRIM eliminates unused imports and package declarations across a variety of file types, including Python source and configuration files such as requirements.txt and setup.py. PYTRIM's modular design makes it agnostic to the source of dependency bloat information, enabling integration with any detection tool. Beyond its contribution when it comes to automation, PYTRIM also incorporates a novel dynamic analysis component that improves dependency detection recall. Our evaluation of PYTRIM's end-to-end effectiveness on a ground-truth dataset of 37 merged pull requests from prior work, shows that PYTRIM achieves 98.3% accuracy in replicating human-made changes. To show its practical impact, we run PYTRIM on 971 open-source packages, identifying and trimming bloated dependencies in 39 of them. For each case, we submit a corresponding pull request, 6 of which have already been accepted and merged. PYTRIM is available as an open-source project, encouraging community contributions and further development. Video demonstration: https://youtu.be/LqTEdOUbJRI Code repository: https://github.com/TrimTeam/PyTrim

Authors:Francesco Galati, Daniele Falcetta, Rosa Cortese, Ferran Prados, Ninon Burgos, Maria A. Zuluaga
Title: Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
Abstract:
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.

Authors:Beomsu Kim, Byunghee Cha, Jong Chul Ye
Title: Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
Abstract:
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT

Authors:Jinlan Fu, Shenzhen Huangfu, Hao Fei, Yichong Huang, Xiaoyu Shen, Xipeng Qiu, See-Kiong Ng
Title: MCM-DPO: Multifaceted Cross-Modal Direct Preference Optimization for Alt-text Generation
Abstract:
The alt-text generation task produces concise, context-relevant descriptions of images, enabling blind and low-vision users to access online images. Despite the capabilities of large vision-language models, alt-text generation performance remains limited due to noisy user annotations, inconsistent standards, and MLLMs' insensitivity to contextual information. Previous efforts to fine-tune MLLMs using supervised fine-tuning (SFT) have struggled, as SFT relies on accurate target annotations, which are often flawed in user-generated alt-text. To address this, we propose Multi-faceted Cross-modal Direct Preference Optimization (MCM-DPO), which improves alt-text generation by learning to identify better options in preference pairs without requiring precise annotations. MCM-DPO optimizes preferences across single, paired, and multi-preference dimensions, covering textual, visual, and cross-modal factors. In light of the scarcity of high-quality annotated and preference-labeled datasets for alt-text, we constructed two large-scale, high-quality datasets named TAlt and PAlt, sourced from Twitter and Pinterest. These datasets include 202k annotated alt-text samples and 18k preference pairs that cover diverse preference dimensions, aiming to support further research in this domain. Experimental results show that our proposed MCM-DPO method consistently outperforms both DPO and SFT, establishing a new state of the art in alt-text generation. We release the code and data here: https://github.com/LVUGAI/MCM-DPO

Authors:Bingzhang Wang, Kehua Chen, Yinhai Wang
Title: Collaborative-Distilled Diffusion Models (CDDM) for Accelerated and Lightweight Trajectory Prediction
Abstract:
Trajectory prediction is a fundamental task in Autonomous Vehicles (AVs) and Intelligent Transportation Systems (ITS), supporting efficient motion planning and real-time traffic safety management. Diffusion models have recently demonstrated strong performance in probabilistic trajectory prediction, but their large model size and slow sampling process hinder real-world deployment. This paper proposes Collaborative-Distilled Diffusion Models (CDDM), a novel method for real-time and lightweight trajectory prediction. Built upon Collaborative Progressive Distillation (CPD), CDDM progressively transfers knowledge from a high-capacity teacher diffusion model to a lightweight student model, jointly reducing both the number of sampling steps and the model size across distillation iterations. A dual-signal regularized distillation loss is further introduced to incorporate guidance from both the teacher and ground-truth data, mitigating potential overfitting and ensuring robust performance. Extensive experiments on the ETH-UCY pedestrian benchmark and the nuScenes vehicle benchmark demonstrate that CDDM achieves state-of-the-art prediction accuracy. The well-distilled CDDM retains 96.2% and 95.5% of the baseline model's ADE and FDE performance on pedestrian trajectories, while requiring only 231K parameters and 4 or 2 sampling steps, corresponding to 161x compression, 31x acceleration, and 9 ms latency. Qualitative results further show that CDDM generates diverse and accurate trajectories under dynamic agent behaviors and complex social interactions. By bridging high-performing generative models with practical deployment constraints, CDDM enables resource-efficient probabilistic prediction for AVs and ITS. Code is available at https://github.com/bingzhangw/CDDM.

Authors:Guozhen Zhang, Haiguang Wang, Chunyu Wang, Yuan Zhou, Qinglin Lu, Limin Wang
Title: Arbitrary Generative Video Interpolation
Abstract:
Video frame interpolation (VFI), which generates intermediate frames from given start and end frames, has become a fundamental function in video generation applications. However, existing generative VFI methods are constrained to synthesize a fixed number of intermediate frames, lacking the flexibility to adjust generated frame rates or total sequence duration. In this work, we present ArbInterp, a novel generative VFI framework that enables efficient interpolation at any timestamp and of any length. Specifically, to support interpolation at any timestamp, we propose the Timestamp-aware Rotary Position Embedding (TaRoPE), which modulates positions in temporal RoPE to align generated frames with target normalized timestamps. This design enables fine-grained control over frame timestamps, addressing the inflexibility of fixed-position paradigms in prior work. For any-length interpolation, we decompose long-sequence generation into segment-wise frame synthesis. We further design a novel appearance-motion decoupled conditioning strategy: it leverages prior segment endpoints to enforce appearance consistency and temporal semantics to maintain motion coherence, ensuring seamless spatiotemporal transitions across segments. Experimentally, we build comprehensive benchmarks for multi-scale frame interpolation (2x to 32x) to assess generalizability across arbitrary interpolation factors. Results show that ArbInterp outperforms prior methods across all scenarios with higher fidelity and more seamless spatiotemporal continuity. Project website: https://mcg-nju.github.io/ArbInterp-Web/.

Authors:Kwanhyung Lee, Sungsoo Hong, Joonhyung Park, Jeonghyeop Lim, Juhwan Choi, Donghwee Yoon, Eunho Yang
Title: EMR-AGENT: Automating Cohort and Feature Extraction from EMR Databases
Abstract:
Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/

Authors:Gaotang Li, Ruizhong Qiu, Xiusi Chen, Heng Ji, Hanghang Tong
Title: Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum
Abstract:
Supervised fine-tuning (SFT) is the standard approach for post-training large language models (LLMs), yet it often shows limited generalization. We trace this limitation to its default training objective: negative log likelihood (NLL). While NLL is classically optimal when training from scratch, post-training operates in a different paradigm and could violate its optimality assumptions, where models already encode task-relevant priors and supervision can be long and noisy. To this end, we study a general family of probability-based objectives and characterize their effectiveness under different conditions. Through comprehensive experiments and extensive ablation studies across 7 model backbones, 14 benchmarks, and 3 domains, we uncover a critical dimension that governs objective behavior: the model-capability continuum. Near the model-strong end, prior-leaning objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, thresholded variants) consistently outperform NLL; toward the model-weak end, NLL dominates; in between, no single objective prevails. Our theoretical analysis further elucidates how objectives trade places across the continuum, providing a principled foundation for adapting objectives to model capability. Our code is available at https://github.com/GaotangLi/Beyond-Log-Likelihood.

Authors:Yongchao Long, Xian Wu, Yingying Zhang, Xianbin Wen, Yuxi Zhou, Shenda Hong
Title: Copy-Paste to Mitigate Large Language Model Hallucinations
Abstract:
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM

Authors:Kaiqi Zhang, Mingguan Yang, Dali Chang, Chun Chen, Yuxiang Zhang, Kexun He, Jing Zhao
Title: Relative-Absolute Fusion: Rethinking Feature Extraction in Image-Based Iterative Method Selection for Solving Sparse Linear Systems
Abstract:
Iterative method selection is crucial for solving sparse linear systems because these methods inherently lack robustness. Though image-based selection approaches have shown promise, their feature extraction techniques might encode distinct matrices into identical image representations, leading to the same selection and suboptimal method. In this paper, we introduce RAF (Relative-Absolute Fusion), an efficient feature extraction technique to enhance image-based selection approaches. By simultaneously extracting and fusing image representations as relative features with corresponding numerical values as absolute features, RAF achieves comprehensive matrix representations that prevent feature ambiguity across distinct matrices, thus improving selection accuracy and unlocking the potential of image-based selection approaches. We conducted comprehensive evaluations of RAF on SuiteSparse and our developed BMCMat (Balanced Multi-Classification Matrix dataset), demonstrating solution time reductions of 0.08s-0.29s for sparse linear systems, which is 5.86%-11.50% faster than conventional image-based selection approaches and achieves state-of-the-art (SOTA) performance. BMCMat is available at https://github.com/zkqq/BMCMat.

Authors:Yuexin Wang, Xiaolei Wang, Yizheng Gong, Jimin Xiao
Title: Normal-Abnormal Guided Generalist Anomaly Detection
Abstract:
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.

Authors:Dong Bok Lee, Seanie Lee, Sangwoo Park, Minki Kang, Jinheon Baek, Dongki Kim, Dominik Wagner, Jiongdao Jin, Heejun Lee, Tobias Bocklet, Jinyu Wang, Jingjing Fu, Sung Ju Hwang, Jiang Bian, Lei Song
Title: Rethinking Reward Models for Multi-Domain Test-Time Scaling
Abstract:
The reliability of large language models (LLMs) during test-time scaling is often assessed with \emph{external verifiers} or \emph{reward models} that distinguish correct reasoning from flawed logic. Prior work generally assumes that process reward models (PRMs), which score every intermediate reasoning step, outperform outcome reward models (ORMs) that assess only the final answer. This view is based mainly on evidence from narrow, math-adjacent domains. We present the first unified evaluation of four reward model variants, discriminative ORM and PRM (\DisORM, \DisPRM) and generative ORM and PRM (\GenORM, \GenPRM), across 14 diverse domains. Contrary to conventional wisdom, we find that (i) \DisORM performs on par with \DisPRM, (ii) \GenPRM is not competitive, and (iii) overall, \GenORM is the most robust, yielding significant and consistent gains across every tested domain. We attribute this to PRM-style stepwise scoring, which inherits label noise from LLM auto-labeling and has difficulty evaluating long reasoning trajectories, including those involving self-correcting reasoning. Our theoretical analysis shows that step-wise aggregation compounds errors as reasoning length grows, and our empirical observations confirm this effect. These findings challenge the prevailing assumption that fine-grained supervision is always better and support generative outcome verification for multi-domain deployment. We publicly release our code, datasets, and checkpoints at \href{https://github.com/db-Lee/Multi-RM}{\underline{\small\texttt{https://github.com/db-Lee/Multi-RM}}} to facilitate future research in multi-domain settings.

Authors:Yujia Xiao, Liumeng Xue, Lei He, Xinyi Chen, Aemon Yat Fei Chiu, Wenjie Tian, Shaofei Zhang, Qiuqiang Kong, Xinfa Zhu, Wei Xue, Tan Lee
Title: PodEval: A Multimodal Evaluation Framework for Podcast Audio Generation
Abstract:
Recently, an increasing number of multimodal (text and audio) benchmarks have emerged, primarily focusing on evaluating models' understanding capability. However, exploration into assessing generative capabilities remains limited, especially for open-ended long-form content generation. Significant challenges lie in no reference standard answer, no unified evaluation metrics and uncontrollable human judgments. In this work, we take podcast-like audio generation as a starting point and propose PodEval, a comprehensive and well-designed open-source evaluation framework. In this framework: 1) We construct a real-world podcast dataset spanning diverse topics, serving as a reference for human-level creative quality. 2) We introduce a multimodal evaluation strategy and decompose the complex task into three dimensions: text, speech and audio, with different evaluation emphasis on "Content" and "Format". 3) For each modality, we design corresponding evaluation methods, involving both objective metrics and subjective listening test. We leverage representative podcast generation systems (including open-source, close-source, and human-made) in our experiments. The results offer in-depth analysis and insights into podcast generation, demonstrating the effectiveness of PodEval in evaluating open-ended long-form audio. This project is open-source to facilitate public use: https://github.com/yujxx/PodEval.

Authors:Yuheng Ji, Huajie Tan, Cheng Chi, Yijie Xu, Yuting Zhao, Enshen Zhou, Huaihai Lyu, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang, Xiaolong Zheng
Title: MathSticks: A Benchmark for Visual Symbolic Compositional Reasoning with Matchstick Puzzles
Abstract:
We introduce \textsc{MathSticks}, a benchmark for Visual Symbolic Compositional Reasoning (VSCR), which unifies visual perception, symbolic manipulation, and arithmetic consistency. Each task presents an incorrect matchstick equation that must be corrected by moving one or two sticks under strict conservation rules. The benchmark includes both text-guided and purely visual settings, systematically covering digit scale, move complexity, solution multiplicity, and operator variation, with 1.4M generated instances and a curated test set. Evaluations of 14 vision--language models reveal substantial limitations: closed-source models succeed only on simple cases, open-source models fail in the visual regime, while humans exceed 90\% accuracy. These findings establish \textsc{MathSticks} as a rigorous testbed for advancing compositional reasoning across vision and symbols. Our code and dataset are publicly available at https://github.com/Yuheng2000/MathSticks.

Authors:Omid Armantalab, Jason Hawkins, Wissam Kontar
Title: Mobility Behavior Evolution During Extended Emergencies: Returners, Explorers, and the 15-Minute City
Abstract:
Understanding human mobility during emergencies is critical for strengthening urban resilience and guiding emergency management. This study examines transitions between returners, who repeatedly visit a limited set of locations, and explorers, who travel across broader destinations, over a 15-day emergency period in a densely populated metropolitan region using the YJMob100K dataset. High-resolution spatial data reveal intra-urban behavioral dynamics often masked at coarser scales. Beyond static comparisons, we analyze how mobility evolves over time, with varying emergency durations, across weekdays and weekends, and relative to neighborhood boundaries, linking the analysis to the 15-minute city framework. Results show that at least two weeks of data are required to detect meaningful behavioral shifts. During prolonged emergencies, individuals resume visits to non-essential locations more slowly than under normal conditions. Explorers markedly reduce long distance travel, while weekends and holidays consistently exhibit returner-like, short distance patterns. Residents of low Points of Interest (POI) density neighborhoods often travel to POI rich areas, highlighting spatial disparities. Strengthening local accessibility may improve urban resilience during crises. Full reproducibility is supported through the project website: https://github.com/wissamkontar

Authors:Mingyuan Xia, Chunxu Zhang, Zijian Zhang, Hao Miao, Qidong Liu, Yuanshao Zhu, Bo Yang
Title: TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Abstract:
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.

Authors:Atif Belal, Heitor R. Medeiros, Marco Pedersoli, Eric Granger
Title: VLOD-TTA: Test-Time Adaptation of Vision-Language Object Detectors
Abstract:
Vision-language object detectors (VLODs) such as YOLO-World and Grounding DINO achieve impressive zero-shot recognition by aligning region proposals with text representations. However, their performance often degrades under domain shift. We introduce VLOD-TTA, a test-time adaptation (TTA) framework for VLODs that leverages dense proposal overlap and image-conditioned prompt scores. First, an IoU-weighted entropy objective is proposed that concentrates adaptation on spatially coherent proposal clusters and reduces confirmation bias from isolated boxes. Second, image-conditioned prompt selection is introduced, which ranks prompts by image-level compatibility and fuses the most informative prompts with the detector logits. Our benchmarking across diverse distribution shifts -- including stylized domains, driving scenes, low-light conditions, and common corruptions -- shows the effectiveness of our method on two state-of-the-art VLODs, YOLO-World and Grounding DINO, with consistent improvements over the zero-shot and TTA baselines. Code : https://github.com/imatif17/VLOD-TTA

Authors:Koki Ryu, Hitomi Yanaka
Title: Enhancing Rating Prediction with Off-the-Shelf LLMs Using In-Context User Reviews
Abstract:
Personalizing the outputs of large language models (LLMs) to align with individual user preferences is an active research area. However, previous studies have mainly focused on classification or ranking tasks and have not considered Likert-scale rating prediction, a regression task that requires both language and mathematical reasoning to be solved effectively. This task has significant industrial applications, but the utilization of LLMs remains underexplored, particularly regarding the capabilities of off-the-shelf LLMs. This study investigates the performance of off-the-shelf LLMs on rating prediction, providing different in-context information. Through comprehensive experiments with eight models across three datasets, we demonstrate that user-written reviews significantly improve the rating prediction performance of LLMs. This result is comparable to traditional methods like matrix factorization, highlighting the potential of LLMs as a promising solution for the cold-start problem. We also find that the reviews for concrete items are more effective than general preference descriptions that are not based on any specific item. Furthermore, we discover that prompting LLMs to first generate a hypothetical review enhances the rating prediction performance. Our code is available at https://github.com/ynklab/rating-prediction-with-reviews.

Authors:Yuling Shi, Yichun Qian, Hongyu Zhang, Beijun Shen, Xiaodong Gu
Title: LongCodeZip: Compress Long Context for Code Language Models
Abstract:
Code generation under long contexts is becoming increasingly critical as Large Language Models (LLMs) are required to reason over extensive information in the codebase. While recent advances enable code LLMs to process long inputs, high API costs and generation latency remain substantial bottlenecks. Existing context pruning techniques, such as LLMLingua, achieve promising results for general text but overlook code-specific structures and dependencies, leading to suboptimal performance in programming tasks. In this paper, we propose LongCodeZip, a novel plug-and-play code compression framework designed specifically for code LLMs. LongCodeZip employs a dual-stage strategy: (1) coarse-grained compression, which identifies and ranks function-level chunks using conditional perplexity with respect to the instruction, retaining only the most relevant functions; and (2) fine-grained compression, which segments retained functions into blocks based on perplexity and selects an optimal subset under an adaptive token budget to maximize relevance. Evaluations across multiple tasks, including code completion, summarization, and question answering, show that LongCodeZip consistently outperforms baseline methods, achieving up to a 5.6x compression ratio without degrading task performance. By effectively reducing context size while preserving essential information, LongCodeZip enables LLMs to better scale to real-world, large-scale code scenarios, advancing the efficiency and capability of code intelligence applications.

Authors:Seongjae Kang, Dong Bok Lee, Juho Jung, Dongseop Kim, Won Hwa Kim, Sunghoon Joo
Title: Automated Structured Radiology Report Generation with Rich Clinical Context
Abstract:
Automated structured radiology report generation (SRRG) from chest X-ray images offers significant potential to reduce workload of radiologists by generating reports in structured formats that ensure clarity, consistency, and adherence to clinical reporting standards. While radiologists effectively utilize available clinical contexts in their diagnostic reasoning, existing SRRG systems overlook these essential elements. This fundamental gap leads to critical problems including temporal hallucinations when referencing non-existent clinical contexts. To address these limitations, we propose contextualized SRRG (C-SRRG) that comprehensively incorporates rich clinical context for SRRG. We curate C-SRRG dataset by integrating comprehensive clinical context encompassing 1) multi-view X-ray images, 2) clinical indication, 3) imaging techniques, and 4) prior studies with corresponding comparisons based on patient histories. Through extensive benchmarking with state-of-the-art multimodal large language models, we demonstrate that incorporating clinical context with the proposed C-SRRG significantly improves report generation quality. We publicly release dataset, code, and checkpoints to facilitate future research for clinically-aligned automated RRG at https://github.com/vuno/contextualized-srrg.

Authors:Rishi Veerapaneni, Alvin Tang, Haodong He, Sophia Zhao, Viraj Shah, Yidai Cen, Ziteng Ji, Gabriel Olin, Jon Arrizabalaga, Yorai Shaoul, Jiaoyang Li, Maxim Likhachev
Title: Conflict-Based Search as a Protocol: A Multi-Agent Motion Planning Protocol for Heterogeneous Agents, Solvers, and Independent Tasks
Abstract:
Imagine the future construction site, hospital, office, or even sophisticated household with dozens of robots bought from different manufacturers. How can we enable these different systems to effectively move in a shared environment, given that each robot may have its own independent motion planning system? This work shows how we can get efficient collision-free movements between algorithmically heterogeneous agents by using Conflict-Based Search (Sharon et al. 2015) as a protocol. At its core, the CBS Protocol requires one specific single-agent motion planning API; finding a collision-free path that satisfies certain space-time constraints. Given such an API, CBS uses a central planner to find collision-free paths - independent of how the API is implemented. We show how this protocol enables multi-agent motion planning for a heterogeneous team of agents completing independent tasks with a variety of single-agent planners including: Heuristic Search (e.g., A*), Sampling Based Search (e.g., RRT), Optimization (e.g., Direct Collocation), Diffusion, and Reinforcement Learning.

Authors:Kairun Zhang, Haoyu Li, Yanjun Zhao, Yifan Sun, Huan Zhang
Title: Learning a Zeroth-Order Optimizer for Fine-Tuning LLMs
Abstract:
Zeroth-order optimizers have recently emerged as a practical approach for fine-tuning large language models (LLMs), significantly reducing GPU memory consumption compared to traditional first-order methods. Yet, existing zeroth-order methods rely on hand-crafted, static sampling strategies that are not adaptable to model-specific structures. To address this, we propose ZO Fine-tuner, a learning-based zeroth-order optimizer for LLMs that automatically learns efficient perturbation strategies through a compact and memory-efficient design. Crucially, our approach is motivated by the observation that only a small number of foundation models and their derivatives are widely adopted in practice. Therefore, learning the optimizer once for a given LLM and reusing it across diverse downstream tasks is both feasible and highly desirable. Accordingly, ZO Fine-tuner is designed to scale learning to learn (L2L) to the foundation-model era by supporting one-time training per LLM with minimal overhead. Experiments on 4 LLMs and 7 datasets show that ZO Fine-tuner outperforms prior zeroth-order baselines in 82.1\% of task-model combinations, thereby demonstrating strong performance and scalability for efficient LLM fine-tuning. Our code is available at https://github.com/ASTRAL-Group/ZO_Fine_tuner.git.

Authors:Junhyeok Lee, Han Jang, Kyu Sung Choi
Title: Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning
Abstract:
Precise delineation of meningiomas is crucial for effective radiotherapy (RT) planning, directly influencing treatment efficacy and preservation of adjacent healthy tissues. While automated deep learning approaches have demonstrated considerable potential, achieving consistently accurate clinical segmentation remains challenging due to tumor heterogeneity. Interactive Medical Image Segmentation (IMIS) addresses this challenge by integrating advanced AI techniques with clinical input. However, generic segmentation tools, despite widespread applicability, often lack the specificity required for clinically critical and disease-specific tasks like meningioma RT planning. To overcome these limitations, we introduce Interactive-MEN-RT, a dedicated IMIS tool specifically developed for clinician-assisted 3D meningioma segmentation in RT workflows. The system incorporates multiple clinically relevant interaction methods, including point annotations, bounding boxes, lasso tools, and scribbles, enhancing usability and clinical precision. In our evaluation involving 500 contrast-enhanced T1-weighted MRI scans from the BraTS 2025 Meningioma RT Segmentation Challenge, Interactive-MEN-RT demonstrated substantial improvement compared to other segmentation methods, achieving Dice similarity coefficients of up to 77.6\% and Intersection over Union scores of 64.8\%. These results emphasize the need for clinically tailored segmentation solutions in critical applications such as meningioma RT planning. The code is publicly available at: https://github.com/snuh-rad-aicon/Interactive-MEN-RT

Authors:Hengtao Li, Pengxiang Ding, Runze Suo, Yihao Wang, Zirui Ge, Dongyuan Zang, Kexian Yu, Mingyang Sun, Hongyin Zhang, Donglin Wang, Weihua Su
Title: VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators
Abstract:
Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a reinforcement fine-tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models. For more details, please refer to https://vla-rft.github.io/.

Authors:Zhouyang Liu, Ning Liu, Yixin Chen, Jiezhong He, Menghan Jia, Dongsheng Li
Title: Hierarchy-Aware Neural Subgraph Matching with Enhanced Similarity Measure
Abstract:
Subgraph matching is challenging as it necessitates time-consuming combinatorial searches. Recent Graph Neural Network (GNN)-based approaches address this issue by employing GNN encoders to extract graph information and hinge distance measures to ensure containment constraints in the embedding space. These methods significantly shorten the response time, making them promising solutions for subgraph retrieval. However, they suffer from scale differences between graph pairs during encoding, as they focus on feature counts but overlook the relative positions of features within node-rooted subtrees, leading to disturbed containment constraints and false predictions. Additionally, their hinge distance measures lack discriminative power for matched graph pairs, hindering ranking applications. We propose NC-Iso, a novel GNN architecture for neural subgraph matching. NC-Iso preserves the relative positions of features by building the hierarchical dependencies between adjacent echelons within node-rooted subtrees, ensuring matched graph pairs maintain consistent hierarchies while complying with containment constraints in feature counts. To enhance the ranking ability for matched pairs, we introduce a novel similarity dominance ratio-enhanced measure, which quantifies the dominance of similarity over dissimilarity between graph pairs. Empirical results on nine datasets validate the effectiveness, generalization ability, scalability, and transferability of NC-Iso while maintaining time efficiency, offering a more discriminative neural subgraph matching solution for subgraph retrieval. Code available at https://github.com/liuzhouyang/NC-Iso.

Authors:Zhouyang Liu, Yixin Chen, Ning Liu, Jiezhong He, Dongsheng Li
Title: Graph2Region: Efficient Graph Similarity Learning with Structure and Scale Restoration
Abstract:
Graph similarity is critical in graph-related tasks such as graph retrieval, where metrics like maximum common subgraph (MCS) and graph edit distance (GED) are commonly used. However, exact computations of these metrics are known to be NP-Hard. Recent neural network-based approaches approximate the similarity score in embedding spaces to alleviate the computational burden, but they either involve expensive pairwise node comparisons or fail to effectively utilize structural and scale information of graphs. To tackle these issues, we propose a novel geometric-based graph embedding method called Graph2Region (G2R). G2R represents nodes as closed regions and recovers their adjacency patterns within graphs in the embedding space. By incorporating the node features and adjacency patterns of graphs, G2R summarizes graph regions, i.e., graph embeddings, where the shape captures the underlying graph structures and the volume reflects the graph size. Consequently, the overlap between graph regions can serve as an approximation of MCS, signifying similar node regions and adjacency patterns. We further analyze the relationship between MCS and GED and propose using disjoint parts as a proxy for GED similarity. This analysis enables concurrent computation of MCS and GED, incorporating local and global structural information. Experimental evaluation highlights G2R's competitive performance in graph similarity computation. It achieves up to a 60.0\% relative accuracy improvement over state-of-the-art methods in MCS similarity learning, while maintaining efficiency in both training and inference. Moreover, G2R showcases remarkable capability in predicting both MCS and GED similarities simultaneously, providing a holistic assessment of graph similarity. Code available at https://github.com/liuzhouyang/Graph2Region.

Authors:Rohit Dilip, Evan Zhang, Ayush Varshney, David Van Valen
Title: Flow Autoencoders are Effective Protein Tokenizers
Abstract:
Protein structure tokenizers enable the creation of multimodal models of protein structure, sequence, and function. Current approaches to protein structure tokenization rely on bespoke components that are invariant to spatial symmetries, but that are challenging to optimize and scale. We present Kanzi, a flow-based tokenizer for tokenization and generation of protein structures. Kanzi consists of a diffusion autoencoder trained with a flow matching loss. We show that this approach simplifies several aspects of protein structure tokenizers: frame-based representations can be replaced with global coordinates, complex losses are replaced with a single flow matching loss, and SE(3)-invariant attention operations can be replaced with standard attention. We find that these changes stabilize the training of parameter-efficient models that outperform existing tokenizers on reconstruction metrics at a fraction of the model size and training cost. An autoregressive model trained with Kanzi outperforms similar generative models that operate over tokens, although it does not yet match the performance of state-of-the-art continuous diffusion models. Code is available here: https://github.com/rdilip/kanzi/.

Authors:Lucas Roberts, Denisa Roberts
Title: Which Programming Language and Model Work Best With LLM-as-a-Judge For Code Retrieval?
Abstract:
Code search is an important information retrieval application. Benefits of better code search include faster new developer on-boarding, reduced software maintenance, and ease of understanding for large repositories. Despite improvements in search algorithms and search benchmarks, the domain of code search has lagged behind. One reason is the high cost of human annotation for code queries and answers. While humans may annotate search results in general text QA systems, code annotations require specialized knowledge of a programming language (PL), as well as domain specific software engineering knowledge. In this work we study the use of Large Language Models (LLMs) to retrieve code at the level of functions and to generate annotations for code search results. We compare the impact of the retriever representation (sparse vs. semantic), programming language, and LLM by comparing human annotations across several popular languages (C, Java, Javascript, Go, and Python). We focus on repositories that implement common data structures likely to be implemented in any PLs. For the same human annotations, we compare several LLM-as-a-Judge models to evaluate programming language and other affinities between LLMs. We find that the chosen retriever and PL exhibit affinities that can be leveraged to improve alignment of human and AI relevance determinations, with significant performance implications. We also find differences in representation (sparse vs. semantic) across PLs that impact alignment of human and AI relevance determinations. We propose using transpilers to bootstrap scalable code search benchmark datasets in other PLs and in a case study demonstrate that human-AI relevance agreement rates largely match the (worst case) human-human agreement under study. The application code used in this work is available at \href{https://github.com/rlucas7/code-searcher/}{this github repo}.

Authors:Wei Shen, Han Wang, Haoyu Li, Huan Zhang
Title: DecepChain: Inducing Deceptive Reasoning in Large Language Models
Abstract:
Large Language Models (LLMs) have been demonstrating increasingly strong reasoning capability with their chain-of-thoughts (CoT), which are routinely used by humans to judge answer quality. This reliance creates a powerful yet fragile basis for trust. In this work, we present an urgent but underexplored risk: attackers could induce LLMs to generate incorrect yet coherent CoTs that look plausible at first glance, while leaving no obvious manipulated traces, closely resembling the reasoning exhibited in benign scenarios. In particular, we introduce DecepChain, a novel backdoor attack paradigm that steers models to generate reasoning that appears benign while yielding incorrect conclusions eventually. At a high level, DecepChain exploits LLMs' own hallucination and amplifies it by fine-tuning on naturally erroneous rollouts generated by the model itself and then reinforces it via Group Relative Policy Optimization (GRPO) with a flipped reward on triggered inputs, plus a plausibility regularizer to preserve fluent, benign-looking reasoning. Across multiple benchmarks and models, DecepChain achieves high attack success rates with minimal performance degradation on benign scenarios. Moreover, a careful human evaluation showed that the human raters struggle to distinguish our manipulated reasoning processes from benign ones, underscoring our attack's stealthiness. Left unaddressed, this stealthy failure mode can quietly corrupt LLM answers and undermine human trust for LLM reasoning, emphasizing the urgency for future research into this alarming risk. Project page: https://decepchain.github.io/.

Authors:Guy Bar-Shalom, Fabrizio Frasca, Yaniv Galron, Yftah Ziser, Haggai Maron
Title: Beyond Token Probes: Hallucination Detection via Activation Tensors with ACT-ViT
Abstract:
Detecting hallucinations in Large Language Model-generated text is crucial for their safe deployment. While probing classifiers show promise, they operate on isolated layer-token pairs and are LLM-specific, limiting their effectiveness and hindering cross-LLM applications. In this paper, we introduce a novel approach to address these shortcomings. We build on the natural sequential structure of activation data in both axes (layers $\times$ tokens) and advocate treating full activation tensors akin to images. We design ACT-ViT, a Vision Transformer-inspired model that can be effectively and efficiently applied to activation tensors and supports training on data from multiple LLMs simultaneously. Through comprehensive experiments encompassing diverse LLMs and datasets, we demonstrate that ACT-ViT consistently outperforms traditional probing techniques while remaining extremely efficient for deployment. In particular, we show that our architecture benefits substantially from multi-LLM training, achieves strong zero-shot performance on unseen datasets, and can be transferred effectively to new LLMs through fine-tuning. Full code is available at https://github.com/BarSGuy/ACT-ViT.

Authors:Xiaoyu Song, William Han, Tony Chen, Chaojing Duan, Michael A. Rosenberg, Emerson Liu, Ding Zhao
Title: Retrieval-Augmented Generation for Electrocardiogram-Language Models
Abstract:
Interest in generative Electrocardiogram-Language Models (ELMs) is growing, as they can produce textual responses conditioned on ECG signals and textual queries. Unlike traditional classifiers that output label probabilities, ELMs are more versatile, supporting domain-specific tasks (e.g., waveform analysis, diagnosis, prognosis) as well as general tasks (e.g., open-ended questions, dialogue). Retrieval-Augmented Generation (RAG), widely used in Large Language Models (LLMs) to ground LLM outputs in retrieved knowledge, helps reduce hallucinations and improve natural language generation (NLG). However, despite its promise, no open-source implementation or systematic study of RAG pipeline design for ELMs currently exists. To address this gap, we present the first open-source RAG pipeline for ELMs, along with baselines and ablation studies for NLG. Experiments on three public datasets show that ELMs with RAG consistently improves performance over non-RAG baselines and highlights key ELM design considerations. Our code is available at: https://github.com/willxxy/ECG-Bench.

Authors:Xiaofeng Lin, Hejian Sang, Zhipeng Wang, Xuezhou Zhang
Title: Debunk the Myth of SFT Generalization
Abstract:
A prevailing view holds that supervised fine-tuning (SFT) memorizes training data and fails to generalize, whereas reinforcement learning (RL) attains broader robustness. We revisit this claim through a systematic evaluation on two decision-making benchmarks, Sokoban and General Points, and arrive at a different conclusion. We show that much of SFT's perceived failure stems from frozen-prompt artifacts: when trained on fixed instruction templates, SFT models cling to training semantics rather than adapting to new ones. Introducing prompt diversity during training breaks this shortcut and yields strong generalization to unseen instruction variants without harming in-distribution performance. Beyond instruction shifts, we ask whether SFT can generalize to strictly harder tasks. Here, chain-of-thought (CoT) supervision provides an algorithmic scaffold that markedly improves transfer to more difficult regimes, such as larger Sokoban grids with additional boxes and arithmetic with out-of-distribution values or five-card compositions that increase combinatorial complexity. Finally, combining prompt diversity with CoT achieves the best of both worlds: robust generalization across both instruction-variant and difficulty-variant settings, matching or surpassing RL baselines on our benchmarks while retaining SFT's simplicity and stability. These findings challenge the narrative that SFT is inherently inferior to RL and support a data-centric perspective: with appropriately curated demonstrations, vanilla SFT can generalize as strongly as RL. Code reproducing the results in the paper can be found at: https://github.com/XiaofengLin7/debunking-sft-generalization.

Authors:Yue Meng, Fei Chen, Chuchu Fan
Title: TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks
Abstract:
Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO

Authors:Zhanda Zhu, Qidong Su, Yaoyao Ding, Kevin Song, Shang Wang, Gennady Pekhimenko
Title: LoRAFusion: Efficient LoRA Fine-Tuning for LLMs
Abstract:
Low-Rank Adaptation (LoRA) has become the leading Parameter-Efficient Fine-Tuning (PEFT) method for Large Language Models (LLMs), as it significantly reduces GPU memory usage while maintaining competitive fine-tuned model quality on downstream tasks. Despite these benefits, we identify two key inefficiencies in existing LoRA fine-tuning systems. First, they incur substantial runtime overhead due to redundant memory accesses on large activation tensors. Second, they miss the opportunity to concurrently fine-tune multiple independent LoRA adapters that share the same base model on the same set of GPUs. This leads to missed performance gains such as reduced pipeline bubbles, better communication overlap, and improved GPU load balance. To address these issues, we introduce LoRAFusion, an efficient LoRA fine-tuning system for LLMs. At the kernel level, we propose a graph-splitting method that fuses memory-bound operations. This design eliminates unnecessary memory accesses and preserves the performance of compute-bound GEMMs without incurring the cost of recomputation or synchronization. At the scheduling level, LoRAFusion introduces an adaptive batching algorithm for multi-job fine-tuning. It first splits LoRA adapters into groups to intentionally stagger batch execution across jobs, and then solves a bin-packing problem within each group to generate balanced, dependency-aware microbatches. LoRAFusion achieves up to $1.96\times$ ($1.47\times$ on average) end-to-end speedup compared to Megatron-LM, and up to $1.46\times$ ($1.29\times$ on average) improvement over mLoRA, the state-of-the-art multi-LoRA fine-tuning system. Our fused kernel achieves up to $1.39\times$ ($1.27\times$ on average) kernel performance improvement and can directly serve as a plug-and-play replacement in existing LoRA systems. We open-source LoRAFusion at https://github.com/CentML/lorafusion.

Authors:Satoshi Hashiguchi, Yuta Kataoka, Asako Kimura, Shohei Mori
Title: Perceived Weight of Mediated Reality Sticks
Abstract:
Mediated reality, where augmented reality (AR) and diminished reality (DR) meet, enables visual modifications to real-world objects. A physical object with a mediated reality visual change retains its original physical properties. However, it is perceived differently from the original when interacted with. We present such a mediated reality object, a stick with different lengths or a stick with a missing portion in the middle, to investigate how users perceive its weight and center of gravity. We conducted two user studies (N=10), each of which consisted of two substudies. We found that the length of mediated reality sticks influences the perceived weight. A longer stick is perceived as lighter, and vice versa. The stick with a missing portion tends to be recognized as one continuous stick. Thus, its weight and center of gravity (COG) remain the same. We formulated the relationship between inertia based on the reported COG and perceived weight in the context of dynamic touch.

Authors:Amirhossein Abaskohi, Tianyi Chen, Miguel Muñoz-Mármol, Curtis Fox, Amrutha Varshini Ramesh, Étienne Marcotte, Xing Han Lù, Nicolas Chapados, Spandana Gella, Christopher Pal, Alexandre Drouin, Issam H. Laradji
Title: DRBench: A Realistic Benchmark for Enterprise Deep Research
Abstract:
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Ken Fukuda, Teruko Mitamura
Title: TAMA: Tool-Augmented Multimodal Agent for Procedural Activity Understanding
Abstract:
Procedural activity assistants potentially support humans in a variety of settings, from our daily lives, e.g., cooking or assembling flat-pack furniture, to professional situations, e.g., manufacturing or biological experiments. Despite its potential use cases, the system development tailored for such an assistant is still underexplored. In this paper, we propose a novel framework, called TAMA, a Tool-Augmented Multimodal Agent, for procedural activity understanding. TAMA enables interleaved multimodal reasoning by making use of multimedia-returning tools in a training-free setting. Our experimental result on the multimodal procedural QA dataset, ProMQA-Assembly, shows that our approach can improve the performance of vision-language models, especially GPT-5 and MiMo-VL. Furthermore, our ablation studies provide empirical support for the effectiveness of two features that characterize our framework, multimedia-returning tools and agentic flexible tool selection. We believe our proposed framework and experimental results facilitate the thinking with images paradigm for video and multimodal tasks, let alone the development of procedural activity assistants.

Authors:Hanze Guo, Yijun Ma, Xiao Zhou
Title: SoREX: Towards Self-Explainable Social Recommendation with Relevant Ego-Path Extraction
Abstract:
Social recommendation has been proven effective in addressing data sparsity in user-item interaction modeling by leveraging social networks. The recent integration of Graph Neural Networks (GNNs) has further enhanced prediction accuracy in contemporary social recommendation algorithms. However, many GNN-based approaches in social recommendation lack the ability to furnish meaningful explanations for their predictions. In this study, we confront this challenge by introducing SoREX, a self-explanatory GNN-based social recommendation framework. SoREX adopts a two-tower framework enhanced by friend recommendation, independently modeling social relations and user-item interactions, while jointly optimizing an auxiliary task to reinforce social signals. To offer explanations, we propose a novel ego-path extraction approach. This method involves transforming the ego-net of a target user into a collection of multi-hop ego-paths, from which we extract factor-specific and candidate-aware ego-path subsets as explanations. This process facilitates the summarization of detailed comparative explanations among different candidate items through intricate substructure analysis. Furthermore, we conduct explanation re-aggregation to explicitly correlate explanations with downstream predictions, imbuing our framework with inherent self-explainability. Comprehensive experiments conducted on four widely adopted benchmark datasets validate the effectiveness of SoREX in predictive accuracy. Additionally, qualitative and quantitative analyses confirm the efficacy of the extracted explanations in SoREX. Our code and data are available at https://github.com/antman9914/SoREX.

Authors:Jiancong Xie, Wenjin Wang, Zhuomeng Zhang, Zihan Liu, Qi Liu, Ke Feng, Zixun Sun, Yuedong Yang
Title: OIG-Bench: A Multi-Agent Annotated Benchmark for Multimodal One-Image Guides Understanding
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities. However, evaluating their capacity for human-like understanding in One-Image Guides remains insufficiently explored. One-Image Guides are a visual format combining text, imagery, and symbols to present reorganized and structured information for easier comprehension, which are specifically designed for human viewing and inherently embody the characteristics of human perception and understanding. Here, we present OIG-Bench, a comprehensive benchmark focused on One-Image Guide understanding across diverse domains. To reduce the cost of manual annotation, we developed a semi-automated annotation pipeline in which multiple intelligent agents collaborate to generate preliminary image descriptions, assisting humans in constructing image-text pairs. With OIG-Bench, we have conducted a comprehensive evaluation of 29 state-of-the-art MLLMs, including both proprietary and open-source models. The results show that Qwen2.5-VL-72B performs the best among the evaluated models, with an overall accuracy of 77%. Nevertheless, all models exhibit notable weaknesses in semantic understanding and logical reasoning, indicating that current MLLMs still struggle to accurately interpret complex visual-text relationships. In addition, we also demonstrate that the proposed multi-agent annotation system outperforms all MLLMs in image captioning, highlighting its potential as both a high-quality image description generator and a valuable tool for future dataset construction. Datasets are available at https://github.com/XiejcSYSU/OIG-Bench.

Authors:Xianjie Liu, Yiman Hu, Yixiong Zou, Liang Wu, Jian Xu, Bo Zheng
Title: HiDe: Rethinking The Zoom-IN method in High Resolution MLLMs via Hierarchical Decoupling
Abstract:
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding tasks. However, their performance on high-resolution images remains suboptimal. While existing approaches often attribute this limitation to perceptual constraints and argue that MLLMs struggle to recognize small objects, leading them to use "zoom in" strategies for better detail, our analysis reveals a different cause: the main issue is not object size, but rather caused by complex background interference. We systematically analyze this "zoom in" operation through a series of decoupling experiments and propose the Hierarchical Decoupling Framework (HiDe), a training-free framework that uses Token-wise Attention Decoupling (TAD) to decouple the question tokens and identify the key information tokens, then leverages their attention weights to achieve precise alignment with the target visual regions. Subsequently, it employs Layout-Preserving Decoupling (LPD) to decouple these regions from the background and reconstructs a compact representation that preserves essential spatial layouts while eliminating background interference. HiDe sets a new SOTA on V*Bench, HRBench4K, and HRBench8K, boosting Qwen2.5-VL 7B and InternVL3 8B to SOTA (92.1% and 91.6% on V*Bench), even surpassing RL methods. After optimization, HiDe uses 75% less memory than the previous training-free approach. Code is provided in https://github.com/Tennine2077/HiDe.

Authors:Youquan Fu, Ruiyang Si, Hongfa Wang, Dongzhan Zhou, Jiacheng Sun, Ping Luo, Di Hu, Hongyuan Zhang, Xuelong Li
Title: Object-AVEdit: An Object-level Audio-Visual Editing Model
Abstract:
There is a high demand for audio-visual editing in video post-production and the film making field. While numerous models have explored audio and video editing, they struggle with object-level audio-visual operations. Specifically, object-level audio-visual editing requires the ability to perform object addition, replacement, and removal across both audio and visual modalities, while preserving the structural information of the source instances during the editing process. In this paper, we present \textbf{Object-AVEdit}, achieving the object-level audio-visual editing based on the inversion-regeneration paradigm. To achieve the object-level controllability during editing, we develop a word-to-sounding-object well-aligned audio generation model, bridging the gap in object-controllability between audio and current video generation models. Meanwhile, to achieve the better structural information preservation and object-level editing effect, we propose an inversion-regeneration holistically-optimized editing algorithm, ensuring both information retention during the inversion and better regeneration effect. Extensive experiments demonstrate that our editing model achieved advanced results in both audio-video object-level editing tasks with fine audio-visual semantic alignment. In addition, our developed audio generation model also achieved advanced performance. More results on our project page: https://gewu-lab.github.io/Object_AVEdit-website/.